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Abstract. Cochran, Orr and Teichner introduced L2–eta–invariants to detect
highly non–trivial examples of non slice knots. Using a recent theorem by Lück
and Schick we show that their metabelian L2–eta–invariants can be viewed as the
limit of finite dimensional unitary representations. We recall a ribbon obstruction
theorem proved by the author using finite dimensional unitary eta–invariants. We
show that if for a knot K this ribbon obstruction vanishes then the metabelian
L2–eta–invariant vanishes too. The converse has been shown by the author not to
be true.

1. Introduction

A knot K ⊂ Sn+2 is a smooth submanifold homeomorphic to Sn. A knot is called
slice if it bounds a smooth disk in D4. We say that a knot K is algebraically slice

if K has a Seifert matrix of the form

(
0 B
C D

)
where B,C,D are square matrices

of the same size. It is a well-known fact that any slice knot is algebraically slice.
Levine showed that in higher odd dimensions the converse is true, i.e. if a knot is
algebraically slice it is also geometrically slice (cf. [L69]). In the classical dimension
n = 1 this no longer holds as was shown by Cassan and Gordon [CG86].

A knot K ⊂ S3 is called ribbon if there exists a smooth disk D in S3 × [0, 1] ⊂ D4

(S3 = S× 0) bounding K such that the projection map S3× [0, 1]→ [0, 1] is a Morse
map and has no local minima. Such a slice disk is called a ribbon disk. Fox [F61]
conjectured that all slice knots are ribbon.

In [F03] the author studies metabelian unitary eta–invariants of MK , the result of
zero framed surgery along a knot K ⊂ S3. These can be used to detect knots which
are not slice respectively, not ribbon.

For a pair (M3, ϕ : π1(M) → G) Cheeger and Gromov [CG85] introduced the
L2–eta–invariant η(2)(M,ϕ). Cochran, Orr and Teichner [COT01] gave examples of
knots which look slice ‘up to a certain level’ but can be shown to be not slice using
L2–eta–invariants.

Lück and Schick [LS01] showed that L2–eta–invariants can be viewed as a limit of
ordinary unitary eta–invariants if G is residually finite. We show that the metabelian
groups used by Cochran, Orr and Teichner are residually finite. Sorting out several
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technical problems we can show that if for a knot K the metabelian eta–invariant
ribbonness obstruction vanishes then the metabelian L2–eta–invariant sliceness ob-
struction vanishes as well. In [F03] we show that the converse is not true.

The structure of the paper is as follows. In section 2 we recall the eta–invariant
sliceness and ribbonness obstruction theorems of [F03]. In section 3 we give the
definition of (n)–solvability for a knot n ∈ 1

2
N, and quote some results of [COT01].

Furthermore we state the metabelian L2–eta–invariant sliceness obstruction theorem
of Cochran, Orr and Teichner. We state and prove the main theorem in section 4.

Acknowledgment. I would like to thank Jerry Levine, Kent Orr and Taehee Kim
for helpful discussions and comments.

2. Unitary eta–invariants as knot invariants

Let M2q+1 be a closed odd-dimensional smooth manifold and α : π1(M)→ U(k) a
unitary representation. Atiyah, Patodi, Singer [APS75] associated to (M,α) a number
η(M,α) called the (reduced) eta–invariant of (M,α). This invariant has the property
that if ∂(W 2q+2, β) = (M2q+1, α) then

η(M,α) = signβ(W )− ksign(W )

where signβ(W ) denotes the signature of W twisted by β.

2.1. Abelian eta–invariants. Let K be knot, µ a meridian and A a Seifert matrix
for K. Let α : π1(MK)→ U(1) be a representation, then

η(MK , α) = σz(K) := sign(A(1− z) + At(1− z̄))

where z := α(µ) (cf. [L84]).
The following proposition follows immediately from the definitions and the explicit

computation of the abelian eta–invariant.

