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Abstract. Given a 3-manifold M with no spherical boundary components, and a
primitive class ϕ ∈ H1(M ;Z), we show that the following are equivalent:
(1) ϕ is a fibered class,
(2) the rank gradient of (M,ϕ) is zero,
(3) the Heegaard gradient of (M,ϕ) is zero .

1. Introduction

A 3–manifold pair is a pair (M,ϕ) where M is a compact, orientable, connected 3–
manifold with toroidal or empty boundary, and ϕ ∈ H1(M ;Z) = Hom(π1(M),Z) is a
primitive class, i.e. ϕ viewed as a homomorphism π1(M) → Z is an epimorphism. We
say that a 3–manifold pair (M,ϕ) fibers over S1 if there exists a fibration p : M → S1

such that the induced map p∗ : π1(M) → π1(S
1) = Z coincides with ϕ. We refer to

such ϕ as a fibered class.
It is well-known that the pair (π1(M), ϕ : π1(M) → Z) determines whether ϕ

is fibered or not. Indeed, it follows from Stallings’ theorem [St62] (together with
the resolution of the Poincaré conjecture) that ϕ is a fibered class if and only if
Ker(ϕ : π1(M) → Z) is finitely generated.

Stallings’ theorem can be generalized in various directions (see e.g. [FV12, Theo-
rem 5.2] and [SW09a, SW09b]). Our main result gives a new fibering criterion which
is also a strengthening of Stallings’ theorem. In order to state our result we need the
notion of rank gradient which was first introduced by M. Lackenby [La05]. Given a
finitely generated group π we denote by rk(π) the rank of π, i.e. the minimal number
of generators of π. If (M,ϕ) is a 3–manifold pair then we write

πn = Ker(π1(M)
ϕ−→ Z → Z/n),

and we refer to

rg (M,ϕ) := lim inf
n→∞

1

n
rk(πn)

as the rank gradient of (M,ϕ). (In the notation of [La05] this is the rank gradient of
(π1M, {πn}).)
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If ϕ is a fibered class, then ϕ is dual to a fiber S of a fibrationM → S1 (a connected
surface) and it is straightforward to show that rk(πn) ≤ 1 + genus(S) for any n (see
e.g. Lemma 2.2). In particular rg (M,ϕ) = 0.

Our main result now says that the converse to this statement holds. More precisely,
we will prove the following theorem.

Theorem 1.1. Let (M,ϕ) be a 3-manifold pair. Then the following three statements
are equivalent:

(1) ϕ is fibered,
(2) the sequence rk(πn), n ∈ N is bounded,
(3) rg (M,ϕ) = 0.

It follows from the discussion preceding the theorem that it suffices to prove that
(3) implies (1). In fact we will present two quite different approaches to the proof of
this statement.

The first, discussed in Section 3, uses tools from geometric group theory: acylin-
drical accessibility and the finite height property. It applies only to closed hyperbolic
manifolds but has the advantage of generalizing more readily to the broader setting
of hyperbolic groups, where the separability results used for the general case are not
currently available. Moreover, with more work, this approach yields explicit lower
bounds on the rank gradient. (In a future paper the first author will prove a refine-
ment of Theorem 1.1 forM closed and hyperbolic, bounding rg (M,ϕ) below in terms
of the Thurston norm of a non-fibered class ϕ.)

The second proof, discussed in Section 4, uses the recent proof (see [FV12]) that
given any non-fibered 3-manifold pair (M,ϕ) there exists a twisted Alexander poly-
nomial which vanishes. This proof in turn relies on the recent results of D. Wise
[Wi09, Wi12a, Wi12b].

To describe our second result, we need to introduce the notion of Heegard gradient.
A Heegaard surface for a compact 3-manifold M is an embedded separating surface
S ⊂ M such that the two components of M cut along S are compression bodies.
The minimal genus of a Heegaard surface is called the Heegaard genus h(M) of M .
Given a class ϕ ∈ H1(M ;Z) = Hom(π1(M),Z) we can then define the Heegaard
gradient hg(M,ϕ) in a similar fashion to the rank gradient. We refer to Section 2.2
for more details. In that section we will also see that the subsequent theorem is a
straightforward consequence of Theorem 1.1.

Theorem 1.2. Let (M,ϕ) be a 3-manifold pair. Then the following three statements
are equivalent:

(1) ϕ is fibered,
(2) the sequence h(Mn), n ∈ N is bounded,
(3) hg (M,ϕ) = 0.

