
L2–BETTI NUMBERS OF PLANE ALGEBRAIC CURVES

STEFAN FRIEDL, CONSTANCE LEIDY AND LAURENTIU MAXIM

Abstract. In [DJL07] it was shown that if A is an affine hyperplane arrangement
in Cn, then at most one of the L2–Betti numbers b

(2)
p (Cn \ A, id) is non–zero.

We will prove an analogous statement for complements of any algebraic curve in
C2. Furthermore we also recast and extend results of [LM06] in terms of L2–Betti
numbers.

1. Introduction

Let X be any topological space and ϕ : π1(X)→ Γ a homomorphism to a group (all
groups are assumed countable). Then for p ∈ N ∪ {0} we can consider the L2–Betti

number b
(2)
p (X,ϕ) ∈ [0,∞]. We recall the definition and some of the most important

properties of L2–Betti numbers in Section 2.
Let C ⊂ C2 be a reduced plane algebraic curve with irreducible components
C1, . . . , Cr. We write X(C) := C2 \ νC, for νC a regular neighborhood of C inside
C2. We denote the meridians about the nonsingular parts of C1, . . . , Cr by µ1, . . . , µr.
Note that these meridians come with a preferred orientation since the non-singular
parts of the irreducible components Ci are complex submanifolds of C2.

It is well–known (cf. Theorem 3.1) that H1(X(C); Z) is the free abelian group
generated by the meridians µ1, . . . , µr. Throughout the paper we denote by φ the map
π1(X(C); Z) → Z given by sending each meridian µi to 1. We also refer to φ as the
total linking homomorphism. We henceforth call a homomorphism α : π1(X(C))→ Γ
to a group admissible if the total linking homomorphism φ factors through α.

Our first result is the following.

Theorem 1.1. Let C ⊂ C2 be a reduced algebraic curve C whose projective completion
intersects the line at infinity transversely. Let α : π1(X(C)) → Γ be an admissible
homomorphism, then

b(2)
p (X(C), α) =

{
0, for p 6= 2,

χ(X(C)), for p = 2.

In [DJL07] it was shown that if A is an affine hyperplane arrangement in Cn, then

at most one of the L2–Betti numbers b
(2)
p (Cn \A, id) is non–zero. Theorem 1.1 can be
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seen as an analogous statement for the complement of an algebraic curve in C2 which
is in general position at infinity. Note that in the case that Γ is a polytorsion–free–
abelian (PTFA) group, then this theorem, together with Proposition 2.4, recovers
[LM06, Corollary 4.2].

Given an algebraic curve C we denote by X̃(C) the infinite cyclic cover of X(C)
corresponding to φ. Given an admissible homomorphism α : π1(X(C)) → Γ we let

Γ̃ := Im{π1(X̃(C))→ π1(X(C)) α−→ Γ} and we denote the induced map π1(X̃(C))→ Γ̃
by α̃. We will now study the invariant

b
(2)
1 (X̃(C), α̃ : π1(X̃(C))→ Γ̃).

The idea of looking for invariants of the fundamental group of the complement that
capture information about the topology of the curve goes back to the early work of
Zariski, and was further developed by A. Libgober by analogy with the classical knot
theory (cf. [Lib82, Lib83, Lib92, Lib01]). In particular Libgober studied the ordinary
one–variable Alexander polynomial corresponding to X(C), its degree is given by the

the ordinary Betti number of X̃(C) (cf. e.g. [Co04, p. 368]). In that sense the study

of the L2–Betti numbers of X̃(C) can be seen as a non–commutative generalization
of the approach of Libgober.

Following work of Cochran and Harvey the second and third author consider in
[LM06] the the following homomorphism

πn : π1(X(C))→ π1(X(C))/π1(X(C))(n+1)
r =: Γn,

where given a group G we denote by G
(n)
r the n–th term in the rational derived series

(cf. [Ha05]). The group Γn is a PTFA group and the authors define an invariant

δn(C) as the dimension of the first homology of X̃(C) with coefficients in the skew
field associated to Γ̃n. Some of these invariants are computed in [LM06] and [LM07].
The main result of [LM06] gives upper bounds on δn(C) in terms of information coming
from the singularities of C.

