Twisted Alexander polynomials of hyperbolic knots

Stefan Friedl
joint with N. Dunfield, N. Jackson and S. Vidussi

Seoul 2009
The classical Alexander polynomial

Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^\pm 1]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

In fact any polynomial satisfying (1), (2) and (3) appears as the Alexander polynomial of a knot K.

Note that (1), (2) and (3) also imply (2') $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The Alexander polynomial $\Delta_K(t)$ also contains topological information:

4. $\Delta_K(t)$ does not depend on the orientation,
5. $\Delta_K^*(t) = \Delta_K(t)$ where K^* is the mirror image,
6. $\Delta_K(t)$ is invariant under mutation,
7. $\deg(\Delta_K(t)) \leq 2\text{genus of } K$,
8. if K is fibered, then $\Delta_K(t)$ is monic.
The classical Alexander polynomial

Let \(K \subset S^3 \). The symmetrized classical Alexander polynomial \(\Delta_K(t) \) has the following formal properties:

1. \(\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}] \),
Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

In fact any polynomial satisfying (1), (2) and (3) appears as the Alexander polynomial of a knot K.

Note that (1), (2) and (3) also imply

$$\Delta_K(\xi) \neq 0$$
for any prime power root of unity ξ.}

The Alexander polynomial $\Delta_K(t)$ also contains topological information:

4. $\Delta_K(t)$ does not depend on the orientation,
5. $\Delta_K(K^*) = \Delta_K(t)$ where K^* is the mirror image,
6. $\Delta_K(t)$ is invariant under mutation,
7. $\deg(\Delta_K(t)) \leq 2\text{genus of }K$,
8. if K is fibered, then $\Delta_K(t)$ is monic.
The classical Alexander polynomial

Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

In fact any polynomial satisfying (1), (2) and (3) appears as the Alexander polynomial of a knot K.
Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^\pm 1]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

Note that (1), (2) and (3) also imply

(2') $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The classical Alexander polynomial
Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

Note that (1), (2) and (3) also imply

(2') $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The Alexander polynomial $\Delta_K(t)$ also contains topological information:
The classical Alexander polynomial

Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$
2. $\Delta_K(1) = 1$
3. $\Delta_K(t^{-1}) = \Delta_K(t)$

Note that (1), (2) and (3) also imply

2'. $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The Alexander polynomial $\Delta_K(t)$ also contains topological information:

4. $\Delta_K(t)$ does not depend on the orientation,
Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

Note that (1), (2) and (3) also imply

2' $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The Alexander polynomial $\Delta_K(t)$ also contains topological information:

4. $\Delta_K(t)$ does not depend on the orientation,
5. $\Delta_{K^*}(t) = \Delta_K(t)$ where K^* is the mirror image,
Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

Note that (1), (2) and (3) also imply

$2'$ $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The Alexander polynomial $\Delta_K(t)$ also contains topological information:

4. $\Delta_K(t)$ does not depend on the orientation,
5. $\Delta_{K^*}(t) = \Delta_K(t)$ where K^* is the mirror image,
6. $\Delta_K(t)$ is invariant under mutation,
The classical Alexander polynomial

Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:
1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

Note that (1), (2) and (3) also imply
4. $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The Alexander polynomial $\Delta_K(t)$ also contains topological information:
5. $\Delta_K(t)$ does not depend on the orientation,
6. $\Delta_{K^*}(t) = \Delta_K(t)$ where K^* is the mirror image,
7. $\deg(\Delta_K(t)) \leq 2\text{genus of } K$,
Let $K \subset S^3$. The symmetrized classical Alexander polynomial $\Delta_K(t)$ has the following formal properties:

1. $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$,
2. $\Delta_K(1) = 1$,
3. $\Delta_K(t^{-1}) = \Delta_K(t)$.

Note that (1), (2) and (3) also imply

2'. $\Delta_K(\xi) \neq 0$ for any prime power root of unity ξ.

