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The classical Alexander polynomial

Let K ⊂ S3. The symmetrized classical Alexander polynomial
∆K (t) has the following formal properties:

(1) ∆K (t) ∈ Z[t±1],
(2) ∆K (1) = 1,
(3) ∆K (t−1) = ∆K (t).
In fact any polynomial satisfying (1), (2) and (3) appears as the
Alexander polynomial of a knot K .
Note that (1), (2) and (3) also imply
(2’) ∆K (ξ) 6= 0 for any prime power root of unity ξ.
The Alexander polynomial ∆K (t) also contains topological
information:
(4) ∆K (t) does not depend on the orientation,
(5) ∆K∗(t) = ∆K (t) where K ∗ is the mirror image,
(6) ∆K (t) is invariant under mutation,
(7) deg(∆K (t)) ≤ 2genus of K ,
(8) if K is fibered, then ∆K (t) is monic.
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The classical Alexander polynomial and Fox calculus

Let
π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation of π1(S3 \ K ). Denote by φ : π → 〈t〉 the
epimorphism.

Pick i with φ(gi ) 6= 0, then

∆K (t)

t − 1
=

det(φ(matrix
(
∂rk
∂gl

)
with i-th column removed))

φ(gi )− 1
.

Note that the formula on the right hand side really computes the
Reidemeister torsion of C∗(S3 \ K ,Q(t)).
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The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.

Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism.

Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.

Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:

(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,

(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,

(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



The twisted Alexander polynomial

Let K ⊂ S3 be a knot and α : π → SL(n,C) a
representation.Denote by φ : π → 〈t〉 the epimorphism. Let

π = 〈g1, . . . , gk | r1, . . . , rk−1〉

be a presentation.Pick i with φ(gi ) 6= 0, then we define

τ(K , α) :=
det((α⊗ φ)(matrix

(
∂rk
∂gl

)
with i-th column removed))

(α⊗ φ)(gi )− 1
.

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even
dimensional representation, then τ(K , α) is well-defined up to
multiplication by t i , i ∈ Z.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi Twisted Alexander polynomials of hyperbolic knots



Hyperbolic knots

Let K ⊂ S3 be an oriented hyperbolic knot. We denote by µ, λ its
meridian and longitude. There exists a discrete and faithful repr.

α : π1(S3 \ K )→ SL(2,C)

which is unique up to conjugation if we demand that

α(µ) =

(
1 1
0 1

)
and α(λ) =

(
−1 a
0 −1

)
for some a with Im(a) > 0.
Theorem. (1) τ(K , α) is well-defined up to multiplication by
t i , i ∈ Z. (Wada, Goda-Kitano-Morifuji)
(2) τ(K , α) is palindromic, i.e. τ(K , α)(t−1) = ±tkτ(K , α)
(Hillman-Silver-Williams)
(3) τ(K , α)(t = 1) is non-zero (Menal-Ferrer and Porti)
(4) τ(K , α) is a polynomial in C[t±1] of even degree.
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α(µ) =

(
1 1
0 1

)
and α(λ) =

(
−1 a
0 −1

)
for some a with Im(a) > 0.
Theorem. (1) τ(K , α) is well-defined up to multiplication by
t i , i ∈ Z. (Wada, Goda-Kitano-Morifuji)
(2) τ(K , α) is palindromic, i.e. τ(K , α)(t−1) = ±tkτ(K , α)
(Hillman-Silver-Williams)
(3) τ(K , α)(t = 1) is non-zero (Menal-Ferrer and Porti)

(4) τ(K , α) is a polynomial in C[t±1] of even degree.
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The invariant TK (t)

In light of the previous theorem we can now define

TK (t) := symmetrization of τ(K , α).

Theorem. (1) TK (t) is a well-defined polynomial in C[t±1],
(2) TK (1) 6= 0,

in fact TK (ξ) 6= 0 for any root of unity ξ,
(follows from results of Menal-Ferrer and Porti)(3) TK (t−1) = TK (t),
(4) TK (t) does not depend on the orientation of K ,
(5) TK∗(t) = TK (t), in particular if K is amphichiral, then TK (t)
is a real polynomial.

