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Symplectic 4–manifolds.

Definition. A 4–manifold M is called symplectic if
there exists a closed 2–form ω such that ω∧ω 6= 0
everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3–manifold,
then S1 ×N is symplectic.

We can now show that the converse holds:

Theorem (F–Vidussi 2008). Let N be a closed
3–manifold. If S1 × N is symplectic, then N is
fibered.

In fact using constructions of symplectic forms in
an earlier paper (generalizing Thurston and Fernandez–
Gray–Morgan) we can completely determine the
symplectic cone, i.e. which a ∈ H2(S1×N ; R) can
be represented by a symplectic form.



Twisted Alexander polynomials.

We use twisted Alexander polynomials as our main

tool.

Definition. Let N a 3–manifold, φ ∈ H1(N ; Z) =

Hom(π1(N),Z) and π̃ ⊂ π = π1(N) a finite index

subgroup. Consider the twisted Z[t±1]–module

H1(N ; Z[π/π̃][t±1]).

We denote by ∆
π/π̃
N,φ its order, called twisted Alexan-

der polynomial.

E.g. if H1(N ; Z[π/π̃][t±1]) =
⊕ Z[t±1]/pi(t), then

∆
π/π̃
N,φ =

∏
pi(t).

Example. If N = S3 \ K, φ ∈ H1(S3 \ K; Z) ∼= Z
a generator and π̃ = π, then ∆

π/π̃
N,φ = ∆K is the

ordinary Alexander polynomial of the knot K.



Fibered manifolds and

twisted Alexander polynomials

Defn. Given N and φ ∈ H1(N ; Z) = Hom(π1(N),Z)

we say that (N,φ) fibers if there exists a fibration

p : N → S1 with p∗ = φ : Hom(π1(N), π1(S1)).

The following is due to Cha, Goda–Kitano–Morifuji,

F–Kim:

Theorem. If (N,φ) fibers, then for any finite index

π̃ ⊂ π we have that

(1) ∆
π/π̃
N,φ is monic,

(2) the degree of ∆
π/π̃
N,φ is determined by ||φ||T .

(Monic means that the top coefficient equals ±1)

The theorem generalizes the fact that for a fibered

knot K the Alexander polynomial ∆K is monic and

deg ∆K = 2genusK.



Symplectic manifolds and

twisted Alexander polynomials

The following generalizes a result of Kronheimer.

Theorem (F–Vidussi). If S1 × N is symplectic,

then there exists φ ∈ H1(N ; Z) such that for any

finite index subgroup π̃ ⊂ π we have that

(1) ∆
π/π̃
N,φ is monic,

(2) the degree of ∆
π/π̃
N,φ is determined by ||φ||T .

Proof. (1) Use Taubes’ results on Seiberg–Witten

invariants of all finite (and symplectic!) covers of

S1 ×N .

(2) Apply Meng–Taubes to get information on

Alexander polynomials.

So we have to show that twisted Alexander poly-

nomials detect fibered 3–manifolds.



The main theorem.

Theorem (F–Vidussi). Let N be a 3–manifold

with empty or toroidal boundary. Let φ ∈ H1(N ; Z)

such that for any finite index subgroup π̃ ⊂ π we

have that

(A) ∆
π/π̃
N,φ is monic,

(B) the degree of ∆
π/π̃
N,φ is determined by ||φ||T ,

then (N,φ) fibers over S1.

Corollary. The collection of Seiberg–Witten in-

variants of all finite covers of S1×N ‘knows’ whether

S1 ×N is symplectic or not.



The first ingredient of the proof. Throughout
assume we have a closed 3–manifold N and φ ∈
H1(N ; Z) primitive. Let Σ ⊂ N be a connected
Thurston norm minimizing surface dual to φ.

Theorem A. If (N,φ) satisfies (A) and (B) for
any finite index π̃ ⊂ π, then for either inclusion ι±

π1(Σ)→ π1(N \ νΣ)

induces an isomorphism of prosolvable completions.

Note that ϕ : A → B induces an isomorphism of
prosolvable completions if and only if for any finite
solvable group S we have a bijection

ϕ∗ : Hom(B,S)→ Hom(A,S),

and if for any β : B → S we have

Im(A→ B → S) = Im(B → S).

Note that Theorem A can not be enough to con-
clude that π1(Σ)→ π1(N \ νΣ) is an isomorphism,
e.g. given an Alexander polynomial one knot K

the map Z → π1(S3 \K) induces an isomorphism
of prosolvable completions.