This theorem was proved by M. Lackenby [La06, Theorem 1.11] for closed hyper-
bolic 3-manifolds. To the best of our knowledge the general case has not been proved
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before. The equivalence presented in the abstract immediately follows from Theorems
1.1 and 1.2 if M has empty or toroidal boundary. In the general case see Lemma 4.5.

We will now formulate the last theorem of the paper. Recall that a group π is
normally generated by a subset S ⊂ π if π is the smallest normal subgroup of π
which contains S. We define the normal rank n(π) of π to be the smallest cardinality
of a normal generating set of π. The first part of this theorem can also be viewed as
a strengthening of Stallings’ fibering theorem.

Theorem 1.3. (1) If (M,ϕ) is a non-fibered 3-manifold pair, then Ker(ϕ) admits
a finite index subgroup with infinite normal rank.

(2) There exists a non-fibered 3-manifold pair (M,ϕ), such that Ker(ϕ) has finite
normal rank.

Convention. Unless it says specifically otherwise, all groups are assumed to be
finitely generated, all manifolds are assumed to be orientable, connected and compact,
and all 3-manifolds are assumed to have empty or toroidal boundary.

Acknowledgment. We wish to thank Dan Silver for a helpful conversation.

2. The rank gradient and the Heegaard gradient

2.1. The rank gradient. We first note that if G is a finitely generated group and if
H ⊂ G is a finite index subgroup, then it is a consequence of the Reidemeister-Schreier
method (see e.g. [MKS76, Corollary 2.7.1]) that

(1) rk(H) ≤ [G : H] · (rk(G)− 1) + 1 ≤ [G : H] · rk(G).
We now let π be a finitely generated group and let ϕ : π → Z be a homomorphism
then we write

πn := Ker(π1(M)
ϕ−→ Z → Z/n),

and we refer to

rg (π, ϕ) := lim inf
n→∞

1

n
rk(πn)

as the rank gradient of (π, ϕ). It is a consequence of (1) that this limit does indeed
exist. (Note that Lackenby defines the rank gradient using 1

n
(rk(πn) − 1) instead of

1
n
rk(πn), it is clear that this gives rise to the same limit.)
The following lemma is now an immediate consequence of (1) and the definitions:

Lemma 2.1. Let π be a finitely generated group and let ϕ : π → Z be a homomor-
phism.

(1) If α : Γ → π is an epimorphism, then

rg (Γ, ϕ ◦ α) ≥ rg (π, ϕ).

(2) If Γ ⊂ π is a finite index subgroup, then

rg (Γ, ϕ) ≤ [π : Γ] · rg (π, ϕ).
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The following two lemmas show that Theorem 1.1 is indeed a strengthening of
Stallings’ fibering theorem.

Lemma 2.2. Let π be a finitely generated group and let ϕ : π → Z be an epimorphism.
If Ker(ϕ) is generated by k elements, then for any n ∈ N we have rk(πn) ≤ k + 1, in
particular rg (π, ϕ) = 0.

Proof. We write K = Ker(ϕ). Note that the epimorphism ϕ : π → Z = ⟨t⟩ splits
since ⟨t⟩ is in particular a free group. We can thus view π as an HNN-extension
π = ⟨t⟩ nK. Under this identification we furthermore have that πn = ⟨tn⟩ nK. In
particular if {g1, . . . , gk} is a generating set for K, then {tn, g1, . . . , gk} is a generating
set for πn. �

Lemma 2.3. There exists a finitely presented group π and an epimorphism ϕ : π → Z
such that Ker(ϕ) is infinitely generated, but such that rk(πn) ≤ 2 for all n.

Proof. We consider the semidirect product

π := ⟨t⟩n Z[1/2]

where tn acts on Z[1/2] by multiplication by 2n together with the epimorphism ϕ : π →
Z which is defined by ϕ(tn) = n and ϕ(a) = 0 for a ∈ Z[1/2]. It is clear that
Ker(ϕ) = Z[1/2] is not finitely generated. On the other hand it is straightforward to
see that

πn = ⟨tn⟩n Z[1/2]
is generated by tn and 1 ∈ Z[1/2]. We thus showed that rk(πn) ≤ 2 for all n. �

This raises the following question:

Question 2.4. Does there exist a finitely presented group π and a homomorphism
ϕ : π → Z such that rg (π, ϕ) = 0 but such that the sequence rk(πn) is unbounded?

