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Abstract. Every element in the first cohomology group of a 3–manifold is dual to
embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such
surfaces. For instance the Thurston norm of a knot complement determines the
genus of the knot in the 3–sphere. We show that the degrees of twisted Alexander
polynomials give lower bounds on the Thurston norm, generalizing work of Mc-
Mullen and Turaev. Our bounds attain their most elegant form when interpreted
as the degrees of the Reidemeister torsion of a certain twisted chain complex. The
bounds are very powerful and can be easily implemented with a computer. We
show that these lower bounds determine the genus of all knots with 12 crossings
or less, including the Conway knot and the Kinoshita–Terasaka knot which have
trivial Alexander polynomial. We also give many examples of closed manifolds and
link complements where twisted Alexander polynomials detect the correct Thurston
norm.

We also give obstructions to fibering 3–manifolds using twisted Alexander poly-
nomials and detect all knots with 12 crossings or less that are not fibered. For some
of these it was unknown whether or not they are fibered. Our obstructions also
extend work of Cha to the case of closed manifolds.
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1. Introduction

1.1. Definitions and history. Let M be a 3–manifold. Throughout the paper
we will assume that all 3–manifolds are compact, orientable and connected. Let
φ ∈ H1(M) (integral coefficients are understood). The Thurston norm of φ is defined
as

||φ||T := min{∑k
i=1 max{−χ(Si), 0}| S1 ∪ · · · ∪ Sk ⊂ M properly embedded,

dual to φ, Si connected for i = 1, . . . , k}.
Thurston [Th86] showed that this defines a seminorm on H1(M) which can be ex-
tended to a seminorm on H1(M ;R). As an example consider X(K) := S3 \ νK,
where K ⊂ S3 is a knot and νK denotes an open tubular neighborhood of K in S3.
Let φ ∈ H1(X(K)) be a generator, then ||φ||T = 2 genus(K)− 1 (cf. Lemma 2.2).

It is an important problem to find methods for computing the Thurston norm.
Such methods have many applications even outside of topology. For example using
work of Freedman and He [FH91] bounds on the Thurston norm translate into lower
bounds for the ropelength [CKS02] (cf. Section 9.5). Furthermore bounds on the
Thurston norm also have applications in electrodynamics [CK02, Ko04].

Kronheimer and Mrowka [KM97] showed that Seiberg–Witten monopole homology
determines the Thurston norm. Similarly Oszváth and Szabó [OS04a] proved that the
Thurston norm is determined by Heegaard Floer homology, at least in the case that
M is closed. But both homologies are non–combinatorial and therefore impractical to
compute in most cases. We refer to [Kr98, Kr99] for more on the connection between
the Thurston norm, Seiberg–Witten theory and 4–dimensional geometry.

Methods from algebraic topology can also be used to give lower bounds on the
Thurston norm. For example it is a classical result of Alexander that

2genus(K) ≥ deg(∆K(t)),

where ∆K(t) denotes the Alexander polynomial of K. In recent years this was greatly
generalized. Let M be a 3–manifold whose boundary is empty or consists of tori. Let
φ ∈ H1(M) ∼= Hom(H1(M),Z) be primitive, i.e., the corresponding homomorphism
φ : H1(M) → Z is surjective. Then McMullen [Mc02] showed that if the Alexander
polynomial ∆1(t) ∈ Q[t±1] of (M, φ) is non–zero, then

||φ||T ≥ deg (∆1(t))− (1 + b3(M)).

This result has been reproved for closed manifolds by Vidussi [Vi99, Vi03] using
Seiberg–Witten theory.

Cochran [Co04] in the knot complement case and Harvey [Ha05] and Turaev [Tu02a,
Tu02b] in the general case generalized McMullen’s inequality. They studied maps
Z[π1(M)] → K[t±1] where K is a skew field and K[t±1] is a skew Laurent polynomial
ring. The resulting lower bounds are very powerful and in general much stronger
than McMullen’s lower bounds. Unfortunately the algebra is difficult and the lower
bounds are hard to compute in a given specific situation.
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We will show how the degrees of twisted Alexander polynomials give lower bounds
on the Thurston norm. These bounds are easy to compute and remarkably strong.

1.2. Twisted Alexander polynomials and Reidemeister torsion. In the fol-
lowing let F be a commutative field. Let φ ∈ H1(M) and α : π1(M) → GL(F, k) a
representation. Then α ⊗ φ induces an action of π1(M) on Fk ⊗F F[t±1] =: Fk[t±1]
and we can therefore consider the twisted homology F[t±1]–module Hα

i (M ;Fk[t±1]).
We define ∆α

i (t) ∈ F[t±1] to its order; it is called the i-th twisted Alexander polyno-
mial of (M,φ, α) and well–defined up to multiplication by a unit in F[t±1]. We point
out that ∆α

i (t) 6= 0 if and only if Hα
i (M ;Fk[t±1]) is F[t±1]–torsion, and in that case

deg (∆α
i (t)) = dimF

(
Hα

i (M ;Fk[t±1])
)
. We refer to Section 2.2 for more details. If K

is a knot in S3, φ is a generator of H1(X(K)) and α : π1(X(K)) → GL(Q, 1) is the
trivial representation, then ∆α

1 (t) ∈ Q[t±1] equals the usual Alexander polynomial
∆K(t) of K.