The three ingredients. Throughout assume have

N and φ ∈ H1(N ; Z) primitive, Σ ⊂ N Thurston

norm minimizing dual to φ.

Theorem A. If (N,φ) satisfies (A) and (B) for

any π̃ ⊂ π, then for either inclusion ι±

π1(Σ)→ π1(N \ νΣ)

induces an isomorphism of prosolvable completions.

The following is well–known for hyperbolic mfds.

Theorem B (F–Aschenbrenner). Let W any 3–

manifold, then π1(W ) is virtually residually p.

Building on a result of Agol we show:

Theorem C. If π1(N \νΣ) is residually finite solv-

able and if

π1(Σ)→ π1(N \ νΣ)

induces an isomorphism of prosolvable completions,

then π1(Σ)→ π1(N \ νΣ) is an isomorphism.



Proof of main theorem

using Theorems A, B and C

Theorem (F–Vidussi). Let N be a 3–manifold
with empty or toroidal boundary. Let φ ∈ H1(N ; Z)
such that for any finite index subgroup π̃ ⊂ π we
have that
(A) ∆

π/π̃
N,φ is monic,

(B) the degree of ∆
π/π̃
N,φ is determined by ||φ||T ,

then (N,φ) fibers over S1.

Proof. Given (N,φ) let p : Ñ → N a finite cover.
Write φ̃ = p−1(φ). Then
(1) (N,φ) fibers if and only if (Ñ, φ̃) fibers.
(2) (N,φ) satisfies (A) and (B) if and only if (Ñ, φ̃)
does.
So by Theorem B we only have to prove the the-
orem for N with π1(N) residually p, in particular
we can assume that π1(N) (and hence π1(N \νΣ))
is residually finite solvable. We can also assume
that φ is primitive. Theorems A and C now give
the main theorem.



Proof of Theorem A (1).
Assume we have (N,φ) such that for any finite
index subgroup π̃ ⊂ π we have that
(A) ∆

π/π̃
N,φ is monic,

(B) the degree of ∆
π/π̃
N,φ determined by ||φ||T .

We claim that ι± : π1(Σ)→ π1(N \ νΣ) induces an
isomorphism of prosolvable completions, i.e. for
any finite solvable group S the map

ι∗± : Hom(π1(N \ νΣ), S)→ Hom(π1(Σ), S)

is a bijection and for any β : π1(N \ νΣ) → S we
have

Im(π1(Σ)→ π1(N \Σ)→ S) = Im(π1(N \Σ)→ S).

A M–V argument shows that (A) and (B) imply
that for any α : π1(N)→ G with G finite, we have

Im{π1(Σ)→ π1(N)→ G} = Im{π1(N \ νΣ)→ G}
H1(Σ; Z[G])

∼=−→ H1(N \ νΣ; Z[G])

hence

π1(Σ)/[Ker(α),Ker(α)]
∼=−→ π1(N\νΣ)/[Ker(α),Ker(α)].

Note that this is only information for homomor-
phisms from π1(N) to a finite group.



Proof of Theorem A (2). Note that with G triv-

ial we get H1(Σ; Z)
H−→1 (N \ νΣ; Z), i.e. the con-

ditions above hold for S any finite abelian group.

Now we have to show that ι± : π1(Σ) → π1(N \
νΣ) looks like an isomorphism ‘on the level of

finite metabelian groups’. For example let β :

π1(N \ νΣ) → S be a homomorphism to a finite

metabelian group. We need that

Im{π1(Σ)→ π1(N\νΣ)→ S} = Im{π1(N\νΣ)→ S}.

The problem is that we can a priori not extend β :

π1(N \ νΣ)→ S to a homomorphism from π1(N).

Now let P be the abelian group P = S/[S, S] and

write n = |P | and H := H1(N \ Σ; Z). Since ι± :

H1(Σ)
∼=−→ H1(N \ νΣ) we can extend π : π1(N \

νΣ)→ H → H/nH (a characteristic quotient) to

π1(N)→ Z nH/nH → Z/k nH/nH.

for some k. (So we reduced the solvability length

of S to extend the homomorphism from π1(N \νΣ)

over π1(N)).



Proof of Theorem A (3). Recall that we started
with a map β : π1(N\νΣ)→ S to a finite metabelian
group. We write P = S/[S, S], n = |P | and H :=
H1(N \Σ). We can extend

π : π1(N \ νΣ)→ H → H/nH to
α : π1(N)→ Z nH/nH → Z/k nH/nH.