We conclude this section with the following elementary lemma:

Lemma 2.5. Let F be a free group on k generators and ϕ : F → Z an epimorphism,
then

rg (F, ϕ) = k − 1.

Proof. It is well-known that any subgroup of F of index n is a free group on n(k−1)+1
generators. (This follows for example for an elementary argument using Euler char-
acteristics of finite covers of graphs.) The lemma is now an immediate consequence
of this observation. �

2.2. The Heegaard gradient. We now recall several basic definitions and facts on
Heegaard splittings of 3-manifolds. We refer to [Jo] and [Sc02] for more details. We
start out with several definitions:
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(1) A compression body H is the result of gluing disjoint 2-handles to Σ × [0, 1],
where Σ is a closed surface, along Σ × 1 and then capping off all spherical
boundary components with 3-balls. We then write ∂+H = Σ× 0 and ∂−H =
∂H \ ∂+H. Note that a compression body with ∂−H = ∅ is a handlebody.

(2) A Heegaard surface for a 3-manifold M is an embedded separating surface
S ⊂ M such the two components of M cut along S are compression bodies
H1 and H2 with ∂+H1 = Σ = ∂+H2.

Note that every compact 3-manifold admits a Heegaard surface (see e.g. [Sc02, Sec-
tion 2]). In the following we refer to the minimal genus of a Heegaard surface as the
Heegaard genus h(M) of M .

Furthermore, given a 3-manifold pair (M,ϕ) with corresponding cyclic coversMn, n ∈
N we define, following [La06], the Heegaard gradient of (M,ϕ) to be

hg (M,ϕ) := lim inf
n→∞

1

n
h(Mn).

Note that if p : M̃ →M is a k-fold cover, then the preimage of a Heegaard surface is

again a Heegaard surface, it now follows easily that h(M̃) ≤ k · h(M). We therefore
see in particular that the Heegaard gradient is well-defined.

We summarize a few key properties of the Heegaard genus in a lemma.

Lemma 2.6. Let M be a 3-manifold, then the following hold:

(1)

rk(π1(M)) ≤
{
h(M), if M is closed,
2h(M), otherwise.

(2) If ϕ ∈ H1(M ;Z) is a primitive class, then

rg (π1(M), ϕ) ≤
{
hg(M), if M is closed,
2hg(M), otherwise.

(3) If ϕ ∈ H1(M ;Z) is a primitive fibered class, then

h(M) ≤ 2 · genus of the fiber+ 1.

Remark. (1) Note that there exist closed 3-manifolds with rk(π1(M)) < h(M). In
fact there exist examples of such 3-manifolds which are Seifert fibered [BZ84],
graph manifolds [We03], [SWe07] and hyperbolic [Li11]. On the other hand J.
Souto [So08] and H. Namazi–J. Souto [NS09] showed that rk(π1(N)) = h(N)
for hyperbolic 3-manifolds that are ‘sufficiently complicated’ in a certain sense.

(2) To the best of our knowledge it is not known whether there exist closed 3-
manifold pairs (M,ϕ) with rg (M,ϕ) < hg (M,ϕ).

(3) Note that Theorem 1.2 is an immediate consequence of Theorem 1.1 and
Lemma 2.6.
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Proof. First note that if M is a closed 3-manifold and Σ is a Heegaard surface of
genus g, then the compression bodies obtained by cutting M along Σ are in fact
handlebodies. We can thus view M as the result of gluing together two handlebodies
H1, H2 with g 1-handles each. In particular we can build M out of H1 by adding g
2-handles and one 3-handle. Since π1(H1) is generated by g elements it follows that
rk(π1(M)) ≤ g. This evidently implies (1) and (2) for closed 3-manifolds.

IfM is any 3-manifold and Σ is a Heegaard surface of genus g, then we can viewM
as the result of gluing 2-handles and 3-handles to Σ× [−1, 1]. It follows that π1(M) is
generated by a generating set for π1(Σ), i.e. rk(π1(M)) ≤ 2g. This evidently implies
(1) and (2) for 3-manifolds which are not closed.

