Fibered 3–manifolds and twisted Alexander polynomials

Stefan Friedl (joint with Stefano Vidussi)

The 5th East Asian School of Knots and Related Topics January 2009

Let $K \subset S^3$ a knot, then consider the Alexander module $H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}])$. Pretending that $\mathbb{Z}[t^{\pm 1}]$ is a PID we have

$$H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}]) = \bigoplus_{i=1}^m \mathbb{Z}[t^{\pm 1}]/p_i(t)$$

伺 と く き と く き と

Let $K \subset S^3$ a knot, then consider the Alexander module $H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}])$. Pretending that $\mathbb{Z}[t^{\pm 1}]$ is a PID we have

$$H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}]) = \bigoplus_{i=1}^m \mathbb{Z}[t^{\pm 1}]/p_i(t)$$

and the Alexander polynomial equals

$$\Delta_{\mathcal{K}} := \prod_{i=1}^m p_i(t).$$

向下 イヨト イヨト

Let $K \subset S^3$ a knot, then consider the Alexander module $H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}])$. Pretending that $\mathbb{Z}[t^{\pm 1}]$ is a PID we have

$$H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}]) = \bigoplus_{i=1}^m \mathbb{Z}[t^{\pm 1}]/p_i(t)$$

and the Alexander polynomial equals

$$\Delta_{\mathcal{K}} := \prod_{i=1}^m p_i(t).$$

Theorem. Let $K \subset S^3$ a fibered knot, then Δ_K is monic and $\deg \Delta_K = 2 \operatorname{genus}(K).$

(Monic means that the top coefficient equals ± 1).

Let $K \subset S^3$ a knot, then consider the Alexander module $H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}])$. Pretending that $\mathbb{Z}[t^{\pm 1}]$ is a PID we have

$$H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}]) = \bigoplus_{i=1}^m \mathbb{Z}[t^{\pm 1}]/p_i(t)$$

and the Alexander polynomial equals

$$\Delta_{\mathcal{K}} := \prod_{i=1}^m p_i(t).$$

Theorem. Let $K \subset S^3$ a fibered knot, then Δ_K is monic and

$$\deg \Delta_{\mathcal{K}} = 2 \operatorname{genus}(\mathcal{K}).$$

(Monic means that the top coefficient equals ± 1).

The converse does not hold, e.g. fails for the Pretzel knot P(5, -3, 5).

Fibered manifolds

Throughout N will be closed or with toroidal boundary.

Definition For $\phi \in H_2(N, \partial N; \mathbb{Z}) = H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ we say that (N, ϕ) fibers if there exists a fibration $p : N \to S^1$ with $p_* = \phi : \text{Hom}(\pi_1(N), \pi_1(S^1)).$

Fibered manifolds

Throughout N will be closed or with toroidal boundary.

Definition For $\phi \in H_2(N, \partial N; \mathbb{Z}) = H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ we say that (N, ϕ) fibers if there exists a fibration $p : N \to S^1$ with $p_* = \phi : \text{Hom}(\pi_1(N), \pi_1(S^1)).$

Remark. Let Σ dual to ϕ of minimal genus. The following are equivalent. (1) (N, ϕ) fibers,

Definition For $\phi \in H_2(N, \partial N; \mathbb{Z}) = H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ we say that (N, ϕ) fibers if there exists a fibration $p : N \to S^1$ with $p_* = \phi : \text{Hom}(\pi_1(N), \pi_1(S^1)).$

Remark. Let Σ dual to ϕ of minimal genus. The following are equivalent.

(1) (N, ϕ) fibers, (2) $N \setminus \Sigma \cong \Sigma \times [0, 1]$,

Definition For $\phi \in H_2(N, \partial N; \mathbb{Z}) = H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ we say that (N, ϕ) fibers if there exists a fibration $p : N \to S^1$ with $p_* = \phi : \text{Hom}(\pi_1(N), \pi_1(S^1)).$

Remark. Let Σ dual to ϕ of minimal genus. The following are equivalent.

(1) (N, ϕ) fibers,

(2) $N \setminus \Sigma \cong \Sigma \times [0,1]$,

(3) the ϕ -cover of N is diffeomorphic to $\Sigma \times \mathbb{R}$,

Definition For $\phi \in H_2(N, \partial N; \mathbb{Z}) = H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ we say that (N, ϕ) fibers if there exists a fibration $p : N \to S^1$ with $p_* = \phi : \text{Hom}(\pi_1(N), \pi_1(S^1)).$

Remark. Let Σ dual to ϕ of minimal genus. The following are equivalent.