We will see in Theorem 2.5 that

δn(C) = b
(2)
1 (X̃(C), π̃n : π1(X̃(C))→ Γ̃n).

The following theorem can therefore be viewed as a generalization of [LM06, The-
orem 4.1]. Note that for the invariants δn(C) it gives a slightly better bound than
[LM06, Theorem 4.1].

Theorem 1.2. Let C ⊂ C2 be a reduced plane algebraic curve of degree d whose
projective completion intersects the line at infinity transversely. Denote the set of
singular points by P1, . . . , Ps, and for a singular point Pi denote by µ(C, Pi) the as-
sociated Milnor number of the singularity germ at Pi. Let α : π1(X(C)) → Γ be an
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admissible homomorphism, then

b
(2)
1 (X̃(C), α̃ : π1(X̃(C))→ Γ̃) ≤

s∑
i=1

(µ(C, Pi) + ni − 1) + 2g + d.

Here ni denotes the number of branches through Pi and g is the genus of the normal-
ization of the projective completion of C.

This theorem shows that the topology of the singularities imposes restrictions on
the L2–Betti numbers of the curve complement. In this sense this result is in the
same vein as the results of Libgober [Lib82] and Cogolludo–Florens [CF07], but see
also [Lib94, DM07, Ma06] for similar results in the higher-dimensional case.

2. L2–Betti numbers

2.1. The von Neumann algebra and its localizations. Let Γ be a countable
group. Define l2(Γ) := {f : Γ → C |

∑
g∈Γ |f(g)|2 < ∞}, this is a Hilbert space.

Then Γ acts on l2(Γ) by right multiplication, i.e. (g · f)(h) = f(hg). This defines
an injective map C[Γ]→ B(l2(Γ)), where B(l2(Γ)) is the set of bounded operators on
l2(Γ). We henceforth view C[Γ] as a subset of B(l2(Γ)).

Now define the von Neumann algebra N (Γ) to be the closure of C[Γ] ⊂ B(l2(Γ))
with respect to pointwise convergence in B(l2(Γ)). Note that any N (Γ)–module M
has a dimension dimN (Γ)(M) ∈ R≥0 ∪ {∞}. We refer to [Lü02, Definition 6.20] for
details.

2.2. The definition of L2–Betti numbers. Let X be a topological space (not
necessarily compact) and let ϕ : π1(X)→ Γ be a homomorphism to a group. Denote
the covering of X corresponding to ϕ by X̃. Then we can study the N (Γ)–chain
complex

Csing
∗ (X̃)⊗Z[Γ] N (Γ),

where Csing
∗ (X̃) is the singular chain complex of X̃ with right Γ–action given by

covering translation. Furthermore Γ acts canonically on N (Γ) on the left. The p–th
L2–Betti number is now defined as

b(2)
p (X,ϕ) := dimN (Γ)(Hp(C

sing
∗ (X̃)⊗Z[Γ] N (Γ))) ∈ [0,∞].

We refer to [Lü02, Definition 6.50] for more details.
In the following lemma we summarize some of the properties of L2–Betti numbers.

We refer to [Lü02, Theorem 6.54, Lemma 6.53 and Theorem 1.35] for the proofs.

Lemma 2.1. Let X be a topological space and let ϕ : π1(X)→ Γ be a homomorphism
to a group.

(1) b
(2)
p (X,ϕ) is a homotopy invariant of the pair (X,ϕ).

(2) b
(2)
0 (X,ϕ) = 0 if Im(ϕ) is infinite and b

(2)
0 (X,ϕ) = 1

|Im(ϕ)| if Im(ϕ) is finite.
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(3) If X is a finite CW–complex, then∑
p

(−1)p b(2)
p (X,ϕ) = χ(X),

where χ(X) denotes the Euler characteristic of X.