We now turn to the proof of (3). Suppose that Σ is the fiber of a fibration
M → S1. We can then identify M with (Σ × [0, 1])/(x, 0) ∼ (f(x), 1)) for some
self-diffeomorphism f of Σ. If M is a closed 3-manifold, then we pick two disjoint
disks D1 and D2 on Σ. Then

(Σ \ (D1 ∪D2))× 0 ∪ (Σ \ (D1 ∪D2))×
1

2
∪ ∂D1 × [0,

1

2
] ∪ ∂D2 × [

1

2
, 1]

is a surface of genus 2g+1 and it is in fact a Heegaard surface for M : it cuts M into

(Σ− int D1)× [0, 1/2] ∪ (int D2)× [1/2, 1], and
(Σ− int D2)× [1/2, 1] ∪ (int D1)× [0, 1/2],

each the union of a 1-handle with a handlebody of the form (bounded surface)×(interval).
If M is not closed then Σ has non-trivial boundary and M has toroidal boundary

∂Σ× [0, 1]/(x, 0) ∼ (f(x), 1)). Let η be a closed, f -invariant tubular neighborhood of
∂Σ in Σ, so N = (η × [0, 1])/(x, 0) ∼ (f(x), 1)) is a tubular neighborhood of ∂M in
M , and let D1 be a disk in Σ disjoint from η. Taking H1 = (Σ− int D1)× [0, 1/2]∪N ,
we claim that S = ∂H1 is a Heegaard surface for M .

A maximal collection of disjoint, non parallel, non boundary-parallel arcs embedded
in Σ− (int D1⊔η) that each begin and end on ∂D1, gives rise, by crossing with [0, 1

2
],

to a collection D of disjoint compressing disks for S in H1 with the property that
H1 − (S ∪

∪
{D ∈ D}) is retracts onto ∂M . Thus H1 is a compression body. It is

easy to see that the other side H2 of S in M is a handlebody of the form described
in the closed case, and the claim follows. �

3. Proof of the main theorem for closed hyperbolic 3-manifolds

Given a finitely generated group Γ acting on a tree T , an “accessibility” principle
relates the combinatorics of Γ\T to the structure of Γ. Acylindrical accessibility,
introduced by Z. Sela [Se99], does not require prior knowledge of the structure of
vertex or edge stabilizers, but only that their action on T is “nice enough”:

Definition. The action Γ× T → T is k-acylindrical if no g ∈ Γ− {1} fixes a segment
of length greater than k, and k-cylindrical otherwise.

We will later on make use of the following theorem of R. Weidmann.
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Theorem 3.1 (Weidmann, [We02]). Let Γ be a non-cyclic, freely indecomposable,
finitely generated group and Γ × T → T a k-acylindrical, minimal (i.e. leaving no
proper subtree invariant) action. Then Γ\T has at most 1 + 2k(rk(Γ)− 1) vertices.

We will use the height of edge stabilizers, a notion from [GMRS98], to bound
cylindricity of the action under consideration.

Definition. The height of an infinite subgroup Λ in Γ is k if there is a collection of
k essentially distinct conjugates of Λ such that the intersection of all the elements
of the collection is infinite and k is maximal possible. (The conjugate of Λ by γ is
essentially distinct from the conjugate by γ′ if Λγ ̸= Λγ′.)

Lemma 3.2. For a torsion-free group Γ acting on a tree T , transitively on edges, let
Λ be the stabilizer of an edge e0. If Λ has height k in Γ then the action of Γ on T is
k-acylindrical.

Proof. Because the action is transitive on edges, each edge stabilizer is conjugate to
Λ. Note that the conjugates corresponding to distinct edges are essentially distinct:
if γ−1Λγ stabilizes e while (γ′)−1Λγ′ stabilizes e′ ̸= e then γ takes e to e0, as does
every element of Λγ, whereas the analog holds true for e′ and Λγ′.

Now suppose γ ∈ Γ−{1} fixes an edge arc of length n. Then γ is in the intersection
of the conjugates corresponding to the edges of this arc, so Λ has height at least n.
Since Λ has height k it follows that Γ× T → T is k-acylindrical. �

Let (M,ϕ) be a 3-manifold pair. We pick a properly embedded oriented surface S
inM dual to ϕ of minimal complexity. (Here, recall that the complexity of a surface S

with connected components S1∪· · ·∪Sk is defined as χ−(S) =
∑k

i=1max{−χ(Si), 0}.)
We also pick a tubular neighborhood S × [−1, 1] of S in M .

We view S1 as the topological space underlying a graphG, with a single vertex v and
a single edge e. Note that there exists a canonical continuous map p : M → G given
by sending S × (−1, 1) → (−1, 1) → e and by sending every point in M \ S × (−1, 1)
to v. The induced map p∗ : π1(M) → π1(G) = Z is precisely the map given by
ϕ ∈ H1(M ;Z) = Hom(π1(M),Z).