The Alexander polynomial $\Delta_K(t)$ also contains topological information:

4. $\Delta_K(t)$ does not depend on the orientation,
5. $\Delta_{K^*}(t) = \Delta_K(t)$ where K^* is the mirror image,
6. $\Delta_K(t)$ is invariant under mutation,
7. $\deg(\Delta_K(t)) \leq 2\text{genus of } K$,
8. if K is fibered, then $\Delta_K(t)$ is monic.
Let
\[\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle \]
be a presentation of \(\pi_1(S^3 \setminus K) \). Denote by \(\phi : \pi \to \langle t \rangle \) the epimorphism.
Let
\[\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle \]
be a presentation of \(\pi_1(S^3 \setminus K) \). Denote by \(\phi : \pi \to \langle t \rangle \) the epimorphism. Pick \(i \) with \(\phi(g_i) \neq 0 \), then
\[
\Delta_K(t) \over t - 1 = \frac{\det(\phi(\text{matrix } \left(\frac{\partial r_k}{\partial g_i} \right) \text{ with } i\text{-th column removed})))}{\phi(g_i) - 1}.
\]
Let
\[\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle\]
be a presentation of \(\pi_1(S^3 \setminus K)\). Denote by \(\phi : \pi \to \langle t \rangle\) the epimorphism. Pick \(i\) with \(\phi(g_i) \neq 0\), then

\[
\frac{\Delta_K(t)}{t - 1} = \frac{\det(\phi(\text{matrix}\left(\frac{\partial r_k}{\partial g_i}\right)\text{ with } i\text{-th column removed}))}{\phi(g_i) - 1}.
\]

Note that the formula on the right hand side really computes the Reidemeister torsion of \(C_*(S^3 \setminus K, \mathbb{Q}(t))\).
The twisted Alexander polynomial

Let $K \subset S^3$ be a knot and $\alpha : \pi \to SL(n, \mathbb{C})$ a representation.
The twisted Alexander polynomial

Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism.
The twisted Alexander polynomial

Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism. Let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle$$

be a presentation.
Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism. Let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle$$

be a presentation. Pick i with $\phi(g_i) \neq 0$, then we define

$$\tau(K, \alpha) := \frac{\det((\alpha \otimes \phi)(\text{matrix } \left(\frac{\partial r_k}{\partial g_i} \right) \text{ with } i\text{-th column removed}))}{(\alpha \otimes \phi)(g_i) - 1}.$$
The twisted Alexander polynomial

Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism. Let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle$$

be a presentation. Pick i with $\phi(g_i) \neq 0$, then we define

$$\tau(K, \alpha) := \frac{\det((\alpha \otimes \phi)(\text{matrix } \left(\frac{\partial r_k}{\partial g_l} \right) \text{ with } i\text{-th column removed}))}{(\alpha \otimes \phi)(g_i) - 1}.$$

This invariant is sometimes referred to as:

(1) twisted Alexander polynomial,
(2) Wada's invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even dimensional representation, then $\tau(K, \alpha)$ is well-defined up to multiplication by t^i, $i \in \mathbb{Z}$.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi

Twisted Alexander polynomials of hyperbolic knots
Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism. Let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle$$

be a presentation. Pick i with $\phi(g_i) \neq 0$, then we define

$$\tau(K, \alpha) := \frac{\det((\alpha \otimes \phi)(\text{matrix } (\frac{\partial r_k}{\partial g_i}) \text{ with } i\text{-th column removed})))}{(\alpha \otimes \phi)(g_i) - 1}.$$

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
The twisted Alexander polynomial

Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism. Let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle$$

be a presentation. Pick i with $\phi(g_i) \neq 0$, then we define

$$\tau(K, \alpha) := \frac{\det((\alpha \otimes \phi)(\text{matrix } \left(\frac{\partial r_k}{\partial g_i} \right) \text{ with } i\text{-th column removed})))}{(\alpha \otimes \phi)(g_i) - 1}.$$

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
The twisted Alexander polynomial

Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism. Let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle$$

be a presentation. Pick i with $\phi(g_i) \neq 0$, then we define

$$\tau(K, \alpha) := \frac{\det((\alpha \otimes \phi)(\text{matrix } \left(\frac{\partial r_k}{\partial g_l} \right) \text{ with } i\text{-th column removed}))}{(\alpha \otimes \phi)(g_i) - 1}.$$

This invariant is sometimes referred to as:
(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.
The twisted Alexander polynomial

Let $K \subset S^3$ be a knot and $\alpha : \pi \to \text{SL}(n, \mathbb{C})$ a representation. Denote by $\phi : \pi \to \langle t \rangle$ the epimorphism. Let

$$\pi = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_{k-1} \rangle$$

be a presentation. Pick i with $\phi(g_i) \neq 0$, then we define

$$\tau(K, \alpha) := \frac{\det((\alpha \otimes \phi)(\text{matrix } \left(\frac{\partial r_k}{\partial g_i} \right) \text{ with } i\text{-th column removed}))}{(\alpha \otimes \phi)(g_i) - 1}.$$

This invariant is sometimes referred to as:

(1) twisted Alexander polynomial,
(2) Wada’s invariant,
(3) twisted Reidemeister torsion.