(1) (N, ϕ) fibers,

- (2) $N \setminus \Sigma \cong \Sigma \times [0,1]$,
- (3) the ϕ -cover of N is diffeomorphic to $\Sigma \times \mathbb{R}$,
- (4) ϕ is represented by a non-degenerate closed 1-form.

Definition For $\phi \in H_2(N, \partial N; \mathbb{Z}) = H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ we say that (N, ϕ) fibers if there exists a fibration $p : N \to S^1$ with $p_* = \phi : \text{Hom}(\pi_1(N), \pi_1(S^1)).$

Remark. Let Σ dual to ϕ of minimal genus. The following are equivalent.

- (1) (N, ϕ) fibers,
- (2) $N \setminus \Sigma \cong \Sigma \times [0,1]$,
- (3) the ϕ -cover of N is diffeomorphic to $\Sigma \times \mathbb{R}$,
- (4) ϕ is represented by a non-degenerate closed 1-form.

Remark. Let $p: \tilde{N} \to N$ a finite cover. Then

$$(N, \phi)$$
 fibers $\Leftrightarrow (\tilde{N}, p^{-1}(\phi))$ fibers.

・同下 ・ヨト ・ヨト

Definition. Let N a 3-manifold, $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ and $\alpha : \pi_1(N) \to G$ an epimorphism onto a finite group.

Definition. Let N a 3-manifold, $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ and $\alpha : \pi_1(N) \to G$ an epimorphism onto a finite group.Consider the twisted $\mathbb{Z}[t^{\pm 1}]$ -module

$$H_1(N;\mathbb{Z}[G][t^{\pm 1}]) = H_1(C_*(\tilde{N}) \otimes_{\mathbb{Z}[\pi_1(N)]} \mathbb{Z}[G][t^{\pm 1}]).$$

 $(\tilde{N} \text{ the universal cover of } N)$

向下 イヨト イヨト

Definition. Let N a 3-manifold, $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ and $\alpha : \pi_1(N) \to G$ an epimorphism onto a finite group.Consider the twisted $\mathbb{Z}[t^{\pm 1}]$ -module

$$H_1(N;\mathbb{Z}[G][t^{\pm 1}]) = H_1(C_*(\tilde{N}) \otimes_{\mathbb{Z}[\pi_1(N)]} \mathbb{Z}[G][t^{\pm 1}]).$$

 $(\tilde{N} \text{ the universal cover of } N)$ We denote by $\Delta_{N,\phi}^{\alpha} \in \mathbb{Z}[t^{\pm 1}]$ its order, called twisted Alexander polynomial.

・同・ ・ヨ・ ・ヨ・

Definition. Let N a 3-manifold, $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ and $\alpha : \pi_1(N) \to G$ an epimorphism onto a finite group.Consider the twisted $\mathbb{Z}[t^{\pm 1}]$ -module

$$H_1(N;\mathbb{Z}[G][t^{\pm 1}]) = H_1(C_*(\tilde{N}) \otimes_{\mathbb{Z}[\pi_1(N)]} \mathbb{Z}[G][t^{\pm 1}]).$$

 $(\tilde{N} \text{ the universal cover of } N)$ We denote by $\Delta_{N,\phi}^{\alpha} \in \mathbb{Z}[t^{\pm 1}]$ its order, called twisted Alexander polynomial.

Example. If $N = S^3 \setminus K$, $\phi \in H^1(S^3 \setminus K; \mathbb{Z}) \cong \mathbb{Z}$ a generator and α the trivial map, then $\Delta^{\alpha}_{N,\phi} = \Delta_K$ is the ordinary Alexander polynomial of the knot K.

▲圖▶ ★ 国▶ ★ 国▶

Given $\phi \in H^1(N; \mathbb{Z}) = H_2(N, \partial N; \mathbb{Z})$ we write $||\phi||_T$ for its Thurston norm, it is 'the minimal (negative) Euler characteristic of a surface representing ϕ' . Given $\phi \in H^1(N; \mathbb{Z}) = H_2(N, \partial N; \mathbb{Z})$ we write $||\phi||_T$ for its Thurston norm, it is 'the minimal (negative) Euler characteristic of a surface representing ϕ' .

