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The Alexander polynomial of fibered knots

Let K ⊂ S3 a knot, then consider the Alexander module
H1(S3 \ K ; Z[t±1]). Pretending that Z[t±1] is a PID we have

H1(S3 \ K ; Z[t±1]) =
m⊕

i=1

Z[t±1]/pi (t)

and the Alexander polynomial equals

∆K :=
m∏

i=1

pi (t).

Theorem. Let K ⊂ S3 a fibered knot, then ∆K is monic and

deg ∆K = 2 genus(K ).

(Monic means that the top coefficient equals ±1).

The converse does not hold, e.g. fails for the Pretzel knot
P(5,−3, 5).
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Fibered manifolds

Throughout N will be closed or with toroidal boundary.

Definition For φ ∈ H2(N, ∂N; Z) = H1(N; Z) = Hom(π1(N),Z)
we say that (N, φ) fibers if there exists a fibration p : N → S1 with
p∗ = φ : Hom(π1(N), π1(S1)).

Remark. Let Σ dual to φ of minimal genus. The following are
equivalent.
(1) (N, φ) fibers,
(2) N \ Σ ∼= Σ× [0, 1],
(3) the φ–cover of N is diffeomorphic to Σ× R,
(4) φ is represented by a non–degenerate closed 1–form.

Remark. Let p : Ñ → N a finite cover. Then

(N, φ) fibers⇔ (Ñ, p−1(φ)) fibers.
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Remark. Let p : Ñ → N a finite cover. Then

(N, φ) fibers⇔ (Ñ, p−1(φ)) fibers.
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Twisted Alexander polynomials.

Definition. Let N a 3–manifold, φ ∈ H1(N; Z) = Hom(π1(N),Z)
and α : π1(N)→ G an epimorphism onto a finite group.

Consider
the twisted Z[t±1]–module

H1(N; Z[G ][t±1]) = H1(C∗(Ñ)⊗Z[π1(N)] Z[G ][t±1]).

(Ñ the universal cover of N) We denote by ∆α
N,φ ∈ Z[t±1] its

order, called twisted Alexander polynomial.

Example. If N = S3 \ K , φ ∈ H1(S3 \ K ; Z) ∼= Z a generator and
α the trivial map, then ∆α

N,φ = ∆K is the ordinary Alexander
polynomial of the knot K .
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Twisted Alexander polynomials and fibered manifolds.

Given φ ∈ H1(N; Z) = H2(N, ∂N; Z) we write ||φ||T for its
Thurston norm, it is ‘the minimal (negative) Euler characteristic of
a surface representing φ’.

The following is due to Cha, Goda–Kitano–Morifuji, F–Taehee
Kim, Kitayama:

Theorem. If (N, φ) fibers, then for any epimorphism
α : π1(N)→ G onto a finite group we have that
(M) ∆α

N,φ is monic,
(D) the degree of ∆α

N,φ is determined by ||φ||T .
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The main theorem

Our main theorem says that twisted Alexander polynomials detect
fibered 3–manifolds.

Theorem (F–Vidussi). Let N be a 3–manifold with empty or
toroidal boundary. Let φ ∈ H1(N; Z) such that for any
epimorphism α : π1(N)→ G onto a finite group we have that
(M) ∆α

N,φ is monic,
(D) the degree of ∆α

N,φ is determined by ||φ||T ,

then (N, φ) fibers over S1.

Before we outline the proof we give a corollary.
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Symplectic 4–manifolds.

Definition. A 4–manifold M is called symplectic if there exists a
closed 2–form ω such that ω ∧ ω 6= 0 everywhere.

Thurston proved the following in 1976.

Theorem. If N is a closed fibered 3–manifold, then S1 × N is
symplectic.

Proof. Let p : N → S1 a fibration. Write φ = p∗(dt). By Calabi
and Honda we can find a metric such that φ is harmonic. Take

ω = ds ∧ φ+ ∗φ.

(Here ∗φ is the Hodge dual, a closed 2–form).Then

ω ∧ ω = (ds ∧ φ+ ∗φ) ∧ (ds ∧ φ+ ∗φ)
= 2ds ∧ φ ∧ ∗φ
6= 0.

Question. Does the converse hold?
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Symplectic 4–manifolds.

The following generalizes a result of Kronheimer.

Theorem (F–Vidussi). If S1 × N is symplectic, then there exists
φ ∈ H1(N; Z) such that for any epimorphism α : π1(N)→ G onto
a finite group we have that
(1) ∆α

N,φ is monic,
(2) the degree of ∆α

N,φ is determined by ||φ||T .

Proof. (1) Use Taubes’ results on Seiberg–Witten invariants of all
finite (and symplectic!) covers S1 × Ñ of S1 × N.
(2) Apply Meng–Taubes to show that

SW (S1 × Ñ) = Alexander polynomial of Ñ
= twisted Alexander polynomial of N.
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Symplectic 4–manifolds.

So combining our results we get:

Theorem (F–Vidussi 2008). Let N be a closed 3–manifold. If
S1 × N is symplectic, then N is fibered.

Corollary. The collection of Seiberg–Witten invariants of all covers
of S1 × N determines whether S1 × N is symplectic or not.

In fact using constructions of symplectic forms in an earlier paper
(generalizing Thurston and Fernandez–Gray–Morgan) we can
completely determine the symplectic cone:

Theorem. a ∈ H2(S1 × N; R) ∼= H1(N; R)⊕ H2(N; R) can be
represented by a symplectic form if and only if
(1) a2 > 0,
(2) the Künneth component of a in H1(N; R) lies in the interior of
a fibered cone.
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The main theorem

Recall that our main theorem says that twisted Alexander
polynomials detect fibered 3–manifolds.