Proposition 2.1. Let K be an algebraically slice knot, then η(MK , α) = 0 for any
representation α : π1(MK) → U(1) which sends the meridian to a transcendental
number.

If a knot satisfies the conclusion of this proposition we say that K has zero abelian
eta–invariant sliceness obstruction.

2.2. Metabelian eta–invariants. There exists a canonical map ε : π1(MK) →
H1(MK) = Z sending the meridian to 1. Denote the k–fold cover of MK by Mk. If k is
a prime power, then Casson and Gordon [CG86] showed that H1(Mk) = Z⊕TH1(Mk)
where TH1(Mk) denotes the Z–torsion part of H1(Mk). Furthermore there exists a
non–singular symmetric linking pairing

λlk : TH1(Mk)× TH1(Mk)→ Q/Z

We say that Pk ⊂ TH1(Mk) is a Λ–metabolizer for λlk if Pk is a Λ–submodule and if

Pk = P⊥k := {x ∈ TH1(Mk)|λlk(x, y) = 0 for all y ∈ TH1(Mk)}
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Denote by M̃K the universal abelian cover corresponding to ε. H1(M̃K) carries a
Λ := Z[t, t−1]–module structure, we will henceforth write H1(MK ,Λ) for H1(M̃K).
Blanchfield [B57] shows that there exists a non-singular Λ-hermitian pairing

λBl : H1(MK ,Λ)×H1(MK ,Λ)→ Q(t)/Λ

For a Λ-submodule P ⊂ H1(MK ,Λ) define

P⊥ := {v ∈ H1(MK ,Λ)|λBl(v, w) = 0 for all w ∈ P}
If P ⊂ H1(MK ,Λ) is such that P = P⊥, then we say that P is a metabolizer for
λBl and that λBl is metabolic. Note that Kearton [K75] showed that a knot is alge-
braically slice if and only if λBl is metabolic.

Recall that for a group G the central series is defined inductively by G(0) := G and
G(i) := [G(i−1), G(i−1)]. Let π := π1(MK). We study metabelian representations, i.e.
representations that factor through π/π(2). Consider

1→ π(1)/π(2) → π/π(2) → π/π(1) → 1

Note that π(1)/π(2) ∼= H1(M̃K) and π/π(1) = H1(MK) = Z, in particular this sequence
splits and we get an isomorphism

π/π(2) ∼= Z nH1(MK ,Λ)

where 1 ∈ Z acts by conjugating with µ respectively by multiplying by t. Eta invari-
ants corresponding to metabelian representations in the context of knot theory were
first studied by Letsche [L00].

For a group G denote by Rirr
k (G) (resp. Rirr,met

k (G)) the set of irreducible, k-

dimensional, unitary (metabelian) representations of G. By R̂ we denote the conju-
gacy classes of such representations. The above discussion shows that for a knot K
we can identify

Rirr,met
k (π1(MK)) = Rirr

k (Z nH1(MK ,Λ))

Lemma 2.2. [F03] Let z ∈ S1 and χ : H1(M,Λ) → H1(M,Λ)/(tk − 1) → S1 a
character. Then

α(k,z,χ) =α(z,χ) : ZnH1(M,Λ) → U(k)

(n, h) 7→ zn


0 . . . 0 1
1 . . . 0 0
...

. . .
...

0 . . . 1 0


n

χ(h) 0 . . . 0
0 χ(th) . . . 0
...

. . .
...

0 0 . . . χ(tk−1h)


defines a representation.

Conversely any irreducible representation α ∈ Rirr
k (Z n H1(M,Λ)) is (unitary)

conjugate to α(z,χ) for some z ∈ S1 and a character χ : H1(M,Λ)→ H1(M,Λ)/(tk −
1)→ S1 which does not factor through H1(M,Λ)/(tl − 1) for some l < k.
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We denote by Pmet
k (π1(MK)) the set of metabelian representations of π1(MK) that

are conjugate to α(z,χ) with z transcendental and χ of prime power order. Furthermore

for p a prime we write P irr,met
k,p (π1(MK)) for the set of representations where χ has

order a power of p. In [F03] we prove the following sliceness obstruction theorem
which is the strongest theorem detecting non–torsion knots which is not based on
L2–eta–invariants.