The following is due to Cha, Goda–Kitano–Morifuji, F–Taehee Kim, Kitayama:

Theorem. If (N, ϕ) fibers, then for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (M) $\Delta^{\alpha}_{N,\phi}$ is monic, (D) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_{\mathcal{T}}$.

(1) マン・ション・

Our main theorem says that twisted Alexander polynomials detect fibered 3-manifolds.

Theorem (F–Vidussi). Let N be a 3-manifold with empty or toroidal boundary. Let $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (M) $\Delta^{\alpha}_{N,\phi}$ is monic, (D) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_{\mathcal{T}}$, then (N, ϕ) fibers over S^1 .

Our main theorem says that twisted Alexander polynomials detect fibered 3-manifolds.

Theorem (F–Vidussi). Let N be a 3-manifold with empty or toroidal boundary. Let $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (M) $\Delta^{\alpha}_{N,\phi}$ is monic, (D) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_{\mathcal{T}}$, then (N, ϕ) fibers over S^1 .

Before we outline the proof we give a corollary.

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic.

(1) マン・ション・

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic. Take

$$\omega = \textit{ds} \wedge \phi$$

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic. Take

$$\omega = ds \wedge \phi + *\phi.$$

(Here $*\phi$ is the Hodge dual, a closed 2-form).

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic. Take

$$\omega = d\mathbf{s} \wedge \phi + *\phi.$$

(Here $*\phi$ is the Hodge dual, a closed 2-form). Then

$$\omega \wedge \omega =$$

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic. Take

$$\omega = ds \wedge \phi + *\phi.$$

(Here $*\phi$ is the Hodge dual, a closed 2-form). Then

$$\omega \wedge \omega = (ds \wedge \phi + *\phi) \wedge (ds \wedge \phi + *\phi)$$

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic. Take

$$\omega = ds \wedge \phi + *\phi.$$

(Here $*\phi$ is the Hodge dual, a closed 2-form). Then

$$\omega \wedge \omega = (ds \wedge \phi + *\phi) \wedge (ds \wedge \phi + *\phi)$$

= 2ds \langle \phi \langle \langle \phi \langle \phi

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic. Take

$$\omega = ds \wedge \phi + *\phi.$$

(Here $*\phi$ is the Hodge dual, a closed 2-form). Then

$$\begin{split} \omega \wedge \omega &= (ds \wedge \phi + *\phi) \wedge (ds \wedge \phi + *\phi) \\ &= 2ds \wedge \phi \wedge *\phi \\ &\neq 0. \end{split}$$

Definition. A 4-manifold *M* is called symplectic if there exists a closed 2-form ω such that $\omega \wedge \omega \neq 0$ everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3-manifold, then $S^1 \times N$ is symplectic.

Proof. Let $p: N \to S^1$ a fibration. Write $\phi = p^*(dt)$. By Calabi and Honda we can find a metric such that ϕ is harmonic. Take

$$\omega = ds \wedge \phi + *\phi.$$

(Here $*\phi$ is the Hodge dual, a closed 2-form). Then

$$\begin{split} \omega \wedge \omega &= (ds \wedge \phi + *\phi) \wedge (ds \wedge \phi + *\phi) \\ &= 2ds \wedge \phi \wedge *\phi \\ &\neq 0. \end{split}$$

Question. Does the converse hold?

Theorem (F–Vidussi). If $S^1 \times N$ is symplectic, then there exists $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (1) $\Delta_{N,\phi}^{\alpha}$ is monic,

(2) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_{\mathcal{T}}$.

Theorem (F–Vidussi). If $S^1 \times N$ is symplectic, then there exists $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (1) $\Delta^{\alpha}_{N,\phi}$ is monic,

(2) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_{\mathcal{T}}$.

Proof. (1) Use Taubes' results on Seiberg–Witten invariants of all finite (and symplectic!) covers $S^1 \times \tilde{N}$ of $S^1 \times N$.

・同 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem (F–Vidussi). If $S^1 \times N$ is symplectic, then there exists $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (1) $\Delta^{\alpha}_{N,\phi}$ is monic,

(2) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_{\mathcal{T}}$.