Theorem. (Wada, Goda-Kitano-Morifuji) If α is an even dimensional representation, then $\tau(K, \alpha)$ is well-defined up to multiplication by t^i, $i \in \mathbb{Z}$.
Let $K \subset S^3$ be an oriented hyperbolic knot. We denote by μ, λ its meridian and longitude. There exists a discrete and faithful repr.

$$\alpha : \pi_1(S^3 \setminus K) \rightarrow \text{SL}(2, \mathbb{C})$$
Let $K \subset S^3$ be an oriented hyperbolic knot. We denote by μ, λ its meridian and longitude. There exists a discrete and faithful repr.
\[
\alpha : \pi_1(S^3 \setminus K) \to \text{SL}(2, \mathbb{C})
\]
which is unique up to conjugation if we demand that
\[
\alpha(\mu) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \alpha(\lambda) = \begin{pmatrix} -1 & a \\ 0 & -1 \end{pmatrix}
\]
for some a with $\text{Im}(a) > 0$.
Hyperbolic knots

Let $K \subset S^3$ be an oriented hyperbolic knot. We denote by μ, λ its meridian and longitude. There exists a discrete and faithful repr.

$$\alpha : \pi_1(S^3 \setminus K) \to SL(2, \mathbb{C})$$

which is unique up to conjugation if we demand that

$$\alpha(\mu) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \alpha(\lambda) = \begin{pmatrix} -1 & a \\ 0 & -1 \end{pmatrix}$$

for some a with $\text{Im}(a) > 0$.

Theorem. (1) $\tau(K, \alpha)$ is well-defined up to multiplication by t^i, $i \in \mathbb{Z}$. (Wada, Goda-Kitano-Morifuji)
Let $K \subset S^3$ be an oriented hyperbolic knot. We denote by μ, λ its meridian and longitude. There exists a discrete and faithful repr.

$$\alpha : \pi_1(S^3 \setminus K) \to \text{SL}(2, \mathbb{C})$$

which is unique up to conjugation if we demand that

$$\alpha(\mu) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \alpha(\lambda) = \begin{pmatrix} -1 & a \\ 0 & -1 \end{pmatrix}$$

for some a with $\text{Im}(a) > 0$.

Theorem.

(1) $\tau(K, \alpha)$ is well-defined up to multiplication by t^i, $i \in \mathbb{Z}$. (Wada, Goda-Kitano-Morifuji)

(2) $\tau(K, \alpha)$ is palindromic, i.e. $\tau(K, \alpha)(t^{-1}) = \pm t^k \tau(K, \alpha)$ (Hillman-Silver-Williams)
Let $K \subset S^3$ be an oriented hyperbolic knot. We denote by μ, λ its meridian and longitude. There exists a discrete and faithful repr.

$$\alpha : \pi_1(S^3 \setminus K) \to \text{SL}(2, \mathbb{C})$$

which is unique up to conjugation if we demand that

$$\alpha(\mu) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \alpha(\lambda) = \begin{pmatrix} -1 & a \\ 0 & -1 \end{pmatrix}$$

for some a with $\text{Im}(a) > 0$.

Theorem. (1) $\tau(K, \alpha)$ is well-defined up to multiplication by $t^i, i \in \mathbb{Z}$. (Wada, Goda-Kitano-Morifuji)
(2) $\tau(K, \alpha)$ is palindromic, i.e. $\tau(K, \alpha)(t^{-1}) = \pm t^k \tau(K, \alpha)$ (Hillman-Silver-Williams)
(3) $\tau(K, \alpha)(t = 1)$ is non-zero (Menal-Ferrer and Porti)
Let $K \subset S^3$ be an oriented hyperbolic knot. We denote by μ, λ its meridian and longitude. There exists a discrete and faithful repr.

$$\alpha : \pi_1(S^3 \setminus K) \to \text{SL}(2, \mathbb{C})$$

which is unique up to conjugation if we demand that

$$\alpha(\mu) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \alpha(\lambda) = \begin{pmatrix} -1 & a \\ 0 & -1 \end{pmatrix}$$

for some a with $\text{Im}(a) > 0$.

Theorem.