Theorem 2.3. Let K be a slice knot, k1, . . . , kr pairwise coprime prime powers, then
there exist Λ–metabolizers Pki ⊂ TH1(Mki), i = 1, . . . , r for the linking pairings λki,
such that for any prime number p and any choice of irreducible representations αi :
π1(MK) → Z n H1(MK ,Λ)/(tki − 1) → U(k) vanishing on 0 × Pki and lying in
P irr,met
ki,p

(π1(MK)) we get η(MK , α1 ⊗ · · · ⊗ αr) = 0.

If a knot K satisfies the conclusion of this theorem we say that K has zero
metabelian eta–invariant sliceness obstruction.

In [F03] we prove the following ribbon obstruction theorem. In the proof we only
use the well-known fact that if K is ribbon then K has a slice disk D such that
π1(S3 \K)→ π1(D4 \D) is surjective.

Theorem 2.4. [F03] Let K ⊂ S3 be a ribbon knot. Then there exists a metabolizer
P for the Blanchfield pairing such that for any α(z,χ) with z transcendental and χ of
prime power order, vanishing on 0× P we get η(MK , α(z,χ)) = 0.

We say that K has zero metabelian eta–invariant ribbonness obstruction if the
conclusion of the theorem holds for K.

3. The Cochran–Orr–Teichner sliceness obstruction

3.1. The Cochran–Orr–Teichner sliceness filtration. We give a short introduc-
tion to the sliceness filtration introduced by Cochran, Orr and Teichner [COT01].
For a manifold W denote by W (n) the cover corresponding to π1(W )(n). Denote the
equivariant intersection form

H2(W (n))×H2(W (n))→ Z[π1(W )/π1(W )(n)]

by λn, and the self-intersection form by µn. An (n)-Lagrangian is a submodule
L ⊂ H2(W (n)) on which λn and µn vanish and which maps onto a Lagrangian of
λ0 : H2(W )×H2(W )→ Z.

Definition. [COT01, def. 8.5] A knot K is called (n)-solvable if MK bounds a spin
4-manifold W such that H1(MK) → H1(W ) is an isomorphism and such that W
admits two dual (n)-Lagrangians. This means that λn pairs the two Lagrangians
non-singularly and that the projections freely generate H2(W ).

A knot K is called (n.5)-solvable if MK bounds a spin 4-manifold W such that
H1(MK) → H1(W ) is an isomorphism and such that W admits an (n)-Lagrangian
and a dual (n+ 1)-Lagrangian.

We call W an (n)-solution respectively (n.5)-solution for K.
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Remark. 1. The size of an (n)-Lagrangian depends only on the size of H2(W ), in

particular if K is slice, D a slice disk, then D4 \N(D) is an (n)-solution for K
for all n, since H2(D4 \N(D)) = 0.

2. By the naturality of covering spaces and homology with twisted coefficients it
follows that if K is (h)-solvable, then it is (k)-solvable for all k < h.

Theorem 3.1.

K is (0)-solvable ⇔ Arf(K) = 0
K is (0.5)-solvable ⇔ K is algebraically slice
K is (1.5)-solvable ⇒ Casson-Gordon invariants vanish and K algebraically slice

The converse of the last statement is not true, i.e. there exist algebraically slice knots
which have zero Casson-Gordon invariants but are not (1.5)-solvable.

The first part, the third part and the ⇐ direction of the second part have been
shown by Cochran, Orr and Teichner [COT01, p. 6, p. 72, p. 66, p. 73]. Cochran,
Orr and Teichner [COT01, p. 6] showed that a knot is (0.5) solvable if and only if the
Cappell-Shaneson surgery obstruction in Γ0(Z[Z] → Z) vanishes. This is equivalent
to a knot being algebraically slice (cf. [K89]). Taehee Kim [K02] showed that there
exist (1.0)-solvable knots which have zero Casson-Gordon invariants, but are not
(1.5)-solvable. Cochran, Orr and Teichner [COT01] also showed that there exist (2)–
solvable knots which are not (2.5)–solvable.