Proof. (1) Use Taubes' results on Seiberg–Witten invariants of all finite (and symplectic!) covers $S^1 \times \tilde{N}$ of $S^1 \times N$. (2) Apply Meng–Taubes to show that

 $SW(S^1 \times \tilde{N}) =$ Alexander polynomial of \tilde{N}

(四) (日) (日)

Theorem (F–Vidussi). If $S^1 \times N$ is symplectic, then there exists $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (1) $\Delta^{\alpha}_{N,\phi}$ is monic,

(2) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_{\mathcal{T}}$.

Proof. (1) Use Taubes' results on Seiberg–Witten invariants of all finite (and symplectic!) covers $S^1 \times \tilde{N}$ of $S^1 \times N$. (2) Apply Meng–Taubes to show that

 $SW(S^1 \times \tilde{N}) =$ Alexander polynomial of \tilde{N} = twisted Alexander polynomial of N.

Theorem (F–Vidussi 2008). Let N be a closed 3-manifold. If $S^1 \times N$ is symplectic, then N is fibered.

Theorem (F–Vidussi 2008). Let N be a closed 3-manifold. If $S^1 \times N$ is symplectic, then N is fibered.

Corollary. The collection of Seiberg–Witten invariants of all covers of $S^1 \times N$ determines whether $S^1 \times N$ is symplectic or not.

向下 イヨト イヨト

Theorem (F–Vidussi 2008). Let N be a closed 3-manifold. If $S^1 \times N$ is symplectic, then N is fibered.

Corollary. The collection of Seiberg–Witten invariants of all covers of $S^1 \times N$ determines whether $S^1 \times N$ is symplectic or not.

In fact using constructions of symplectic forms in an earlier paper (generalizing Thurston and Fernandez–Gray–Morgan) we can completely determine the symplectic cone:

Theorem. $a \in H^2(S^1 \times N; \mathbb{R}) \cong H^1(N; \mathbb{R}) \oplus H^2(N; \mathbb{R})$ can be represented by a symplectic form if and only if (1) $a^2 > 0$,

(1日) (1日) (1日)

Theorem (F–Vidussi 2008). Let N be a closed 3-manifold. If $S^1 \times N$ is symplectic, then N is fibered.

Corollary. The collection of Seiberg–Witten invariants of all covers of $S^1 \times N$ determines whether $S^1 \times N$ is symplectic or not.

In fact using constructions of symplectic forms in an earlier paper (generalizing Thurston and Fernandez–Gray–Morgan) we can completely determine the symplectic cone:

Theorem. $a \in H^2(S^1 \times N; \mathbb{R}) \cong H^1(N; \mathbb{R}) \oplus H^2(N; \mathbb{R})$ can be represented by a symplectic form if and only if (1) $a^2 > 0$, (2) the Künneth component of a in $H^1(N; \mathbb{R})$ lies in the interior of a fibered cone.

マロト マヨト マヨト

Recall that our main theorem says that twisted Alexander polynomials detect fibered 3-manifolds.

Theorem (F–Vidussi). Let N be a 3-manifold with empty or toroidal boundary. Let $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group we have that (M) $\Delta^{\alpha}_{N,\phi}$ is monic, (D) the degree of $\Delta^{\alpha}_{N,\phi}$ is determined by $||\phi||_T$, then (N, ϕ) fibers over S^1 .

Throughout assume we have a 3-manifold N and $\phi \in H^1(N; \mathbb{Z})$ primitive. Let $\Sigma \subset N$ be a connected minimal genus surface dual to ϕ .

向下 イヨト イヨト

Throughout assume we have a 3-manifold N and $\phi \in H^1(N; \mathbb{Z})$ primitive. Let $\Sigma \subset N$ be a connected minimal genus surface dual to ϕ .

Theorem A. If (N, ϕ) satisfies (M) and (D) for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group, then for either inclusion ι_{\pm} the map $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions.

Note that $\varphi : A \to B$ induces an isomorphism of prosolvable completions if and only if for any finite solvable group S we have a bijection $\varphi^* : \operatorname{Hom}(B, S) \to \operatorname{Hom}(A, S)$, and if for any $\beta : B \to S$ we have $\operatorname{Im}(A \to B \to S) = \operatorname{Im}(B \to S)$.

Throughout assume we have a 3-manifold N and $\phi \in H^1(N; \mathbb{Z})$ primitive. Let $\Sigma \subset N$ be a connected minimal genus surface dual to ϕ .

Theorem A. If (N, ϕ) satisfies (M) and (D) for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group, then for either inclusion ι_{\pm} the map $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions.