(4) If Im(ϕ) ⊂ Γ̃ ⊂ Γ, then b
(2)
p (X,ϕ : π1(X)→ Γ̃) = b

(2)
p (X,ϕ : π1(X)→ Γ).

We will also make use of the following lemma.

Lemma 2.2. Let f : Y → Z be a map of topological spaces such that π1(Y )→ π1(Z)
is surjective. Assume that we are given a homomorphism β : π1(Z)→ Γ. Then

b
(2)
1 (Y, π1(Y )

f∗−→ π1(Z)
β−→ Γ) ≥ b

(2)
1 (Z, β).

Proof. We denote the homomorphism π1(Y )
f∗−→ π1(Z)

β−→ Γ by β as well. Note that
an Eilenberg–Maclane space K for π1(Z) is given by adding handles of degree greater

than 2 to Z. In particular b
(2)
1 (Z, β) = b

(2)
1 (K, β). By the homotopy invariance of the

L2–Betti numbers we know that for any other Eilenberg–Maclane space for π1(Z) we
get the same invariant.

Since f∗ : π1(Y ) → π1(Z) is surjective we can also build an Eilenberg–Maclane
space K ′ for π1(Z) by adding handles of degree greater or equal than 2 to Y . By the
above discussion we therefore get

b
(2)
1 (Z, β) = b

(2)
1 (K, β) = b

(2)
1 (K ′, β).

It now remains to show that b
(2)
1 (Y, β) ≥ b

(2)
1 (K ′, β). Since K ′ is given by adding

handles of degree greater or equal than 2 to Y we get the following commutative
diagram

C2(Y ;N (Γ)) → C1(Y ;N (Γ)) → C0(Y ;N (Γ)) → 0

↓ ↓= ↓=
P ⊕ C2(Y ;N (Γ)) → C1(Y ;N (Γ)) → C0(Y ;N (Γ)) → 0

‖ ‖ ‖
C2(K ′;N (Γ)) → C1(K ′;N (Γ)) → C0(K ′;N (Γ)) → 0.

where P is the free N (Γ)–module generated by the extra 2–handles of K ′. This
shows that the map H1(Y ;N (Γ))→ H1(K ′;N (Γ)) is surjective. But then the claim
on L2–Betti numbers follows immediately from [Lü02, Theorem 6.7]. �

2.3. The L2–Betti numbers and the Cochran–Harvey invariants. Recall that
a group Γ is called locally indicable if for every finitely generated non–trivial subgroup
H ⊂ Γ there exists an epimorphism H → Z. We will also need the notion of an
amenable group. We refer to [Lü02, p. 256] for the definition of an amenable group,
but note that any solvable group is amenable and that groups containing the free
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group on two generators are not amenable. In the following we refer to a locally
indicable torsion–free amenable group as a LITFA group.

Denote by S the set of non–zero divisors of the ring N (Γ). By [Re98, Proposi-
tion 2.8] (see also [Lü02, Theorem 8.22]) the pair (N (Γ), S) satisfies the right Ore
condition. We now let U(Γ) := N (Γ)S−1, this ring is called the algebra of operators
affiliated to N (Γ). For any U(Γ)–module M we also have a dimension dimU(Γ)(M).
By [Lü02, Theorem 8.31] we have

b(2)
p (X,ϕ) = dimU(Γ)(Hp(C

sing
∗ (X̃)⊗Z[Γ] U(Γ))).

We collect some properties of LITFA groups in the following well–known theorem.

Theorem 2.3. Let Γ be a LITFA group.