3.2. L2–eta–invariants as sliceness-obstructions. In this section we’ll very quickly
summarize some L2–eta–invariant theory.

Let M3 be a smooth manifold and ϕ : π1(M)→ G a homomorphism, then Cheeger
and Gromov [CG85] defined an invariant η(2)(M,ϕ) ∈ R, the (reduced) L2–eta–
invariant. When it’s clear which homomorphism we mean, we’ll write η(2)(M,G) for
η(2)(M,ϕ).

Remark. If ∂(W,ψ) = (M3, ϕ), then (cf. [COT01, lemma 5.9 and remark 5.10])

η(2)(M,ϕ) = sign(2)(W,ψ)− sign(W )

where sign(2)(W,ψ) denotes Atiyah’s L2-signature (cf. [A76]).

Cochran, Orr and Teichner study when L2–eta–invariants vanish for homomor-
phisms π1(MK)→ G, where G is a PTFA-group. PTFA stands for poly-torsion-free-
abelian, and means that there exists a normal subsequence where each quotient is
torsion-free-abelian.

Theorem 3.2. [COT02, p. 5] Let G be a PTFA-group with G(n) = 1. If K is a knot,
and ϕ : π1(MK) → G a homomorphism which extends over a (n.5)-solution of MK,
then η(2)(MK , ϕ) = 0. In particular if K is slice and ϕ extends over D4 \D for some
slice disk D, then η(2)(MK , ϕ) = 0.
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Remark. It’s a crucial ingredient in the proposition that the group G is a PTFA-
group, for example it’s not true in general that η(2)(MK ,Z/k) = 0 for a slice knot K.

Corollary 4.3 shows that η(2)(MK ,Z/k) =
∑k

j=1 σe2πij/k(K), but this can be non-zero
for some slice knot K, e.g. take a slice knot with Seifert matrix

A =


0 0 1 1
0 0 0 1
1 1 0 1
0 1 0 0


Then η(2)(MK ,Z/6) = −2.

We use this theorem only in the abelian and the metabelian setting. Let QΛ :=
Q[t, t−1].

Theorem 3.3. [COT01]

1. If K is (0.5)–solvable, then η(2)(MK ,Z) = 0.
2. If K is (1.5)–solvable, then there exists a metabolizer PQ ⊂ H1(MK ,QΛ) for the

rational Blanchfield pairing

λBl,Q : H1(MK ,QΛ)×H1(MK ,QΛ)→ Q(t)/Q[t, t−1]

such that for all x ∈ PQ we get η(2)(MK , βx) = 0 where βx denotes the map

π1(MK)→ Z nH1(MK ,Λ)→ Z nH1(MK ,QΛ)
id×λBl,Q(x,−)
−−−−−−−−→ Z nQ(t)/Q[t, t−1]

Proof. Let D be a slice disk for K, write ND := D4 \N(D). Then the statement
follows from proposition 3.2 and work by Letsche [L00] who showed that for PQ :=
Ker{H1(MK ,QΛ)→ H1(ND,ΛQ)} the map βx extends over π1(ND).

We say thatK has zero abelian L2–eta–invariant sliceness obstruction if η(2)(MK ,Z) =
0. We say that K has zero metabelian L2–eta–invariant sliceness obstruction if there
exists a metabolizer PQ ⊂ H1(MK ,QΛ) for λBl,Q such that for all x ∈ PQ we get
η(2)(MK , βx) = 0.