Fact B. 'Three-manifold groups are virtually residually finite solvable'.

Throughout assume we have a 3-manifold N and $\phi \in H^1(N; \mathbb{Z})$ primitive. Let $\Sigma \subset N$ be a connected minimal genus surface dual to ϕ .

Theorem A. If (N, ϕ) satisfies (M) and (D) for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group, then for either inclusion ι_{\pm} the map $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions.

Fact B. 'Three-manifold groups are virtually residually finite solvable'.

For example linear groups (hence hyperbolic 3–manifold groups) are virtually residually *p*.

・同下 ・ヨト ・ヨト

Throughout assume we have a 3-manifold N and $\phi \in H^1(N; \mathbb{Z})$ primitive. Let $\Sigma \subset N$ be a connected minimal genus surface dual to ϕ .

Theorem A. If (N, ϕ) satisfies (M) and (D) for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group, then for either inclusion ι_{\pm} the map $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions.

Fact B. 'Three-manifold groups are virtually residually finite solvable'.

Building on a result of Agol we show: **Theorem C.** If $\pi_1(N \setminus \nu\Sigma)$ is residually finite solvable and if $\iota_{\pm} : \pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

・ロン ・回 と ・ ヨ と ・ ヨ と

Throughout assume we have a 3-manifold N and $\phi \in H^1(N; \mathbb{Z})$ primitive. Let $\Sigma \subset N$ be a connected minimal genus surface dual to ϕ .

Theorem A. If (N, ϕ) satisfies (M) and (D) for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group, then for either inclusion ι_{\pm} the map $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions.

Fact B. 'Three-manifold groups are virtually residually finite solvable'.

Building on a result of Agol we show: **Theorem C.** If $\pi_1(N \setminus \nu\Sigma)$ is residually finite solvable and if $\iota_{\pm} : \pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

The combination of the theorems shows that (M) and (D) imply that (N, ϕ) fibers over S^1 .

Assume we have (N, ϕ) such that for any $\alpha : \pi_1(N) \to G$ we have that

(M) $\Delta^{\alpha}_{N,\phi}$ is monic (D) the degree of $\Delta^{\alpha}_{N,\phi}$ determined by $||\phi||_{\mathcal{T}}$.

Assume we have (N, ϕ) such that for any $\alpha : \pi_1(N) \to G$ we have that

(M) $\Delta_{N,\phi}^{\alpha}$ is monic (D) the degree of $\Delta_{N,\phi}^{\alpha}$ determined by $||\phi||_{\mathcal{T}}$. We claim that $\iota_{\pm} : \pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions, i.e. for any finite solvable group *S* the map $\iota_{\pm}^* : \operatorname{Hom}(\pi_1(N \setminus \nu\Sigma), S) \to \operatorname{Hom}(\pi_1(\Sigma), S)$ is a bijection and for any $\beta : \pi_1(N \setminus \nu\Sigma) \to S$ we have $\operatorname{Im}(\pi_1(\Sigma) \to \pi_1(N \setminus \Sigma) \to S) = \operatorname{Im}(\pi_1(N \setminus \Sigma) \to S)$.

Assume we have (N, ϕ) such that for any $\alpha : \pi_1(N) \to G$ we have that

(M) $\Delta_{N,\phi}^{\alpha}$ is monic (D) the degree of $\Delta_{N,\phi}^{\alpha}$ determined by $||\phi||_{T}$. We claim that $\iota_{\pm} : \pi_{1}(\Sigma) \to \pi_{1}(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions, i.e. for any finite solvable group *S* the map $\iota_{\pm}^{*} : \operatorname{Hom}(\pi_{1}(N \setminus \nu\Sigma), S) \to \operatorname{Hom}(\pi_{1}(\Sigma), S)$ is a bijection and for any $\beta : \pi_{1}(N \setminus \nu\Sigma) \to S$ we have $\operatorname{Im}(\pi_{1}(\Sigma) \to \pi_{1}(N \setminus \Sigma) \to S) = \operatorname{Im}(\pi_{1}(N \setminus \Sigma) \to S)$. Put differently, we have to get from Alexander polynomials to information on the relation between a surface and its complement.