(1) All non–zero elements in Z[Γ] are non–zero divisors in N (Γ).
(2) Z[Γ] is an Ore domain and embeds in its classical right ring of quotients K(Γ).
(3) K(Γ) is flat over Z[Γ].
(4) There exists a monomorphism K(Γ) → U(Γ) which makes the following dia-

gram commute

Z[Γ] //

##GGGGGGGG
K(Γ)

��
U(Γ).

Proof. The first claim follows from results of Linnell [Lin92] and Burns and Hale
[BH72]. Note that it implies in particular that all non–zero elements in Z[Γ] are non–
zero divisors in Z[Γ]. The second part now follows from [DLMSY03, Corollary 6.3].
The third part is a well–known property of Ore localizations (cf. e.g. [Re98, p. 99]).
Finally the last statement follows from the definitions of K(Γ) and U(Γ) as Ore
localizations and the fact that Z[Γ] \ {0} ⊂ S. �

We recall that a group Γ is called poly–torsion–free–abelian (PTFA) if there exists
a normal series

1 = Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn−1 ⊂ Γn = Γ

such that Γi/Γi−1 is torsion free abelian. PTFA groups played an important role in
several recent papers like [COT03], [Co04], [Ha05] and [LM06].

It is easy to see that PTFA groups are LITFA. Note that the quotients π/π
(n)
r of

a group by terms in the rational derived series are PTFA (cf. [Ha05]). The following
proposition relates L2–Betti numbers to ranks of modules over skew fields. It seems
to be well–known (cf. for example [Ha08, p. 8]), but for the sake of completeness we
quickly outline the proof.

Proposition 2.4. Let ϕ : π1(X) → Γ be a homomorphism to a LITFA group Γ.
Then we have

b(2)
p (X,ϕ) = dimK(Γ)(Hp(X; K(Γ)).
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Proof. By Theorem 2.3 we have an inclusion K(Γ) → U(Γ). Since K(Γ) is a skew–
field any K(Γ)–module is free. We deduce that U(Γ) is flat as a K(Γ)–module. In
particular if d = dimK(Γ)(Hp(X; K(Γ)) <∞, then we see that

dimU(Γ)(Hp(X;U(Γ))) = dimU(Γ)(Hp(X; K(Γ))⊗K(Γ) U(Γ))
= dimU(Γ)(K(Γ)d ⊗K(Γ) U(Γ))

= dimU(Γ)(U(Γ)d) = d.

The case that d = dimK(Γ)(Hp(X; K(Γ)) =∞ follows similarly. �

We now recall the definition of the Cochran–Harvey invariants (which in this con-
text were first studied in [LM06]). Let C be an algebraic curve in C2. Furthermore let
α : π1(X(C)) → Γ be an admissible homomorphism to a LITFA group. Recall that
admissible means that there exists a map φ : Γ→ Z such that the following diagram
commutes

π1(C2 \ C) α //

φ

$$JJJJJJJJJJ
Γ

φ

����������

Z.
Also recall that we denote by Γ̃ the kernel of φ : Γ → Z and that we denote the

induced homomorphism π1(X̃(C))→ Γ̃ by α̃.

Now consider the homomorphism π1(X(C))→ π1(X(C))/π1(X(C))(n+1)
r = Γn. It is

easy to see that this homomorphism is admissible. As in [LM06] we now define

δn(C) = dimK(Γ̃n)(H1(X̃(C); K(Γ̃n)).

The following theorem, which is an immediate corollary to Proposition 2.4, now shows
that the L2–Betti numbers considered in this paper can be viewed as a generalization
of the Cochran–Harvey invariants of plane algebraic curves.

Theorem 2.5. Let C ⊂ C2 be an algebraic curve C and let α : π1(X(C)) → Γ be an
admissible homomorphism to a LITFA group. Then

dimK(Γ̃)(H1(X̃(C); K(Γ̃)) = b
(2)
1 (X̃(C), α̃ : π1(X̃(C))→ Γ̃).