4. Relation between eta–invariants and L2
–eta–invariants

If a knot K has zero abelian eta–invariant sliceness obstruction, then a multiple
of K is algebraically slice (cf. Levine [L69b] and Matumuto [M77]), in particular
K has zero abelian L2–eta–invariant sliceness obstruction. This fact will also follow
immediately from corollary 4.3. Conversely, if K has zero abelian L2–eta–invariant,
then it is not necessarily true that K has zero abelian eta–invariant, as was shown in
[F03].

In [K02] Taehee Kim gave examples of knots where the metabelian eta–invariant
sliceness obstruction is zero, but where the metabelian L2–eta–invariant obstruction
is non–zero. This shows that more eta–invariants have to vanish to get zero L2–eta–
invariants.
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Our main theorem is the following.

Theorem 4.1. Let K be a knot with zero metabelian eta–invariant ribbonness ob-
struction, then K has zero metabelian L2–eta–invariant sliceness obstruction.

The proof of the theorem will be done in the next two sections. In [F03] we showed
that the converse is not true, i.e. there exists a knot with zero metabelian L2–eta–
invariant but non–zero metabelian eta–invariant ribbonness obstruction

4.1. Approximation of L2–eta–invariants.

Definition. We say that G is residually finite it there exists a sequence of normal
subgroups G ⊃ G1 ⊃ G2 ⊃ . . . of finite index [G : Gi] such that ∩iGi = {1}. We call
the sequence {Gi}i≥1 a resolution of G.

If ϕ : π1(M) → G is a homomorphism to a finite group, then define η(M,G) =

η(M,αG) where αG : π1(M)
ϕ−→ G → U(CG) is the canonical induced unitary repre-

sentation given by left multiplication.

Theorem 4.2. Let ϕ : π1(M)→ G be a homomorphism.

1. If G is finite, then

η(M,G) =
∑

α∈R̂irr(G) dim(α)η(M,α◦ϕ (M)

η(2)(M,G) = η(M,G)
|G|

2. If G is residually finite group then the above equality “holds in the limit”, i.e. if
{Gi}i≥1 is a resolution of G, then

η(2)(M,G) = lim
i→∞

η(M,G/Gi)

|G/Gi|
Proof. The first statement follows immediately from the well-known fact of the rep-
resentation theory of finite groups that

CG =
∑

α∈R̂irr(G)

V dim(α)
α

The second statement is shown in [A76], Lück and Schick proved the last parts (cf.
[LS01, remark 1.23]).

Corollary 4.3. Let K be a knot, then

η(2)(MK ,Z/k) = 1
k
η(MK ,Z/k) = 1

k

∑k
j=1 σe2πij/k(K)

η(2)(MK ,Z) =
∫
S1 σz(K)

This corollary was also proven by Cochran, Orr and Teichner (cf. [COT02]), using
a different approach.
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Proof. The first part is immediate from the decomposition of C[Z/k] into one-dimensional
C[Z/k]–modules. For the second part consider the sequence Z ⊃ 2!Z ⊃ 3!Z ⊃ 4!Z ⊃
. . . , by theorem 4.2 and corollary 4.3

η(2)(MK ,Z) = lim
k→∞

η(MK ,Z/k!)

k!
= lim

k→∞

∑k!−1
j=0 σe2πij/k!(K)

k!
=

∫
S1

σz(K)

The last equality follows from the fact that σz(K) is a step function with only finitely
many break points.

4.2. Proof of theorem 4.1. Assume that K has zero metabelian eta–invariant
ribbon obstruction. Let P be a metabolizer such that η(MK , α(z, χ)) = 0 for all
α(z,χ) ∈ Pk(π1(MK)) with χ(P ) ≡ 0. Let PQ := P ⊗ Q, this is a metabolizer for the

rational Blanchfield pairing λBl,Q. We will show that for any x ∈ PQ η(2)(MK , βx) = 0,
where βx denotes the map

π1(MK)→ Z nH1(MK ,Λ)→ Z nH1(MK ,QΛ)
id×λBl,Q(x,−)
−−−−−−−−→ Z nQ(t)/Q[t, t−1]

This implies the theorem.
So let x ∈ PQ. Note that nx ∈ P for some n ∈ N. The map βnx factors through

Z n∆K(t)−1Λ/Λ, hence βx factors through Z n n−1∆K(t)−1Λ/Λ.