1. $\tau(K, \alpha)$ is well-defined up to multiplication by $t^i, i \in \mathbb{Z}$. (Wada, Goda-Kitano-Morifuji)
2. $\tau(K, \alpha)$ is palindromic, i.e. $\tau(K, \alpha)(t^{-1}) = \pm t^k \tau(K, \alpha)$ (Hillman-Silver-Williams)
3. $\tau(K, \alpha)(t = 1)$ is non-zero (Menal-Ferrer and Porti)
4. $\tau(K, \alpha)$ is a polynomial in $\mathbb{C}[t^{\pm 1}]$ of even degree.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$
In light of the previous theorem we can now define

\[T_K(t) := \text{symmetrization of } \tau(K, \alpha). \]

Theorem. (1) \(T_K(t) \) is a well-defined polynomial in \(\mathbb{C}[t^{\pm 1}] \),

(2) \(T_K(1) \neq 0 \), in fact \(T_K(\xi) \neq 0 \) for any root of unity \(\xi \),

(follows from results of Menal-Ferrer and Porti)

(3) \(T_K(t-1) = T_K(t) \),

(4) \(T_K(t) \) does not depend on the orientation of \(K \),

(5) \(T_K^*(t) = T_K(t) \), in particular if \(K \) is amphichiral, then \(T_K(t) \) is a real polynomial.

Example. \(T_{\text{Figure 8 knot}}(t) = t - 4 + t - 1 \).

Remark. If \(K \) is a hyperbolic knot with at most thirteen crossings, then \(K \) is amphichiral if and only if \(T_K(t) \) is a real polynomial.

Remark. If \(K \) is an amphichiral hyperbolic knot with at most thirteen crossings, then the top coefficient of \(T_K(t) \) is at least one.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

\textbf{Theorem.} (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$,
(2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ,
(3) $\mathcal{T}_K(t-1) = \mathcal{T}_K(t)$,
(4) $\mathcal{T}_K(t)$ does not depend on the orientation of K,
(5) $\mathcal{T}_K^*(t) = \mathcal{T}_K(t)$, in particular if K is amphichiral, then $\mathcal{T}_K(t)$ is a real polynomial.

\textbf{Example.} $T_{\text{Figure 8 knot}}(t) = t - 4 + t - 1$.

\textbf{Remark.} If K is a hyperbolic knot with at most thirteen crossings, then K is amphichiral if and only if $\mathcal{T}_K(t)$ is a real polynomial.

\textbf{Remark.} If K is an amphichiral hyperbolic knot with at most thirteen crossings, then the top coefficient of $\mathcal{T}_K(t)$ is at least one.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$, (2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ, (follows from results of Menal-Ferrer and Porti)
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$,
(2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ,
(3) $\mathcal{T}_K(t^{-1}) = \mathcal{T}_K(t)$.

Remark. If K is a hyperbolic knot with at most thirteen crossings, then K is amphichiral if and only if $\mathcal{T}_K(t)$ is a real polynomial.

Remark. If K is an amphichiral hyperbolic knot with at most thirteen crossings, then the top coefficient of $\mathcal{T}_K(t)$ is at least one.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$, (2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ, (3) $\mathcal{T}_K(t^{-1}) = \mathcal{T}_K(t)$, (4) $\mathcal{T}_K(t)$ does not depend on the orientation of K.

Example. \mathcal{T} Figure 8 knot (t) = $t - 4 + t^{-1}$.

Remark. If K is a hyperbolic knot with at most thirteen crossings, then K is amphichiral if and only if $\mathcal{T}_K(t)$ is a real polynomial.

Remark. If K is an amphichiral hyperbolic knot with at most thirteen crossings, then the top coefficient of $\mathcal{T}_K(t)$ is at least one.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$,
(2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ,
(3) $\mathcal{T}_K(t^{-1}) = \mathcal{T}_K(t)$,
(4) $\mathcal{T}_K(t)$ does not depend on the orientation of K,
(5) $\mathcal{T}_K^*(t) = \overline{\mathcal{T}_K(t)}$,
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$,
(2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ,
(3) $\mathcal{T}_K(t^{-1}) = \mathcal{T}_K(t)$,
(4) $\mathcal{T}_K(t)$ does not depend on the orientation of K,
(5) $\mathcal{T}_K^*(t) = \overline{\mathcal{T}_K(t)}$, in particular if K is amphichiral, then $\mathcal{T}_K(t)$ is a real polynomial.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$,
(2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ,
(3) $\mathcal{T}_K(t^{-1}) = \mathcal{T}_K(t)$,
(4) $\mathcal{T}_K(t)$ does *not* depend on the orientation of K,
(5) $\mathcal{T}_K^*(t) = \overline{\mathcal{T}_K(t)}$, in particular if K is amphichiral, then $\mathcal{T}_K(t)$ is a real polynomial.