3. Proof of Theorem 1.1 and Theorem 1.2

3.1. Plane algebraic curves and their topology. From now on let C ⊂ C2 be an
algebraic curve with irreducible components C1, . . . , Cr. Recall that we write X(C) =

C2 \ νC. We now also write Y (C) = ∂(νC) = ∂(X(C)). Note that Y (C) ⊂ X(C). The
following summarizes some well–known results on the topology of X(C).

Theorem 3.1. (1) π1(X(C)) is normally generated by the meridians about the
non–singular parts of the irreducible components and H1(X(C); Z) is a free
abelian group of rank r with basis given by these meridians.

(2) X(C) is homotopy equivalent to a 2–complex.
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(3) If C intersects the line at infinity transversely, then π1(Y (C)) → π1(X(C)) is
surjective.

Proof. The first statement follows from the fact that by gluing in disks at the merid-
ians we kill the fundamental group. The statement about the first homology group
follows from Lefschetz duality (cf. [Lib82, p. 835] or [Di92, p. 103]). The second
statement follows since X(C) has the homotopy type of a 2-dimensional complex
affine variety (cf. also [Di92, Theorem 1.6.8] or [Mi63, Theorem 7.2]). The last state-
ment follows from applying the Lefschetz hyperplane theorem (cf. e.g. [Di92, p. 25]),
and by an argument similar to that of [LM06, Proof of Theorem 4.1]. �

3.2. Proof of Theorem 1.1. From now on assume that the algebraic curve C in-
tersects the line at infinity transversely. Let α : π1(X(C)) → Γ be an admissible
homomorphism.

Since Γ is infinite, and since X(C) is homotopy equivalent to a 2–complex we get

from Lemma 2.1 that b
(2)
p (X(C), α) = 0 for p = 0 and p > 2. It therefore remains to

show that b
(2)
1 (X(C), α) = 0. The statement on b

(2)
2 (X(C), α) then follows immediately

from Lemma 2.1 (3). We denote the homomorphism π1(Y (C))→ π1(X(C)) α−→ Γ by α

as well. By Theorem 3.1 (3) and Lemma 2.2 it is enough to prove that b
(2)
1 (Y (C), α) =

0.
Let B4 ⊂ C2 be a sufficiently large closed ball, in the sense that int(B4)\(C∩int(B4))

is diffeomorphic to C2 \ C. Such a ball exists by [Di92, Theorem 1.6.9]. Note that in
particular all singularities of C lie in the interior of B4. By the homotopy invariance
of the L2–Betti numbers we can abuse the notion and we therefore denote B4 ∩X(C)
and B4 ∩ Y (C) by X(C) and Y (C) again.

Given a point P = (xP , yP ) ∈ C2 and ε > 0 we write B4(P, ε) = {(x, y) ∈ C2 | |x−
xP |2 + |y − yP |2 ≤ ε2} and S3(P, ε) = ∂B4(P, ε). Now let Sing(C) := {P1, . . . , Ps}
denote the set of singularities of C. Then there exist ε1, . . . , εs > 0 such that

(1) B4(Pi, εi) are pairwise disjoint,
(2) B4(Pi, εi) ⊂ int(B4),
(3) B4(Pi, εi) \

(
C ∩ B4(Pi, εi)

)
is the cone on S3(Pi, εi) \

(
C ∩ S3(Pi, εi)

)
.

Such εi exist by Thom’s first isotopy lemma (cf. [Di92, Section 5] for details). For
i = 1, . . . , s we write S3

i = ∂(B4(Pi, εi)), Li := S3
i ∩ C and X(Li) := S3

i \ νLi.
Let Ti, i = 1, . . . , s be the boundaries of S3

i \ νLi. These are unions of tori and we
denote the connected components of Ti by T 1

i , . . . , T
ni
i . Let Fj := Cj \

(
∪ int(B4

i )∩Cj
)

for j = 1, . . . , r. Then F1, . . . , Fr are the connected components of F := C ∩ (C2 \
∪si=1int(B4

i )). We write Y (F ) = Y (C)∩(C2\∪si=1int(B4
i )) and we denote the connected

components of Y (F ) by Y (F1), . . . , Y (Fr). We can therefore decompose

Y (C) =
⋃

i=1,...,r

Y (Fi) ∪T1∪···∪Ts

⋃
i=1,...,s

X(Li).