Example. TFigure 8 knot(t) = t − 4 + t−1.

Remark. If K is a hyperbolic knot with at most thirteen crossings,
then K is amphichiral if and only if TK (t) is a real polynomial.

Remark. If K is an amphichiral hyperbolic knot with at most
thirteen crossings, then the top coefficient of TK (t) is at least one.
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The Kinoshita-Terasaka knot and the Conway knot

The Conway knot and the Kinoshita-Terasaka knot are mutants
knots with trivial Alexander polynomial.

We calculate

TConway (t) ≈ (4.895− 0.099i)t5 +(−15.686+ 0.297i)t4

+ . . . (−15.686+ 0.298i)t−4 +(4.895− 0.099i)t−5.

For the Kinoshita–Terasaka knot we calculate

TKT (t) ≈ (4.418+ 0.376i)t3 +(−22.942− 4.845i)t2

+ · · ·+ (−22.926− 4.845i)t−2 +(4.418+ 0.376i)t−3.

This shows that TK (t) detects mutation.The evaluations TK (1)
and TK (−1) conjecturally do not detect mutation. E.g. for both
knots evaluation at t = 1 gives 4.1860− 4.2286i and for t = −1
we get 261.34 + 102.13i .
Questions. (1) Is |TK (1)| always less than |TK (−1)|?
(2) Does TK (t) distinguish hyperbolic knots?
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TK (t) and the knot genus

We now write x(K ) = 2genus(K )− 1.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have

deg(TK (t)) ≤ 2x(K ).

E.g. if K is the Conway knot, then the genus is three and we
calculated

deg(TConway(t)) = 10.

Similarly the genus of the Kinoshita-Terasaka knot is two and

deg(TKinoshita-Terasaka(t)) = 6.

We show that deg(TK (t)) = 2x(K ) for all knots with at most
thirteen crossings. The genera of all thirteen crossings were also
independently determined by Stoimenow.

Conjecture. For any hyperbolic knot K we have

deg(TK (t)) = 2x(K ).
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deg(TK (t)) ≤ 2x(K ).

E.g. if K is the Conway knot, then the genus is three and we
calculated

deg(TConway(t)) = 10.

Similarly the genus of the Kinoshita-Terasaka knot is two and

deg(TKinoshita-Terasaka(t)) = 6.

We show that deg(TK (t)) = 2x(K ) for all knots with at most
thirteen crossings. The genera of all thirteen crossings were also
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Conjecture. For any hyperbolic knot K we have
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TK (t) and fibered knots

Theorem (Goda-Kitano-Morifuji) If K is hyperbolic and fibered,
then

TK (t) is monic and deg(TK (t)) = 2x(K ).

We show that TK (t) detects all fibered knots with at most thirteen
crossings.

Conjecture. A hyperbolic knot K is fibered if and only if TK (t) is
monic and if

deg(TK (t)) = 2x(K )

holds.

Note that it is known that the set of twisted Alexander
polynomials corresponding to all finite representations detects
whether K is fibered.
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The adjoint representation

Let K be a hyperbolic knot and α : π → SL(2,C) the canonical
representation.

Then consider the adjoint representation

αadj : π → sl(2,C).

This is a 3-dimensional, irreducible and faithful representation.
In particular

deg τ(K , αadj) ≤
1

3
x(K ).

For the Conway knot (which has genus 3) we compute

deg τ(Conway knot, αadj) = 13.

I.e. here the inequality is a strict inequality.
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The character variety

The character variety is defined as

X (K ) := Hom(π1(S3 \ K ),SL(2,C))//SL(2,C)-conjugation.

The Alexander polynomial defines a function

X (K )→ C[t±1].

Theorem.

{χ ∈ X (K ) | deg(τ(K , χ)) = 2x(K )} is Zariski open

{χ ∈ X (K ) | τ(K , χ) is monic } is Zariski closed
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