We denote by G0 the graph which has one vertex for each component of M \ S ×
(−1, 1) and one edge for each component of S × [−1, 1] with the obvious attaching
maps. Note that there exist canonical maps q : M → G0 and G → G0 which make
the following diagram commute:

M
q

}}||
||
||
|| p

  B
BB

BB
BB

B

G0
// G.

It is clear from the definitions that all the maps induce epimorphisms on fundamental
groups. In particular G0 is not a tree and hence its Euler characteristic χ(G0) is non-
positive. If χ(G0) is negative the conclusion of Theorem 1.1 requires no machinery.
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Lemma 3.3. Let (M,ϕ) be a 3-manifold pair. If the graph G0 has χ(G0) < 0, then
rg (M,ϕ) ≥ −χ(G0).

Proof. Recall that q∗ : π1(M) → π1(G0) is an epimorphism, it thus follows from
Lemma 2.1 that

rg (M,ϕ) ≥ rg (π1(G0), ϕ ◦ q∗).
The lemma is now an immediate consequence of Lemma 2.5. �

Recall that G0 is the underlying graph of a graph of spaces decomposition of M ,
with vertex spaces the components of M \ S × (−1, 1) and edge spaces those of S.
(We use the perspective on graphs of groups and spaces from [SWa79]; for definitions
see p. 155 there. See also [Ser80] and [Tr80]). This has an associated action of π on a
tree T , without involutions, such that each vertex stabilizer is conjugate to π1(M) for

some component X of M − S × (−1, 1) and each edge stabilizer to π1(S0) for some
component S0 of S (see [SWa79, pp. 166–167].)

Using this we can now prove the non-trivial implication of Theorem 1.1 for closed
hyperbolic 3-manifolds.

Theorem 3.4. Let (M,ϕ) be a 3-manifold pair where M is a closed hyperbolic 3-
manifold. If ϕ is non-fibered, then rg (M,ϕ) > 0.

Proof. Let (M,ϕ) be a 3-manifold pair where M is a closed hyperbolic 3-manifold
and where ϕ is non-fibered. We write π = π1(M) and we pick a surface S of minimal
complexity dual to ϕ. Since M is hyperbolic we can and will assume that no com-
ponent of S is a sphere or a torus. We denote by G0 the graph which was defined
above.

On account of Lemma 3.3 we may also assume that the graph G0 has Euler char-
acteristic 0. We will show below that S is connected and non-separating; ie, G0 = G.
Assuming this for the moment, let us prove the result.

Since S is not a fiber surface, π1(S) is a quasi-Fuchsian subgroup of π (see eg. [Bon86]).
Therefore by the main theorem of [GMRS98], π1(S) has finite height in π (cf. the
Corollary on [GMRS98, p. 322]), so by Lemma 3.2 the π1(M)-action on the tree de-
termined by S is k-acylindrical for some k ∈ N. This action has quotient G, with one
edge and vertex, so in particular it is minimal. Since M is hyperbolic and closed, π
is also non-cyclic, freely indecomposable, and finitely generated.

For each n ∈ N, πn also acts on T , with quotient a graph Gn with n edges and
vertices. The action of πn inherits k-acylindricity from that of π, and since πn has
finite index in π its action is also minimal. It now follows from Theorem 3.1 that

rk(πn) ≥
n− 1

2k
+ 1.(2)

We thus see that rg (M,ϕ) > 0.
We return to showing that G0 = G, assuming χ(G0) = 0. Since G0 has Euler

characteristic zero, it is homotopy equivalent to its minimal-length closed edge path,



RANK GRADIENTS OF INFINITE CYCLIC COVERS OF 3-MANIFOLDS 9

call it γ. Each edge of G0 that is not in γ is contained in a subtree T0 of G0 that
intersects γ at a single vertex v0 with the property that T0 − {v0} is a component of
G0−{v0}. Since T0 is a subtree, the component of S corresponding to any edge in T0
is nullhomologous. Removing such a component thus reduces the complexity of S, so
the fact that S has minimal complexity implies that there are none; ie, that G0 = γ.