We need the following definition.
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Definition. Let M be a 3–manifold and ψ ∈ H1(M ; Z). We say that (M,ψ) fibers over
S1 if the homotopy class of maps M → S1 determined by ψ ∈ H1(M ; Z) = [M,S1]
contains a representative that is a fiber bundle over S1.

Milnor [Mi68, Theorem 4.8] showed that for i = 1, . . . , s the pair (X(Li), φi) fibers
over S1, where φi : H1(X(Li); Z)→ Z is induced by the (local) total linking number
homomorphism, i.e., by sending all meridians (with the induced orientation) about
the components of Li to 1 (e.g., see [Di92], p. 76–77). Note that φi is precisely the
homomorphism given by homomorphism

π1(X(Li))→ π1(Y (C))→ π1(X(C)) φ−→ Z.
For i = 1, . . . , r we now consider Y (Fi). Picking a trivialization of the normal

bundle of Fi we can identify Y (Fi) with Fi × S1. Consider the homomorphism

ψi : π1(Fi × S1)→ π1(Y (C))→ π1(X(C)) φ−→ Z.

Since the homomorphism π1(S1) → π1(Fi × S1)
ψi−→ Z is surjective it is well–known

that (Fi×S1, ψi) fibers over S1 and the fiber is diffeomorphic to Fi. It follows from the
above discussion that the fibrations Fi × S1 → S1 and X(Li) → S1 when restricted
to the tori T ji correspond to the same classes in H1(T ji ; Z). Since fibrations of a torus
which lie in the same cohomology class are isotopic it follows that we can glue the
fibrations Fi × S1 → S1 and X(Li)→ S1 to get a fibration π : Y (C)→ S1 such that

π∗ : π1(Y (C))→ π1(S1) = Z equals π1(Y (C))→ π1(X(C)) φ−→ Z.
We now recall the following theorem ([Lü02, Theorem 1.39]).

Theorem 3.2. Let M be a compact 3–manifold and ψ ∈ H1(M ; Z) such that (M,ψ)
fibers over S1. If β : π1(M) → G is a homomorphism to a group G such that ψ

factors through β, then b
(2)
p (M,β) = 0 for all p.

Since α is admissible it follows now that b
(2)
p (Y (C), α) = 0. This concludes the

proof of Theorem 1.1.

3.3. Proof of Theorem 1.2. Let C ⊂ C2 be a reduced algebraic curve in general
position at infinity. We pick B4 as in the previous section, again we abuse the notation
and we denote B4 ∩X(C) and B4 ∩ Y (C) by X(C) and Y (C).

Let α : π1(X(C)) → Γ be an admissible homomorphism. Denote the induced

map π1(Y (C)) → π1(X(C)) φ−→ Z by φ′. Note that by Theorem 3.1 (3) the map

φ′ is surjective as well. Now denote by Ỹ (C) and X̃(C) the infinite cyclic covers
corresponding to φ′ and φ. It follows easily that the induced map

π1(Ỹ (C))→ π1(X̃(C))
is still surjective. But by Lemma 2.2 we then also have

b
(2)
1 (Ỹ (C), α̃) ≥ b

(2)
1 (X̃(C), α̃).
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As we saw above, (Y (C), φ) fibers over S1. It follows that Ỹ (C) is homotopy equivalent

to the fiber Σ of the fibration and we see that b
(2)
1 (Ỹ (C), α̃) = b

(2)
1 (Σ, α̃). Since Σ is a

compact surface with boundary it follows immediately from Lemma 2.1 that

b
(2)
1 (Σ, α̃) = −χ(Σ) + b

(2)
0 (Σ, α̃) ≤ −χ(Σ) + 1.