Claim. There exists an isomorphism

Im{Z n n−1∆K(t)−1Λ/Λ −→Z nQ(t)/Q[t, t−1]} → Z n∆K(t)−1Λ/Λ

Proof. Consider the short exact sequence

0→ ∆K(t)−1Λ/Λ→ n−1∆K(t)−1Λ/Λ→ ∆K(t)−1Λ/n−1∆K(t)−1Λ ∼= Λ/n→ 0

since tensoring with Q is exact and since Λ/n is Z–torsion we see that

Im{n−1∆K(t)−1Λ/Λ→ ∆K(t)−1
QΛ/QΛ} ∼= Im{∆K(t)−1Λ/Λ→ ∆K(t)−1

QΛ/QΛ}

But ∆K(t)−1Λ/Λ→ ∆K(t)−1
QΛ/QΛ→ Q(t)/Q[t, t−1] is injective, since ∆K(t)−1Λ/Λ

is Z–torsion free. This shows that

Im{n−1∆K(t)−1Λ/Λ→ Q(t)/Q[t, t−1]} ∼= ∆K(t)−1Λ/Λ

Since all maps preserve the Z–action the claim follows.

Lemma 4.4. Let K be a knot, then Z n∆K(t)−1Λ/Λ is residually finite.

Proof. Write ∆K(t) = a2gt
2g + · · · + a1t + a0 with a2g 6= 0, a2g−i = ai. Let p be

a prime number coprime to a2g. Write H := ∆K(t)−1Λ/Λ and Hi := piH. Then
{Hi}i≥1 forms a resolution for H since there exists an embedding ∆K(t)−1Λ/Λ ∼=
Λ/∆K(t)Λ→ Z[1/a2g]

2g of Z-modules.
Since the Λ-modules H/Hi are finite there exists for each i a number ki such that

tkiv = v for all v ∈ H/Hi where t denotes a generator of Z. Note that Z/ki nH/Hi
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and the map Z n H → Z n H/Hi are well-defined. We can in fact pick ki with the
extra properties that ki > i and ki|ki+1, then it is clear that the kernels of the maps

Z n∆K(t)−1Λ/Λ→ Z/ki nH/Hi

define a resolution for Z n∆K(t)−1Λ/Λ.

Let

G := Im{βx : Z nH1(M,Λ)→ Z n n−1∆K(t)−1Λ/Λ −→Z nQ(t)/Q[t, t−1]}
Note that G := ZnH for some H ⊂ ∆K(t)−1Λ/Λ. It follows from the proof of lemma
4.4 that we can find Hi ⊂ H and ki such that H/Hi is a p-group and such that the
kernels Gi of

Z nH → Z/ksii nH/Hi

form a resolution for any exponents si ∈ N with 1 ≤ s1 ≤ s2 ≤ . . . . We will specify
the si later. Using the fact that in general η(2)(M,ϕ : π1(M) → J) = η(2)(M,ϕ :
π1(M)→ Im(J)) (cf. [COT02]) we get

η(2)(MK , βx : π1(MK)→ Z nQ(t)/Q[t, t−1]) = η(2)(MK , βx : π1(MK)→ G)

The groups Gi are a resolution for G, hence by theorem 4.2

η(2)(MK , βx : π1(MK)→ G) = lim
i→∞

η(MK , G/Gi)

|G/Gi|
= lim

i→∞

∑
α∈R̂irr(G/Gi) dim(α)η(MK , α)

|G/Gi|
To continue we have to understand the irreducible representations of G/Gi

∼= Z/ksii n
H/Hi. The proof of the following lemma is the same as the proof of lemma 2.2 in
[F03].