We claim also that all edges of G0 point in the same direction. Note that identifying
π1(G) with Z requires choosing an orientation for e. This in turn gives an orientation
to the interval fibers of each component of S× [−1, 1] or, equivalently, an orientation
to each edge of G0. If these do not all point in the same direction, at least one vertex
v0 of γ is the initial vertex of each edge containing it. The sum of the components
of S corresponding to these edges is trivial in homology, again contradicting the fact
that S has minimal complexity. The claim follows, and implies that G0 covers G.
But p∗ = ϕ maps onto π1(G), so we must have G0 = G. �

4. Proof of the main theorem for 3-manifolds with empty or
toroidal boundary

4.1. Twisted Alexander polynomials. In this section we quickly recall the defi-
nition of twisted Alexander polynomials. This invariant was initially introduced by
X. Lin [Lin01], M. Wada [Wa94] and P. Kirk–C. Livingston [KL99]. We refer to the
survey paper [FV10] for a detailed presentation.

LetM be a 3-manifold, let ϕ ∈ H1(M ;Z) = Hom(π1(M),Z) and let α : π1(M) → G
be an epimorphism onto a finite group G. We write π = π1(M). We can now define
a left Q[π]–module structure on Q[G]⊗Q Q[t±1] =: Q[G][t±1] as follows:

g · (v ⊗ p) := (α(g) · v)⊗ (tϕ(g)p),

where g ∈ π and v ⊗ p ∈ Q[G]⊗Q Q[t±1] = Q[G][t±1].

Denote by M̃ the universal cover of M . We then use the representation α ⊗ ϕ to

regard Q[G][t±1] as a left Q[π]–module. The chain complex C∗(M̃) is also a left Q[π]–
module via deck transformations. Using the natural involution g 7→ g−1 on the group

ring Q[π] we can view C∗(M̃) as a right Q[π]–module. We can therefore consider the
tensor products

Cϕ⊗α
∗ (M ;Q[G][t±1]) := C∗(M̃)⊗Q[π] Q[G][t±1],

which form a complex of Q[t±1]-modules. We then consider the Q[t±1]–modules

Hϕ⊗α
∗ (M ;Q[G][t±1]) := H∗(C

ϕ⊗α
∗ (M ;Q[G][t±1])).

When ϕ is understood, then we will drop it from the notation, similarly, if α is the
trivial representation to GL(1,Q), then we will also drop it from the notation. We
will later on also consider the modules H∗(M ;Q(t)) and H∗(M ;Q[t±1]/(tk−1)) which
are defined analogously.
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Since M is compact and since Q[t±1] is a PID we have an isomorphism

Hϕ⊗α
1 (M ;Q[G][t±1]) ∼=

r⊕
i=1

Q[t±1]/pi(t)Q[t±1]

and we define the twisted Alexander polynomial as follows

∆α
M,ϕ :=

r∏
i=1

pi(t) ∈ Q[t±1].

Note that ∆α
M,ϕ ∈ Q[t±1] is well-defined up to multiplication by a unit in Q[t±1].

We also adopt the convention that we drop α from the notation if α is the trivial
representation to GL(1,Q).

We will later on make use of the following two facts about (twisted) Alexander
polynomials:

Lemma 4.1. Let (M,ϕ) be a 3-manifold pair and let α : π1(M) → G be an epimor-
phism onto a finite group. We denote by p : M̃ → M the corresponding finite cover.
We write ϕ̃ := p∗ϕ. Then

∆α
M,ϕ = ∆M̃,ϕ̃.

The lemma thus says that we can view a twisted Alexander polynomial of a 3-
manifold pair (M,ϕ) as an untwisted Alexander polynomial of a corresponding cover
of M . The lemma is a straightforward consequence of the Shapiro lemma. We refer
to [FV08a, Lemma 3.3] or [FV10, Section 3] for details.

Lemma 4.2. Let (M,ϕ) be a 3-manifold pair with ∆M,ϕ = 0. Let n ∈ Z and let

πn := Ker(π
ϕ−→ Z → Z/n). Then

b1(πn) ≥ n.

Proof. First note that the assumption that ∆M,ϕ = 0 implies that H1(M ;Q[t±1]) ∼=
Q[t±1]⊕H for some Q[t±1]-module H. It now follows from the Universal Coefficient
Theorem that for any n we have a short exact sequence

0 → H1(M ;Q[t±1])⊗Q[t±1] Q[t±1]/(tn − 1)
→ H1(M ;Q[t±1]/(tn − 1))
→ TorQ[t±1](H0(M ;Q[t±1]),Q[t±1]/(tn − 1)) → 0.

Since H1(M ;Q[t±1]) ∼= Q[t±1]⊕H it follows that

dimQ(H1(M ;Q[t±1]/(tn − 1))) ≥ dimQ(Q[t±1]/(tn − 1)) = n.