It therefore remains to compute χ(Σ).
We denote the fibers of the fibrations X(Li)→ S1 by Σi and we denote the fibers

of the fibrations X(Fi) → S1 by F ′i . Recall that F ′i is diffeomorphic to Fi. Note
that Σ is the result of gluing the set of fibers {Σi} and the surfaces {F ′i} along the
longitudes of the links Li. Since the Euler characteristic of the longitudes are zero we
get

χ(Σ) =
s∑
i=1

χ(Σi) +
r∑
i=1

χ(Fi).

By [Di92, p. 78] we have χ(Σi) = 1 − µ(C, Pi) where µ(C, Pi) denotes the Milnor
number of the singularity Pi.

Now let D be the projective completion of C. Topologically D is given by adding
disks to the boundary components of C at “infinity”. Since C has degree d and is in
general position at infinity, there are exactly d such components. Since gluing in a
disk increases the Euler characteristic by 1 we get that

χ(D) = χ(C) + d.

Recall that the normalization of D is defined to be the curve D̂ without singularities
obtained from D by blow–ups. Note that χ(D̂) can be computed as follows: Let D′
be the result of first removing balls around the singularities, and let D′′ be the result
of gluing in disks to all the boundary components of D′. Then D′′ is topologically
equivalent to D blown up at the singularities, in particular

χ(D̂) = χ(D′′).

Since gluing in a disk increases the Euler characteristic by 1 we also get that

χ(D̂) = χ(D′) + b0(∂D′).

In our situation we therefore get

χ(D̂) =
r∑
i=1

χ(Fi) +
s∑
i=1

ni + d.
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Summarizing we therefore see that

b
(2)
1 (X̃(C)) ≤ b

(2)
1 (Ỹ (C))

≤ −χ(Σ) + 1
= −

∑s
i=1 χ(Σi)−

∑r
i=1 χ(Fi) + 1

=
∑s

i=1 (µ(C, Pi)− 1)− χ(D̂) +
∑s

i=1 ni + d+ 1

≤
∑s

i=1 (µ(C, Pi) + ni − 1) + 2g(D̂) + d.

This completes the proof of Theorem 1.2. We conclude with two remarks.

Remark. (1) In the case that Γ is a LITFA group we saw in Proposition 2.4 that
the L2–Betti numbers are determined by ranks of homology modules over skew
fields. In that case the flatness of certain rings involved shows that statement
of Theorem 1.1 is an immediate consequence of Theorem 1.2 (we refer to
[LM06] for details). This approach does not seem to work if Γ is not a LITFA
group.

(2) Our methods carry over to prove generalizations of Theorem 4.5, Theorem 4.7
and Corollary 4.8 in [LM06]. We leave the task of formulating and proving
the precise statements to the reader.

(3) Given a knot K we denote by X(K) = S3 \ νK its exterior, and by X̃(K) the
infinite cyclic cover of X(K). In the case that K is a non–trivial fibered knot it

follows from the above that b
(2)
1

(
X̃(K), id

)
= 2genus(K)− 1. Given any non–

trivial knotK we write π̃ = π1

(
X̃(K)

)
. By Proposition 2.4 the sequence of L2–

Betti numbers b
(2)
1

(
X̃(K), π̃ → π̃/π̃(n)

)
, n ≥ 1 equals the sequence of Cochran

invariants δn(K), which was shown in [Co04] to be a never–decreasing se-
quence of invariants which all give lower bounds on 2 genus(K)−1. Cochran’s
result can be interpreted as saying that the L2–Betti number corresponding
to ‘bigger’ (PTFA–) quotients of π̃ give better bounds on 2 genus(K) − 1.
It therefore seems natural to us to conjecture that ‘in the limit’ we get an

equality, i.e. that b
(2)
1

(
X̃(K), id

)
= 2 genus(K)− 1.
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