Example. $\mathcal{T}_{\text{Figure 8 knot}}(t) = t - 4 + t^{-1}$.

Remark. If K is a hyperbolic knot with at most thirteen crossings, then K is amphichiral if and only if $\mathcal{T}_K(t)$ is a real polynomial.

Remark. If K is an amphichiral hyperbolic knot with at most thirteen crossings, then the top coefficient of $\mathcal{T}_K(t)$ is at least one.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$,
(2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ,
(3) $\mathcal{T}_K(t^{-1}) = \mathcal{T}_K(t)$,
(4) $\mathcal{T}_K(t)$ does not depend on the orientation of K,
(5) $\mathcal{T}_K^*(t) = \overline{\mathcal{T}_K(t)}$, in particular if K is amphichiral, then $\mathcal{T}_K(t)$ is a real polynomial.

Example.
$$\mathcal{T}_{\text{Figure 8 knot}}(t) = t - 4 + t^{-1}.$$

Remark. If K is a hyperbolic knot with at most thirteen crossings, then K is amphichiral if and only if $\mathcal{T}_K(t)$ is a real polynomial.
The invariant $\mathcal{T}_K(t)$

In light of the previous theorem we can now define

$$\mathcal{T}_K(t) := \text{symmetrization of } \tau(K, \alpha).$$

Theorem. (1) $\mathcal{T}_K(t)$ is a well-defined polynomial in $\mathbb{C}[t^{\pm 1}]$,
(2) $\mathcal{T}_K(1) \neq 0$, in fact $\mathcal{T}_K(\xi) \neq 0$ for any root of unity ξ,
(3) $\mathcal{T}_K(t^{-1}) = \mathcal{T}_K(t),$
(4) $\mathcal{T}_K(t)$ does not depend on the orientation of K,
(5) $\mathcal{T}_{K^*}(t) = \overline{\mathcal{T}_K(t)}$, in particular if K is amphichiral, then $\mathcal{T}_K(t)$ is a real polynomial.

Example.

$$\mathcal{T}_{\text{Figure 8 knot}}(t) = t - 4 + t^{-1}.$$

Remark. If K is a hyperbolic knot with at most thirteen crossings, then K is amphichiral if and only if $\mathcal{T}_K(t)$ is a real polynomial.

Remark. If K is an amphichiral hyperbolic knot with at most thirteen crossings, then the top coefficient of $\mathcal{T}_K(t)$ is at least one.
The Kinoshita-Terasaka knot and the Conway knot

The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial.

\[T_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + (-15.686 + 0.298i)t^4 + \ldots \]

\[T_{\text{KT}}(t) \approx (4.418 + 0.376i)t^3 + (-22.942 - 4.845i)t^2 + \ldots + (-22.926 - 4.845i)t^{-2} + (4.418 + 0.376i)t^{-3} \]

This shows that \(T_{\text{KT}}(t) \) detects mutation.

The evaluations \(T_{\text{KT}}(1) \) and \(T_{\text{KT}}(-1) \) conjecturally do not detect mutation. E.g. for both knots evaluation at \(t = 1 \) gives \(4.1860 - 4.2286i \) and for \(t = -1 \) we get \(261.34 + 102.13i \).

Questions.

(1) Is \(|T_{\text{KT}}(1)| \) always less than \(|T_{\text{KT}}(-1)| \)?

(2) Does \(T_{\text{KT}}(t) \) distinguish hyperbolic knots?
The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial. We calculate

\[T_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + (-15.686 + 0.297i)t^4 + \ldots (-15.686 + 0.298i)t^{-4} + (4.895 - 0.099i)t^{-5}. \]
The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial. We calculate

$$\mathcal{T}_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + (-15.686 + 0.297i)t^4 + \ldots (-15.686 + 0.298i)t^{-4} + (4.895 - 0.099i)t^{-5}.$$

For the Kinoshita–Terasaka knot we calculate

$$\mathcal{T}_{\text{KT}}(t) \approx (4.418 + 0.376i)t^3 + (-22.942 - 4.845i)t^2 + \ldots + (-22.926 - 4.845i)t^{-2} + (4.418 + 0.376i)t^{-3}.$$

Questions:

1. Is $|\mathcal{T}_{\text{KT}}(1)|$ always less than $|\mathcal{T}_{\text{KT}}(-1)|$?
2. Does $\mathcal{T}_{\text{KT}}(t)$ distinguish hyperbolic knots?
The Kinoshita-Terasaka knot and the Conway knot