Lemma 4.5. Let F be a finite module over Λk := Z[t]/(tk−1). Then any irreducible
representation Z/ks n F → U(l) is conjugate to

α(l,z,χ)(n, h) = α(z,χ)(n, h) := zn


0 . . . 0 1
1 . . . 0 0
...

. . .
...

0 . . . 1 0


n

χ(h) 0 . . . 0
0 χ(th) . . . 0
...

. . .
...

0 0 . . . χ(tl−1h)


for some z ∈ S1 with zk = 1 and χ : F → F/(tl − 1) → S1 a character which does
not factor through F/(tr − 1) for some r < 1. In particular there are no irreducible
representations of dimension greater than k.

Remark. Note that ki is in general a composite number since the order of a p–group
is always composite. In particular η(2)(MK , βx) is the limit of eta–invariants which
are in general not of prime power dimension. This explains why the vanishing of
the metabelian eta–invariant sliceness obstruction, which involves only prime power
dimensional eta–invariants, does not imply the vanishing of the L2–eta–invariant slice-
ness obstruction.
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This lemma shows that all irreducible representations Z n H1(MK ,Λ) → G →
G/Gi

∼= Z/ksii nH/Hi → U(l) are of the type α(z,χ) where zk
si
i = 1 and χ is of prime

power order since H/Hi is a p–group. Furthermore, since x ∈ PQ and PQ = P⊥
Q

we
have χ(P ) ≡ 0. If the z’s had been transcendental our proof would be complete by
now since we assumed that η(MK , α(z,χ)) = 0 for all χ of prime power order with
χ(P ) ≡ 0 and all transcendental z.

The next two propositions show that η(MK , α(z,χ)) = 0 for almost all z. We will
see that the non–zero contributions in 1

|G/Gi|
∑

α∈R̂irr(G/Gi) dim(α)η(MK , α) vanish in

the limit.

Proposition 4.6. There exists a number C such that for any χ : H1(MK ,Λ)/(tk −
1)→ S1 of prime power order the map

S1 → Z

z 7→ η(MK , α(k, z, χ))

has at most Ck discontinuities.

For the proof we need the following lemma.

Lemma 4.7. [L94, p. 92] Let M3 be a manifold, then for any r ∈ N the map

ηk : Rk(π1(M)) → R
α 7→ η(M,α)

is continuous on Σr := {α ∈ Rk(π1(M))|
∑3

i=0 dim(Hα
i (M,Ck)) = r}.

Let J := ZnH1(MK ,Λ). Denote the J-fold cover of MK by M̂ . After triangulating
M we can view

0→ C3(M̂)
∂3−→ C2(M̂)

∂2−→ C1(M̂)
∂1−→ C0(M̂)→ 0

as a complex of free ZJ–modules where rank(C0(M̂)) = rank(C3(M̂)) = 1 and

rank(C1(M̂)) = rank(C2(M̂)) = m for some m. Represent ∂2 by an m×m-matrix R
over ZJ . Then for α ∈ Rk(π1(MK)) we get

det(α(R)) 6= 0⇒ α ∈ Σ2k

since Hα
∗ (M,Ck) = H∗(C∗(M̂)⊗ZJ Ck).

For a character χ : H1(MK ,Λ)→ H1(MK ,Λ)/(tk − 1)→ S1 define

Sk,χ := {z ∈ S1| det(α(k,z,χ)(R)) = 0}

Lemma 4.8. There exists a number C such that |Sk,χ| ≤ Ck for all χ of prime power
order.

Proof. Denote by f : Z[J ] → Z[t, t−1] the map induced by (n, v) 7→ tn. For g =∑n1

i=n0
ait

i, an0 6= 0, an1 6= 0 define deg(g) = n1 − n0. Let C := mmax{deg(f(Rij))}.
Given a character χ denote by z a variable, then D(z) := α(z,χ)(R) is a km × km–

matrix over C[z, z−1]. It’s clear that deg(det(D(z))) ≤ C
m
km = Ck, hence either
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det(D(z)) ≡ 0 or there are at most Ck z’s which are zeroes of det(D(z)). Letsche
[L00, cor. 3.10] showed that for any χ of prime power order Sk,χ does not contain any
transcendental number, in particular det(D(z)) is not identically zero.