The lemma now follows immediately from the Shapiro lemma which in this case states
that

H1(πn;Q) ∼= H1(π;Q[t±1]/(tn − 1)) ∼= H1(M ;Q[t±1]/(tn − 1)).

�
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4.2. Twisted Alexander polynomials and fibered classes. Let (M,ϕ) be a 3-
manifold pair and let α : π1(M) → G be an epimorphism onto a finite group. If ϕ is
fibered then it was shown by many authors at varying levels of generality that ∆α

M,ϕ is
monic, in particular non-zero. We refer to [Ch03, KM05, GKM05, Ki07, FK06, FV10]
for details.

In [FV12], extending earlier results in [FV08b, FV11a, FV11b], the following con-
verse was proved.

Theorem 4.3. Let (M,ϕ) be a 3–manifold pair. If ϕ ∈ H1(M) is nonfibered, then
there exists an epimorphism α : π1(M) → G onto a finite group G such that

∆α
M,ϕ = 0.

The proof of this theorem relies heavily on the result of D. Wise [Wi12a, Wi12b]
that subgroups of hyperbolic 3-manifolds which are carried by an embedded surface
are separable. (See also [AFW12] for precise references.)

4.3. Proof of Theorem 1.1. As discussed in the Introduction, the proof of Theorem
1.1 reduces to the proof of the following.

Theorem 4.4. If (M,ϕ) is a 3-manifold pair which is not fibered, then rg (M,ϕ) > 0.

Proof. Let (M,ϕ) be a 3-manifold pair such that ϕ is not fibered. We have to show
that rg (M,ϕ) > 0. By Theorem 4.3, there exists an epimorphism α : π1(M) → G
onto a finite group G such that

∆α
M,ϕ = 0.

We write π := π1(M) and π̃ := Ker(α) and we denote by M̃ the cover corresponding

to π̃. Note that ϕ(π̃) = dZ for some d ̸= 0 ∈ Z. We write ϕ̃ := 1
d
p∗(ϕ) ∈ Hom(π̃,Z) =

H1(M̃ ;Z). Note that ϕ̃ is a primitive class.
For any n ∈ N we furthermore write

πn := Ker{π ϕ−→ Z → Z/n} and π̃n := Ker{π̃ → π
ϕ̃−→ Z → Z/n}.

Note that for any n ∈ N the group π̃n is a subgroup of πdn of index at most [π : π̃].
It follows from Lemmas 4.1 that ∆M̃,p∗ϕ = 0, which in turn implies that ∆M̃,ϕ̃ = 0.
It now follows from Lemma 4.2 that

(3) b1(π̃n) ≥ n for any n.

For any n we thus have by (1) and (3) that

1

dn
rk(πdn) ≥

1

dn

1

[π : π̃]
rk(π̃n) ≥

1

dn

1

[π : π̃]
b1(π̃n) ≥

1

d

1

[π : π̃]
.

It thus follows that rg (M,ϕ) > 0 as desired. �
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Recall that we assumed throughout the paper thatM is a compact 3-manifold with
empty or toroidal boundary. The statement of Theorem 1.1 does not hold if M has
a spherical boundary component. Indeed, if (M,ϕ) is a fibered 3-manifold pair, then
deleting a 3-ball gives rise to a 3-manifold with the same fundamental group but which
is no longer fibered. It is therefore reasonable to restrict ourselves to 3-manifolds
with no spherical boundary components. Extending verbatim the definition of rank
gradient to this context, it is straightforward to see that the statement of Theorem
1.1 applies also to this slightly more general case:

Lemma 4.5. Let M be a compact 3-manifold with no spherical boundary components
and which has at least one non-toroidal boundary component. Then M is not fibered
and for any primitive ϕ ∈ H1(M ;Z) we have rg (M,ϕ) > 0.

Proof. If M fibers over S1, then the boundary components also have to fiber over S1,
which means that all boundary components have to be tori.

Now let M be a compact 3-manifold which has at least one non-toroidal boundary
component F and let ϕ ∈ H1(M ;Z) = Hom(π1(M),Z) be a primitive element. We
have to show that rg (M,ϕ) > 0.

We denote by d ∈ Z≥0 the unique element such that ϕ(π1(F )) = dZ. We first
suppose that d > 0. Given n ∈ N we consider the finite coverMnd ofM corresponding

to π1(M)
ϕ−→ Z → Z/nd and we furthermore consider the cover Fn of F corresponding

to π1(F ) → π1(M)
ϕ−→ Z → Z/nd. Note that by the assumption that d is positive the

cover Fn is a connected cover of F . By the multiplicativity of the Euler characteristic
under finite covers we see that

b1(Fn)− 2 = n(b1(F )− 2).