The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial. We calculate

\[T_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + (-15.686 + 0.297i)t^4 + \ldots (-15.686 + 0.298i)t^{-4} + (4.895 - 0.099i)t^{-5}. \]

For the Kinoshita–Terasaka knot we calculate

\[T_{\text{KT}}(t) \approx (4.418 + 0.376i)t^3 + (-22.942 - 4.845i)t^2 + \ldots + (-22.926 - 4.845i)t^{-2} + (4.418 + 0.376i)t^{-3}. \]

This shows that \(T_K(t) \) detects mutation.
The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial. We calculate

\[\mathcal{T}_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + (-15.686 + 0.297i)t^4 + \ldots (-15.686 + 0.298i)t^{-4} + (4.895 - 0.099i)t^{-5}. \]

For the Kinoshita–Terasaka knot we calculate

\[\mathcal{T}_{\text{KT}}(t) \approx (4.418 + 0.376i)t^3 + (-22.942 - 4.845i)t^2 + \ldots + (-22.926 - 4.845i)t^{-2} + (4.418 + 0.376i)t^{-3}. \]

This shows that \(\mathcal{T}_{\text{K}}(t) \) detects mutation. The evaluations \(\mathcal{T}_{\text{K}}(1) \) and \(\mathcal{T}_{\text{K}}(-1) \) conjecturally do not detect mutation. E.g. for both knots evaluation at \(t = 1 \) gives \(4.1860 - 4.2286i \).
The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial. We calculate

\[T_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + \ldots + (-15.686 + 0.297i)t^4 + \ldots + (-15.686 + 0.298i)t^{-4} + (4.895 - 0.099i)t^{-5}. \]

For the Kinoshita–Terasaka knot we calculate

\[T_{\text{KT}}(t) \approx (4.418 + 0.376i)t^3 + \ldots + (-22.926 - 4.845i)t^{-2} + (4.418 + 0.376i)t^{-3}. \]

This shows that \(T_K(t) \) detects mutation. The evaluations \(T_K(1) \) and \(T_K(-1) \) conjecturally do not detect mutation. E.g. for both knots evaluation at \(t = 1 \) gives \(4.1860 - 4.2286i \) and for \(t = -1 \) we get \(261.34 + 102.13i \).
The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial. We calculate

\[T_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + (-15.686 + 0.297i)t^4 + \ldots (-15.686 + 0.298i)t^{-4} + (4.895 - 0.099i)t^{-5}. \]

For the Kinoshita–Terasaka knot we calculate

\[T_{\text{KT}}(t) \approx (4.418 + 0.376i)t^3 + (-22.942 - 4.845i)t^2 + \ldots + (-22.926 - 4.845i)t^{-2} + (4.418 + 0.376i)t^{-3}. \]

This shows that \(T_K(t) \) detects mutation. The evaluations \(T_K(1) \) and \(T_K(-1) \) conjecturally do not detect mutation. E.g. for both knots evaluation at \(t = 1 \) gives \(4.1860 - 4.2286i \) and for \(t = -1 \) we get \(261.34 + 102.13i \).

Questions. (1) Is \(|T_K(1)| \) always less than \(|T_K(-1)| \)?
The Conway knot and the Kinoshita-Terasaka knot are mutants knots with trivial Alexander polynomial. We calculate

\[T_{\text{Conway}}(t) \approx (4.895 - 0.099i)t^5 + (-15.686 + 0.297i)t^4 \]
\[+ \ldots (-15.686 + 0.298i)t^4 + (4.895 - 0.099i)t^{-5}. \]

For the Kinoshita–Terasaka knot we calculate

\[T_{\text{KT}}(t) \approx (4.418 + 0.376i)t^3 + (-22.942 - 4.845i)t^2 \]
\[+ \ldots (-22.926 - 4.845i)t^2 + (4.418 + 0.376i)t^{-3}. \]

This shows that \(T_K(t) \) detects mutation. The evaluations \(T_K(1) \) and \(T_K(-1) \) conjecturally do not detect mutation. E.g. for both knots evaluation at \(t = 1 \) gives \(4.1860 - 4.2286i \) and for \(t = -1 \) we get \(261.34 + 102.13i \).

Questions. (1) Is \(|T_K(1)| \) always less than \(|T_K(-1)| \)?
(2) Does \(T_K(t) \) distinguish hyperbolic knots?
$T_K(t)$ and the knot genus

We now write $x(K) = 2\text{genus}(K) - 1$.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have $\deg(T_K(t)) \leq 2x(K)$.

E.g. if K is the Conway knot, then the genus is three and we calculated $\deg(T_{\text{Conway}}(t)) = 10$.