(reduced solvability length of S to extend over
π1(N)).

On the other hand we saw that for any α : π1(N)→
G, we have

π1(Σ)/[Ker(α),Ker(α)]
∼=−→ π1(N\νΣ)/[Ker(α),Ker(α)].

With G = Z/k nH/nH we immediately get that

π1(Σ)/[Ker(π),Ker(π)]
∼=−→ π1(N\νΣ)/[Ker(π),Ker(π)].

Put differently, with π : π1(N \ νΣ) → H → H/nH
a homomorphism to an abelian group we now get
metabelian information again, i.e. we recuperated
the ‘solvability length’ we gave up in order to ex-
tend a homomorphism to π1(N). But

π1(N \ νΣ) → π1(N \ νΣ)/[Ker(π),Ker(π)]
↘ ↓

S.

So we get the result for finite metabelian S.
We now induct on solvability length of S.



Proof of Theorem B.

Theorem B (F–Aschenbrenner). π1(N) is vir-

tually residually p.

It is well–known that finitely generated linear groups

(subgroups of GL(n,C)) are virtually residually p

for almost all primes p. In particular hyperbolic

3–manifold groups are virtually residually p.

An argument similar to Hempel’s proof that 3–

manifold groups are residually finite now shows

that all 3–manifold groups are virtually residually

p.



Proof of Theorem C (1).

Let Σ ⊂ N . We have two inclusions ι± : Σ→M .

Theorem C. If π1(N \νΣ) is residually finite solv-
able and if

ι± : π1(Σ)→ π1(N \ νΣ)

induce an isomorphism of prosolvable completions,
then π1(Σ)→ π1(N \ νΣ) is an isomorphism.

The main tool is a theorem of Ian Agol. We need:

Definition. A group π is called RFRS if π is resid-
ually finite solvable and ‘the rank of finite index
subgroups grows quickly with the index’.

Remark.
(1) Free groups and surface groups are RFRS.
(2) Most 3–manifold groups are not RFRS.
(3) Are hyperbolic 3–manifold groups virtually RFRS?
(4) The π1(M) above is RFRS since ‘solvably’
π1(M) looks the same as a surface group.



Proof of Theorem C (2).

Agol’s amazing theorem:

Theorem (Agol). Let W 3–manifold, π1(W ) RFRS

and φ ∈ H1(W ). Then there exists a finite solv-

able cover p : Ŵ → W such that p∗(φ) lies on the

closure of a fibered cone.

(In particular W is virtually fibered.)

We need a slightly different version.

Theorem (Agol). Let M = N \ νΣ and W the

double of M = N \ νΣ. If π1(M) is RFRS then

there exists a homomorphism π1(W ) → π1(M) →
S to a finite solvable group S such that for the

corresponding cover p : Ŵ →W of W the element

Σ̂ = p∗(Σ) lies on the closure of a fibered cone.



Proof of Theorem C (3).

Recall we have Σ ⊂ N and write M = N \ νΣ. We
assume that π1(M) is residually finite solvable and
that

ι± : π1(Σ)→ π1(M)

induce an isomorphism of prosolvable completions.
Let W the double of M = N \ νΣ. We want to
show that M is a product, i.e. Σ lies in the interior
of a fibered cone of W .

Since π1(Σ) is RFRS, π1(M) is also RFRS. By
Agol there exists a solvable cover p : Ŵ → W of
W such that Σ̂ = p∗(Σ) lies on the closure of a
fibered cone.

Without loss of generality we can assume that al-
ready Σ lies in the closure of a fibered cone (Since
Σ̂ is a fiber iff Σ is a fiber).

But how do we get from Σ in the closure of a
fibered cone to Σ in the interior of a fibered cone?



Proof of Theorem C (4).

Recall we have Σ ⊂ N and write M = N \ νΣ. We

assume that

ι± : π1(Σ)→ π1(M)

induce an isomorphism of prosolvable completions.

Let W be the double of M = N \ νΣ. We also

assume that Σ lies in the closure of a fibered cone.

We have to show that Σ lies in the interior of a

fibered cone.

If Σ lies in the cone on the boundary of a fibered

face, then using the natural involution on the dou-

ble W one can see that it lies on the boundary of

at least two fibered faces.

But algebraically W looks like Σ×S1, i.e. Σ lies in

the interior of a face of the Alexander norm (the

algebraic version of the Thurston norm). But for

fibered classes the Alexander norm agrees with the

Thurston norm, which gives a contradiction.