イロト イポト イヨト イヨト

Assume we have (N, ϕ) such that for any $\alpha : \pi_1(N) \to G$ we have that

(M) $\Delta_{N,\phi}^{\alpha}$ is monic (D) the degree of $\Delta_{N,\phi}^{\alpha}$ determined by $||\phi||_{T}$. We claim that $\iota_{\pm} : \pi_{1}(\Sigma) \to \pi_{1}(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions, i.e. for any finite solvable group *S* the map $\iota_{\pm}^{*} : \operatorname{Hom}(\pi_{1}(N \setminus \nu\Sigma), S) \to \operatorname{Hom}(\pi_{1}(\Sigma), S)$ is a bijection and for any $\beta : \pi_{1}(N \setminus \nu\Sigma) \to S$ we have $\operatorname{Im}(\pi_{1}(\Sigma) \to \pi_{1}(N \setminus \Sigma) \to S) = \operatorname{Im}(\pi_{1}(N \setminus \Sigma) \to S)$. Put differently, we have to get from Alexander polynomials to information on the relation between a surface and its complement.

As for the classical Alexander polynomial we can express the twisted Alexander module in terms of a Meyer–Vietoris sequence relating it to the homology of Σ and $N \setminus \nu \Sigma$:

$$H_1(\Sigma; \mathbb{Z}G) \otimes \mathbb{Z}[t^{\pm 1}] \xrightarrow{\iota_- - \iota_+} H_1(N \setminus \nu\Sigma; \mathbb{Z}G) \otimes \mathbb{Z}[t^{\pm 1}] \to H_1(N; \mathbb{Z}[G][t^{\pm 1}])$$

Assume we have (N, ϕ) such that for any $\alpha : \pi_1(N) \to G$ we have that

(M) $\Delta_{N,\phi}^{\alpha}$ is monic (D) the degree of $\Delta_{N,\phi}^{\alpha}$ determined by $||\phi||_{\mathcal{T}}$. We claim that $\iota_{\pm} : \pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions, i.e. for any finite solvable group *S* the map $\iota_{\pm}^* : \operatorname{Hom}(\pi_1(N \setminus \nu\Sigma), S) \to \operatorname{Hom}(\pi_1(\Sigma), S)$ is a bijection and for any $\beta : \pi_1(N \setminus \nu\Sigma) \to S$ we have $\operatorname{Im}(\pi_1(\Sigma) \to \pi_1(N \setminus \Sigma) \to S) = \operatorname{Im}(\pi_1(N \setminus \Sigma) \to S)$. Conditions (M) and (D) on twisted Alexander polynomials imply that for any $\alpha : \pi_1(N) \to G$ we have

$$\begin{split} \mathsf{Im}\{\pi_1(\Sigma) \to \pi_1(N) \to G\} &= \mathsf{Im}\{\pi_1(N \setminus \nu\Sigma) \to G\} \\ & H_1(\Sigma; \mathbb{Z}[G]) \xrightarrow{\cong} H_1(N \setminus \nu\Sigma; \mathbb{Z}[G]). \end{split}$$

イロト イポト イヨト イヨト

Assume we have (N, ϕ) such that for any $\alpha : \pi_1(N) \to G$ we have that

(M) $\Delta_{N,\phi}^{\alpha}$ is monic (D) the degree of $\Delta_{N,\phi}^{\alpha}$ determined by $||\phi||_{\mathcal{T}}$. We claim that $\iota_{\pm} : \pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions, i.e. for any finite solvable group *S* the map $\iota_{\pm}^* : \operatorname{Hom}(\pi_1(N \setminus \nu\Sigma), S) \to \operatorname{Hom}(\pi_1(\Sigma), S)$ is a bijection and for any $\beta : \pi_1(N \setminus \nu\Sigma) \to S$ we have $\operatorname{Im}(\pi_1(\Sigma) \to \pi_1(N \setminus \Sigma) \to S) = \operatorname{Im}(\pi_1(N \setminus \Sigma) \to S)$. Conditions (M) and (D) on twisted Alexander polynomials imply that for any $\alpha : \pi_1(N) \to G$ we have

$$\begin{split} \mathsf{Im}\{\pi_1(\Sigma) \to \pi_1(N) \to G\} &= \mathsf{Im}\{\pi_1(N \setminus \nu\Sigma) \to G\} \\ & H_1(\Sigma; \mathbb{Z}[G]) \xrightarrow{\cong} H_1(N \setminus \nu\Sigma; \mathbb{Z}[G]). \end{split}$$

Note that this is only information for homomorphisms from $\pi_1(N)$ to a finite group.