Since F is non-spherical and non-toroidal we see in particular that b1(Fn) ≥ 2n.
Note that Mnd contains d copies of Fn as boundary components. By the standard

half-live-half-die argument coming from Poincaré duality we deduce that

b1(Mnd) ≥
1

2
(db1(Fn)) = dn.

It is now obvious that rg (M,ϕ) ≥ 1.
The case that d = 0 is proved almost the same way. We leave the details to the

reader. �

5. Normal generating sets

In this section we will prove Theorem 1.3, whose statement we recall for the reader’s
convenience:

Theorem 5.1. (1) If (M,ϕ) is a non-fibered 3-manifold pair, then Ker(ϕ) admits
a finite index subgroup with infinite normal rank.

(2) There exists a non-fibered 3-manifold pair (M,ϕ), such that Ker(ϕ) has finite
normal rank.
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Proof. We first note that if π is any group, then any set of elements which normally
generates π is also a generating set of H1(π;Z). It thus follows that

n(π) ≥ b1(π).

If (M,ϕ) is a non-fibered 3-manifold pair, then by Theorem 1.1 there exists an
epimorphism α : π1(M) → G onto a finite group G such that

∆α
M,ϕ = 0.

We write π̃ := Ker(α) and we denote by M̃ the cover of M corresponding to π̃. As
in the proof of Theorem 4.4 we note that ϕ(π̃) = dZ for some d ̸= 0 ∈ Z and we

write ϕ̃ := 1
d
p∗(ϕ) ∈ Hom(π̃,Z) = H1(M̃ ;Z). Note that ∆α

M,ϕ = 0 implies by Lemma

4.1 that ∆M̃,ϕ̃ = 0. This in turn is equivalent to saying that H1(M̃ ;Q[t±1]) is not

Q[t±1]-torsion, i.e.

dim(H1(ϕ̃-cover of M̃ ;Q)) = ∞.

We thus see that b1(Ker(α × ϕ)) = ∞, i.e. n(Ker(α × ϕ)) = ∞. Since Ker(α × ϕ) is
a finite index subgroup of Ker(ϕ) this concludes the proof of (1).

We now turn to the proof of (2). Let (N,ψ) be a fibered 3-manifold pair with
N ̸= S1 ×D2. We denote the fiber surface by S and the monodromy by φ. We can
then identify N with (S× [0, 1])/(x, 0) ∼ (φ(x), 1). We pick an essential simple closed
curve C on S × 1

2
and we pick an open tubular neighborhood νC of C in S × (0, 1).

We furthermore pick a non-trivial knot K ⊂ S3. We then consider the 3-manifold

M := (N \ νC) ∪ (S3 \ νK)

where we glue the meridian of K to a push-off of C in S × 1
2
and where we glue the

longitude of K to a meridian of C. We denote by ϕ ∈ H1(M ;Z) the class which is
dual to S × 0 ⊂M .

We claim that (M,ϕ) has all the desired properties. We denote by M̃ the infinite
cyclic cover of M corresponding to ϕ. Given i ∈ Z we write

Wi :=
(
(S × [0, 1] \ νC) ∪ (S3 \ νK)

)
× i.

Note that we can canonically identify M̃ with(∪
i∈Z

Wi

)
/(x, i) ∼ (φ(x), i+ 1).

Also note that M̃ contains the incompressible tori ∂νC × i, in particular π1(M̃) is
not a surface group. It thus follows that ϕ is not a fibered class.

We now denote by Γ the smallest normal subgroup of π1(M̃) = Ker(ϕ) which
contains π1(S × 0). We are done with the proof of Theorem 1.3 once we showed that
Γ = Ker(ϕ). First note that C and hence the meridian of K × 0 lies in Γ. Since the
meridian of K normally generates π1(S

3 \ νK) it follows that the longitude of K × 0
also lies in Γ. It is now straightforward to see that π1(W0) ⊂ Γ. This in particular
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implies that π1(S × 1) lies in Γ. But then the same argument as above shows that
π1(W1) ⊂ Γ. Iterating this argument we see that π1(Wi) lies in Γ for all i ∈ N. Almost
the same argument also shows that π1(Wi) lies in Γ for all i ∈ Z≤0. It now follows

that π1(M̃) is contained in Γ. �
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