Similarly the genus of the Kinoshita-Terasaka knot is two and $\deg(T_{\text{Kinoshita-Terasaka}}(t)) = 6$.

We show that $\deg(T_K(t)) = 2x(K)$ for all knots with at most thirteen crossings.

The genera of all thirteen crossings were also independently determined by Stoimenow.

Conjecture. For any hyperbolic knot K we have $\deg(T_K(t)) = 2x(K)$.

Stefan Friedl joint with N. Dunfield, N. Jackson and S. Vidussi

Twisted Alexander polynomials of hyperbolic knots
We now write $x(K) = 2\text{genus}(K) - 1$.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have

$$\deg(\tau_K(t)) \leq 2x(K).$$
We now write $x(K) = 2\text{genus}(K) - 1$.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have
\[
\text{deg}(\mathcal{T}_K(t)) \leq 2x(K).
\]

E.g. if K is the Conway knot, then the genus is three and we calculated
\[
\text{deg}(\mathcal{T}_{\text{Conway}}(t)) = 10.
\]
We now write $x(K) = 2 \text{genus}(K) - 1$.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have
$$\text{deg}(T_K(t)) \leq 2x(K).$$

E.g. if K is the Conway knot, then the genus is three and we calculated
$$\text{deg}(T_{\text{Conway}}(t)) = 10.$$

Similarly the genus of the Kinoshita-Terasaka knot is two and
$$\text{deg}(T_{\text{Kinoshita-Terasaka}}(t)) = 6.$$
We now write $x(K) = 2\text{genus}(K) - 1$.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have

$$\deg(\mathcal{T}_K(t)) \leq 2x(K).$$

E.g. if K is the Conway knot, then the genus is three and we calculated

$$\deg(\mathcal{T}_{\text{Conway}}(t)) = 10.$$

Similarly the genus of the Kinoshita-Terasaka knot is two and

$$\deg(\mathcal{T}_{\text{Kinoshita-Terasaka}}(t)) = 6.$$

We show that $\deg(\mathcal{T}_K(t)) = 2x(K)$ for all knots with at most thirteen crossings.
We now write $x(K) = 2\text{genus}(K) - 1$.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have

$$\deg(T_K(t)) \leq 2x(K).$$

E.g. if K is the Conway knot, then the genus is three and we calculated

$$\deg(T_{\text{Conway}}(t)) = 10.$$

Similarly the genus of the Kinoshita-Terasaka knot is two and

$$\deg(T_{\text{Kinoshita-Terasaka}}(t)) = 6.$$

We show that $\deg(T_K(t)) = 2x(K)$ for all knots with at most thirteen crossings. The genera of all thirteen crossings were also independently determined by Stoimenow.
$\mathcal{T}_K(t)$ and the knot genus

We now write $x(K) = 2\text{genus}(K) - 1$.

Theorem (F-Taehee Kim) For any hyperbolic knot K we have

$$\text{deg}(\mathcal{T}_K(t)) \leq 2x(K).$$

E.g. if K is the Conway knot, then the genus is three and we calculated

$$\text{deg}(\mathcal{T}_{\text{Conway}}(t)) = 10.$$

Similarly the genus of the Kinoshita-Terasaka knot is two and

$$\text{deg}(\mathcal{T}_{\text{Kinoshita-Terasaka}}(t)) = 6.$$

We show that $\text{deg}(\mathcal{T}_K(t)) = 2x(K)$ for all knots with at most thirteen crossings. The genera of all thirteen crossings were also independently determined by Stoimenow.

Conjecture. For any hyperbolic knot K we have

$$\text{deg}(\mathcal{T}_K(t)) = 2x(K).$$
Theorem (Goda-Kitano-Morifuji) If K is hyperbolic and fibered, then
\[T_K(t) \text{ is monic and } \deg(T_K(t)) = 2x(K). \]
Theorem (Goda-Kitano-Morifuji) If K is hyperbolic and fibered, then

$$\mathcal{T}_K(t) \text{ is monic and } \deg(\mathcal{T}_K(t)) = 2x(K).$$

We show that $\mathcal{T}_K(t)$ detects all fibered knots with at most thirteen crossings.
Theorem (Goda-Kitano-Morifuji) If K is hyperbolic and fibered, then

$$T_K(t) \text{ is monic and } \deg(T_K(t)) = 2x(K).$$

We show that $T_K(t)$ detects all fibered knots with at most thirteen crossings.