Theorem (F–Vidussi). Let N be a 3–manifold with empty or
toroidal boundary. Let φ ∈ H1(N; Z) such that for any
epimorphism α : π1(N)→ G onto a finite group we have that
(M) ∆α

N,φ is monic,
(D) the degree of ∆α

N,φ is determined by ||φ||T ,

then (N, φ) fibers over S1.
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The three main ingredients of the proof.

Throughout assume we have a 3–manifold N and φ ∈ H1(N; Z)
primitive. Let Σ ⊂ N be a connected minimal genus surface dual
to φ.

Theorem A. If (N, φ) satisfies (M) and (D) for any epimorphism
α : π1(N)→ G onto a finite group, then for either inclusion ι± the
map π1(Σ)→ π1(N \ νΣ) induces an isomorphism of prosolvable
completions.

Note that ϕ : A→ B induces an isomorphism of prosolvable
completions if and only if for any finite solvable group S we have a
bijection ϕ∗ : Hom(B,S)→ Hom(A,S), and if for any β : B → S
we have Im(A→ B → S) = Im(B → S).

Fact B. ‘Three–manifold groups are virtually residually finite
solvable’.
For example linear groups (hence hyperbolic 3–manifold groups)
are virtually residually p.
Building on a result of Agol we show:
Theorem C. If π1(N \ νΣ) is residually finite solvable and if
ι± : π1(Σ)→ π1(N \ νΣ) induce an isomorphism of prosolvable
completions, then π1(Σ)→ π1(N \ νΣ) is an isomorphism.

The combination of the theorems shows that (M) and (D) imply
that (N, φ) fibers over S1.
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Proof of Theorem A.

Assume we have (N, φ) such that for any α : π1(N)→ G we have
that
(M) ∆α

N,φ is monic (D) the degree of ∆α
N,φ determined by ||φ||T .

We claim that ι± : π1(Σ)→ π1(N \ νΣ) induces an isomorphism
of prosolvable completions,

i.e. for any finite solvable group S the
map ι∗± : Hom(π1(N \ νΣ),S)→ Hom(π1(Σ),S) is a bijection and
for any β : π1(N \ νΣ)→ S we have
Im(π1(Σ)→ π1(N \ Σ)→ S) = Im(π1(N \ Σ)→ S).
Put differently, we have to get from Alexander polynomials to
information on the relation between a surface and its complement.

As for the classical Alexander polynomial we can express the
twisted Alexander module in terms of a Meyer–Vietoris sequence
relating it to the homology of Σ and N \ νΣ:

H1(Σ; ZG )⊗Z[t±1]
ι−−tι+−−−−→H1(N\νΣ; ZG )⊗Z[t±1]→H1(N; Z[G ][t±1])

.

Conditions (M) and (D) on twisted Alexander polynomials imply
that for any α : π1(N)→ G we have

Im{π1(Σ)→ π1(N)→ G} = Im{π1(N \ νΣ)→ G}
H1(Σ; Z[G ])

∼=−→ H1(N \ νΣ; Z[G ]).

Note that this is only information for homomorphisms from π1(N)
to a finite group.Theorem A now follows from this data and lots of elementary
group theory.
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Proof of Theorem B.

Fact B. ‘Three–manifold groups are virtually residually finite
solvable’.

A beautiful theorem in group theory says that linear groups are
virtually residually p. In particular the fundamental groups of
hyperbolic 3–manifolds and of Seifert fibered manifolds are
virtually residually p.

The following is a more precise version of Fact B:

Theorem B. For any 3–manifold there exists a finite cover such
that the fundamental groups of all JSJ pieces are residually p.
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Proof of Theorem C (1).

Let Σ ⊂ N. We have two inclusions ι± : Σ→ N \ νΣ.
Theorem C. If π1(N \ νΣ) is residually finite solvable and if

ι± : π1(Σ)→ π1(N \ νΣ)

induce an isomorphism of prosolvable completions, then
π1(Σ)→ π1(N \ νΣ) is an isomorphism.

The main tool is a theorem of Ian Agol. We need:

Definition. A group π is called RFRS if π is residually finite
solvable and ‘the rank of finite index subgroups grows quickly with
the index’.

Remark.
(1) Free groups and surface groups are RFRS.
(2) Most 3–manifold groups are not RFRS.
(3) Are hyperbolic 3–manifold groups virtually RFRS?
(4) The π1(N \ νΣ) above is RFRS since ‘solvably’ π1(N \ νΣ)
looks the same as a surface group.
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The main tool is a theorem of Ian Agol. We need:

Definition. A group π is called RFRS if π is residually finite
solvable and ‘the rank of finite index subgroups grows quickly with
the index’.

Remark.
(1) Free groups and surface groups are RFRS.
(2) Most 3–manifold groups are not RFRS.
(3) Are hyperbolic 3–manifold groups virtually RFRS?

(4) The π1(N \ νΣ) above is RFRS since ‘solvably’ π1(N \ νΣ)
looks the same as a surface group.
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Proof of Theorem C (2).

Agol’s amazing theorem:

Theorem (Agol). Let W 3–manifold, π1(W ) RFRS and
φ ∈ H1(W ). Then there exists a finite solvable cover p : Ŵ →W
such that p∗(φ) lies on the closure of a fibered cone.

(In particular W is virtually fibered.)

Agol’s theorem allows us to translate ‘local’ information on finite
solvable covers i.e. π1(Σ) and π1(N \ νΣ) look the same for all
finite solvable quotients, to ‘global’ information, i.e.
π1(Σ)→ π1(N \ νΣ) is an isomorphism.
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