3

Assume we have (N, ϕ) such that for any $\alpha : \pi_1(N) \to G$ we have that

(M) $\Delta_{N,\phi}^{\alpha}$ is monic (D) the degree of $\Delta_{N,\phi}^{\alpha}$ determined by $||\phi||_{T}$. We claim that $\iota_{\pm} : \pi_{1}(\Sigma) \to \pi_{1}(N \setminus \nu\Sigma)$ induces an isomorphism of prosolvable completions, i.e. for any finite solvable group *S* the map $\iota_{\pm}^{*} : \operatorname{Hom}(\pi_{1}(N \setminus \nu\Sigma), S) \to \operatorname{Hom}(\pi_{1}(\Sigma), S)$ is a bijection and for any $\beta : \pi_{1}(N \setminus \nu\Sigma) \to S$ we have $\operatorname{Im}(\pi_{1}(\Sigma) \to \pi_{1}(N \setminus \Sigma) \to S) = \operatorname{Im}(\pi_{1}(N \setminus \Sigma) \to S)$. Conditions (M) and (D) on twisted Alexander polynomials imply that for any $\alpha : \pi_{1}(N) \to G$ we have

$$\begin{split} \mathsf{Im}\{\pi_1(\Sigma) \to \pi_1(N) \to G\} &= \mathsf{Im}\{\pi_1(N \setminus \nu\Sigma) \to G\} \\ & H_1(\Sigma; \mathbb{Z}[G]) \xrightarrow{\cong} H_1(N \setminus \nu\Sigma; \mathbb{Z}[G]). \end{split}$$

Theorem A now follows from this data and lots of elementary group theory.

Fact B. 'Three-manifold groups are virtually residually finite solvable'.

・ 回 と ・ ヨ と ・ ヨ と

э

Fact B. 'Three-manifold groups are virtually residually finite solvable'.

A beautiful theorem in group theory says that linear groups are virtually residually p. In particular the fundamental groups of hyperbolic 3-manifolds and of Seifert fibered manifolds are virtually residually p.

伺下 イヨト イヨト

Fact B. 'Three-manifold groups are virtually residually finite solvable'.

A beautiful theorem in group theory says that linear groups are virtually residually *p*. In particular the fundamental groups of hyperbolic 3-manifolds and of Seifert fibered manifolds are virtually residually *p*.

The following is a more precise version of Fact B:

Theorem B. For any 3–manifold there exists a finite cover such that the fundamental groups of all JSJ pieces are residually *p*.

Let $\Sigma \subset N$. We have two inclusions $\iota_{\pm} : \Sigma \to N \setminus \nu \Sigma$. **Theorem C.** If $\pi_1(N \setminus \nu \Sigma)$ is residually finite solvable and if

$$\iota_{\pm}: \pi_1(\Sigma) \to \pi_1(N \setminus \nu \Sigma)$$

induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \rightarrow \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

Let $\Sigma \subset N$. We have two inclusions $\iota_{\pm} : \Sigma \to N \setminus \nu \Sigma$. **Theorem C.** If $\pi_1(N \setminus \nu \Sigma)$ is residually finite solvable and if

$$\iota_{\pm}: \pi_1(\Sigma) \to \pi_1(N \setminus \nu \Sigma)$$

induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \rightarrow \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

The main tool is a theorem of Ian Agol. We need:

Definition. A group π is called RFRS if π is residually finite solvable and 'the rank of finite index subgroups grows quickly with the index'.

Let $\Sigma \subset N$. We have two inclusions $\iota_{\pm} : \Sigma \to N \setminus \nu \Sigma$. **Theorem C.** If $\pi_1(N \setminus \nu \Sigma)$ is residually finite solvable and if

$$\iota_{\pm}: \pi_1(\Sigma) \to \pi_1(N \setminus \nu \Sigma)$$

induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \rightarrow \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

The main tool is a theorem of Ian Agol. We need:

Definition. A group π is called RFRS if π is residually finite solvable and 'the rank of finite index subgroups grows quickly with the index'.

Remark.

(1) Free groups and surface groups are RFRS.