Conjecture. A hyperbolic knot K is fibered if and only if $T_K(t)$ is monic and if

$$\deg(T_K(t)) = 2x(K)$$

holds.
Theorem (Goda-Kitano-Morifuji) If K is hyperbolic and fibered, then

$$T_K(t) \text{ is monic and } \deg(T_K(t)) = 2x(K).$$

We show that $T_K(t)$ detects all fibered knots with at most thirteen crossings.

Conjecture. A hyperbolic knot K is fibered if and only if $T_K(t)$ is monic and if

$$\deg(T_K(t)) = 2x(K)$$

holds.

Note that it is known that the set of twisted Alexander polynomials corresponding to *all* finite representations detects whether K is fibered.
The adjoint representation

Let K be a hyperbolic knot and $\alpha : \pi \to SL(2, \mathbb{C})$ the canonical representation.

Then consider the adjoint representation $\alpha_{\text{adj}} : \pi \to \text{sl}(2, \mathbb{C})$. This is a 3-dimensional, irreducible and faithful representation. In particular $\deg \tau(K, \alpha_{\text{adj}}) \leq \frac{1}{3} \times (K)$. For the Conway knot (which has genus 3) we compute $\deg \tau(\text{Conway knot}, \alpha_{\text{adj}}) = 13$. I.e. here the inequality is a strict inequality.
Let K be a hyperbolic knot and $\alpha : \pi \to \text{SL}(2, \mathbb{C})$ the canonical representation. Then consider the \textit{adjoint} representation $\alpha_{\text{adj}} : \pi \to \mathfrak{sl}(2, \mathbb{C})$. This is a 3-dimensional, irreducible and faithful representation. In particular $\deg \tau(K, \alpha_{\text{adj}}) \leq \frac{1}{3} \chi(K)$.

For the Conway knot (which has genus 3) we compute $\deg \tau(\text{Conway knot}, \alpha_{\text{adj}}) = 13$. I.e. here the inequality is a strict inequality.
The adjoint representation

Let K be a hyperbolic knot and $\alpha : \pi \to \text{SL}(2, \mathbb{C})$ the canonical representation. Then consider the adjoint representation $\alpha_{\text{adj}} : \pi \to \mathfrak{sl}(2, \mathbb{C})$.

This is a 3-dimensional, irreducible and faithful representation.
Let K be a hyperbolic knot and $\alpha : \pi \to \text{SL}(2, \mathbb{C})$ the canonical representation. Then consider the *adjoint* representation

$$\alpha_{adj} : \pi \to \mathfrak{sl}(2, \mathbb{C}).$$

This is a 3-dimensional, irreducible and faithful representation. In particular

$$\text{deg } \tau(K, \alpha_{adj}) \leq \frac{1}{3} \chi(K).$$
The adjoint representation

Let K be a hyperbolic knot and $\alpha : \pi \to \text{SL}(2, \mathbb{C})$ the canonical representation. Then consider the \textit{adjoint} representation

$$\alpha_{adj} : \pi \to \text{sl}(2, \mathbb{C}).$$

This is a 3-dimensional, irreducible and faithful representation. In particular

$$\deg \tau(K, \alpha_{adj}) \leq \frac{1}{3} x(K).$$

For the Conway knot (which has genus 3) we compute

$$\deg \tau(\text{Conway knot}, \alpha_{adj}) = 13.$$

I.e. here the inequality is a strict inequality.
The character variety is defined as

\[X(K) := \text{Hom}(\pi_1(S^3 \setminus K), \text{SL}(2, \mathbb{C}))/\text{SL}(2, \mathbb{C})\text{-conjugation}. \]
The character variety is defined as

\[X(K) := \text{Hom}(\pi_1(S^3 \setminus K), \text{SL}(2, \mathbb{C}))/\text{SL}(2, \mathbb{C})\text{-conjugation}. \]

The Alexander polynomial defines a function

\[X(K) \to \mathbb{C}[t^{\pm 1}]. \]
The character variety is defined as

\[X(K) := \text{Hom}(\pi_1(S^3 \setminus K), \text{SL}(2, \mathbb{C}))//\text{SL}(2, \mathbb{C})\text{-conjugation}. \]

The Alexander polynomial defines a function

\[X(K) \to \mathbb{C}[t^{\pm 1}]. \]

Theorem.

\[\{ \chi \in X(K) \mid \deg(\tau(K, \chi)) = 2x(K) \} \text{ is Zariski open} \]

\[\{ \chi \in X(K) \mid \tau(K, \chi) \text{ is monic} \} \text{ is Zariski closed} \]