This lemma proves proposition 4.6.

Proposition 4.9. For each k there exists Dk ∈ R such that

|η(MK , α)| ≤ Dk

for all α ∈ Rl(π1(MK)) and all l ≤ k.

Proof. Let

Σ̃r := {α ∈ Rk(π1(M))|
3∑
i=0

dim(Hα
i (M,Ck)) ≥ r}

Levine [L94, p. 92] shows that these are subvarieties of Rk(π1(M)), that Σ̃N = ∅ for
some N and that ηk is continuous on Σ̃r \ Σ̃r+1 for all r.

We claim that ηk is bounded on each Σ̃r. Note that Σ̃r \ Σ̃r+1 has only finitely
many components since Σ̃r+1 is a subvariety. If ηk is not bounded on Σ̃ then it is
therefore not bounded on at least one component C of Σ̃r \ Σ̃r+1.

Since π1(MK) is finitely generated it follows that Rl(π1(MK)) compact, hence C̄ ⊂
Σ̃r is compact too. We can therefore find a sequence pi ∈ C such that pi converges to
some point p ∈ C̄ and such that limi→∞ ηk(pi) = ∞. Since C is path connected and
locally path connected we can find a curve γ : [0, 1] → C such that γ(1 − 1

2i
) = pi.

Note that γ(p[0, 1]) = [D,∞) for some D. In particular we can find sequences qi
and ri in Σ̃r \ Σ̃r+1 converging to point p with η(qi) = i + 1

2
and η(ri) = i. But this

is a contradiction to the fact, established by Levine [L94, p. 92], that ηk mod Z :
Rk(π1(M))→ R/Z is continuous.

We are now ready to show that η(2)(MK , βx) = 0 for any x ∈ PQ which proves of
theorem 4.1. Recall that we have to show that

lim
i→∞

η(MK , G/Gi)

|G/Gi|
= 0

We pick si with the extra property ksi−4
i ≥ Dki for all i. Using lemma 4.2 we get

|η(MK , G/Gi)| ≤
∑

α∈R̂irr(G/Gi)

dim(α)|η(M,α)|

Recall that G/Gi
∼= Z/ksii n H/Hi and that H/Hi is a p-group. By definition of ki

any character actually factors through (H/Hi)/(t
ki − 1). In particular by lemma 4.5

there are no irreducible representations of dimension bigger than ki. It now follows
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that the above term is in fact less or equal than

ki∑
j=1

j
∑

α∈R̂irrj (G/Gi)

|η(MK , α)| ≤
ki∑
j=1

j
∑

χ:(H/Hi)/(tj−1)→S1

∑
z∈S1,zk

si
i =1

|η(MK , α(j, z, χ))|

From corollary 4.6 and using that η(MK , α(z,χ)) for all transcendental z and all χ of
prime power order with χ(P ) ≡ 0, it follows that η(MK , α(z, χ)) = 0 for all but at
most Cki values of z. Using this observation and using proposition 4.9 we get that
the above term is less or equal than

ki∑
j=1

j
∑

χ:(H/Hi)/(tj−1)→S1

CjDki ≤ k3
iC|H/Hi|Dki

Therefore

|η(2)(MK , βx)| =
 lim
i→∞

η(MK , G/Gi)

|G/Gi|

 ≤ lim
i→∞

k3
iCDki|H/Hi|
ksii |H/Hi|

= lim
i→∞

k3
i

k4
i

CDki

ksi−4
i

= 0

since limi→∞ ki = ∞ and by the choice of si. This concludes the proof of theorem
4.1.
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topologie perdue, 181–199, Birkhäuser Boston, Boston, MA (1986)
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