Let $\Sigma \subset N$. We have two inclusions $\iota_{\pm} : \Sigma \to N \setminus \nu \Sigma$. **Theorem C.** If $\pi_1(N \setminus \nu \Sigma)$ is residually finite solvable and if

$$\iota_{\pm}: \pi_1(\Sigma) \to \pi_1(N \setminus \nu \Sigma)$$

induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \rightarrow \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

The main tool is a theorem of Ian Agol. We need:

Definition. A group π is called RFRS if π is residually finite solvable and 'the rank of finite index subgroups grows quickly with the index'.

Remark.

(1) Free groups and surface groups are RFRS.

(2) Most 3-manifold groups are not RFRS.

Let $\Sigma \subset N$. We have two inclusions $\iota_{\pm} : \Sigma \to N \setminus \nu \Sigma$. **Theorem C.** If $\pi_1(N \setminus \nu \Sigma)$ is residually finite solvable and if

$$\iota_{\pm}: \pi_1(\Sigma) \to \pi_1(N \setminus \nu \Sigma)$$

induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \rightarrow \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

The main tool is a theorem of Ian Agol. We need:

Definition. A group π is called RFRS if π is residually finite solvable and 'the rank of finite index subgroups grows quickly with the index'.

Remark.

- (1) Free groups and surface groups are RFRS.
- (2) Most 3-manifold groups are not RFRS.
- (3) Are hyperbolic 3-manifold groups virtually RFRS?

Let $\Sigma \subset N$. We have two inclusions $\iota_{\pm} : \Sigma \to N \setminus \nu \Sigma$. **Theorem C.** If $\pi_1(N \setminus \nu \Sigma)$ is residually finite solvable and if

$$\iota_{\pm}: \pi_1(\Sigma) \to \pi_1(N \setminus \nu \Sigma)$$

induce an isomorphism of prosolvable completions, then $\pi_1(\Sigma) \to \pi_1(N \setminus \nu \Sigma)$ is an isomorphism.

The main tool is a theorem of lan Agol. We need:

Definition. A group π is called RFRS if π is residually finite solvable and 'the rank of finite index subgroups grows quickly with the index'.

Remark.

- (1) Free groups and surface groups are RFRS.
- (2) Most 3-manifold groups are not RFRS.
- (3) Are hyperbolic 3-manifold groups virtually RFRS?
- (4) The $\pi_1(N \setminus \nu\Sigma)$ above is RFRS since 'solvably' $\pi_1(N \setminus \nu\Sigma)$

looks the same as a surface group.

Theorem (Agol). Let W 3-manifold, $\pi_1(W)$ RFRS and $\phi \in H^1(W)$. Then there exists a finite solvable cover $p : \hat{W} \to W$ such that $p^*(\phi)$ lies on the closure of a fibered cone.

(In particular W is virtually fibered.)

Theorem (Agol). Let W 3-manifold, $\pi_1(W)$ RFRS and $\phi \in H^1(W)$. Then there exists a finite solvable cover $p : \hat{W} \to W$ such that $p^*(\phi)$ lies on the closure of a fibered cone.

(In particular *W* is virtually fibered.)

Agol's theorem allows us to translate 'local' information on finite solvable covers i.e. $\pi_1(\Sigma)$ and $\pi_1(N \setminus \nu\Sigma)$ look the same for all finite solvable quotients,

Theorem (Agol). Let W 3-manifold, $\pi_1(W)$ RFRS and $\phi \in H^1(W)$. Then there exists a finite solvable cover $p : \hat{W} \to W$ such that $p^*(\phi)$ lies on the closure of a fibered cone.

(In particular W is virtually fibered.)

Agol's theorem allows us to translate 'local' information on finite solvable covers i.e. $\pi_1(\Sigma)$ and $\pi_1(N \setminus \nu\Sigma)$ look the same for all finite solvable quotients, to 'global' information,

(四) (日) (日)

Theorem (Agol). Let W 3-manifold, $\pi_1(W)$ RFRS and $\phi \in H^1(W)$. Then there exists a finite solvable cover $p : \hat{W} \to W$ such that $\rho^*(\phi)$ lies on the closure of a fibered cone.

(In particular W is virtually fibered.)

Agol's theorem allows us to translate 'local' information on finite solvable covers i.e. $\pi_1(\Sigma)$ and $\pi_1(N \setminus \nu\Sigma)$ look the same for all finite solvable quotients, to 'global' information, i.e. $\pi_1(\Sigma) \to \pi_1(N \setminus \nu\Sigma)$ is an isomorphism.

(四) (日) (日)