The twisted Alexander polynomial of a knot was introduced by Lin [Lin01] in
1990 who used it to distinguish knots with the same Alexander polynomial. Twisted
Alexander polynomials have been successfully used in many situations to provide
more information than can be extracted from the untwisted Alexander polynomial
[JW93, Wa94, Kit96, KL99a, KL99b, Ch03, HLN04]. In particular we note that Kirk
and Livingston [KL99a] first introduced the above homological definition of twisted
Alexander polynomials for a finite complex. We refer to [KL99a, Section 4] for the
relationship between our definition and the other definitions of twisted Alexander
polynomials.

If ∂M is empty or consists of tori and if ∆α
1 (t) 6= 0, then ∆α

i (t) 6= 0 for all i and
∆α

3 (t) = 1 (see Corollary 4.3). This implies that Hα
i (M ;Fk[t±1] ⊗F[t±1] F(t)) = 0 for

all i . Therefore the Reidemeister torsion τ(M, φ, α) ∈ F(t) is defined (cf. [Tu01] for
a definition) and (cf. [Tu01, p. 20])

τ(M,φ, α) =
2∏

i=0

∆α
i (t)(−1)i+1 ∈ F(t).

The equality holds up to multiplication by a unit in F[t±1]. We will use this equality
as a definition for τ(M,φ, α) and will not make use of the fact that τ(M, φ, α) has
in general a smaller indeterminacy. For f(t)/g(t) ∈ F(t) we define deg(f(t)/g(t)) :=
deg(f(t))−deg(g(t)) for f(t), g(t) ∈ F[t±1]. This allows us to consider deg(τ(M,φ, α)).

1.3. Lower bounds on the Thurston norm. The following is one of our main
results.

Theorem 3.1 (Main Theorem 1). Let M be a 3–manifold whose boundary is
empty or consists of tori. Let φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k)
a representation such that ∆α

1 (t) 6= 0. Then

||φ||T ≥ 1

k
deg(τ(M, φ, α)).
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Equivalently,

||φ||T ≥ 1

k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)
.

The proof of Theorem 3.1 is partly based on ideas of McMullen [Mc02] and Turaev
[Tu02b]. In Section 3 we will show that Theorem 3.1 generalizes McMullen’s theorem
[Mc02] and Turaev’s abelian invariants in [Tu02a]. In Section 8 we will see that ∆α

1 (t)
and ∆α

0 (t) can easily be computed given a presentation of π1(M). Furthermore by

duality ∆α
2 (t) equals ∆β

0 (t) for a certain representation β, and hence can be computed
the same way as ∆α

0 (t) (cf. Proposition 3.2 for details).
In Theorem 5.1 we show that the condition ∆α

1 (t) 6= 0 can sometimes be dropped
and in Section 7 we state a version of Theorem 3.1 over skew fields, which combines
our lower bounds from Theorem 3.1 with the lower bounds of Cochran, Harvey and
Turaev [Co04, Ha05, Tu02b]. We concentrate on proving Theorem 3.1, i.e., the case
for the modules over a commutative ring, and we only point out the changes to
the proof of Theorem 3.1 which have to be made to prove the non–commutative
generalization.

An important source of representations is given by homomorphisms α : π1(M) →
G, G a finite group. This induces a representation α : π1(M) → G → GL(F, |G|)
where the map G → GL(F, |G|) is the regular representation of G. (Note that
GL(F, |G|) is isomorphic to GL(F[G]).) In Section 3.4 we give an elegant short proof
of Theorem 3.1 in the case of a representation π1(M) → G → GL(F, |G|), using only
McMullen’s theorem and well–known properties of finite covers.

1.4. Fibered manifolds. Let φ ∈ H1(M) be non–trivial. We say (M,φ) fibers over
S1 if the homotopy class of maps M → S1 induced by φ : π1(M) → H1(M ;Z) → Z
contains a representative that is a fiber bundle over S1. If K is a fibered knot, i.e.,
if X(K) fibers, then it is a classical result that 2genus(K) = deg(∆K(t)) and that
∆K(t) ∈ Z[t±1] is monic, i.e., its top coefficient is +1 or −1.

Theorem 6.1 (Main Theorem 2). Assume that (M, φ) fibers over S1 and that
M 6= S1 ×D2, M 6= S1 × S2. Let α : π1(M) → GL(F, k) be a representation. Then
∆α

1 (t) 6= 0 and

||φ||T =
1

k
deg(τ(M,φ, α)).

This theorem has been known for a long time for the untwisted Alexander polyno-
mial of fibered knots. McMullen, Cochran, Harvey and Turaev prove corresponding
theorems in their respective papers [Mc02, Co04, Ha05, Tu02b]. This result clearly
generalizes the first classical condition on fibered knots.

Let R be a Noetherian unique factorization domain (henceforth UFD), for example
R = Z or a field. Given a representation π1(M) → GL(R, k) Cha [Ch03] defined
a twisted Alexander polynomial ∆α

1 (t) ∈ R[t±1], which is well–defined up to multi-
plication by a unit in R[t±1]. This is a generalization of the Alexander polynomial
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∆K(t) ∈ Z[t±1] and coincides with the first twisted Alexander polynomial defined in
Section 2.2 in the case that R is a field. We say a polynomial ∆α

1 (t) ∈ R[t±1] is monic,
if its top coefficient is a unit in R. Using Theorem 6.1 we get the following theorem.

Theorem 6.4. Let M be a 3–manifold. Let φ ∈ H1(M) be non–trivial such that
(M, φ) fibers over S1 and such that M 6= S1×D2,M 6= S1×S2. Let R be a Noetherian
UFD and let α : π1(M) → GL(R, k) be a representation. Then ∆α

1 (t) ∈ R[t±1] is
monic and

||φ||T =
1

k
deg(τ(M,φ, α)).

In fact in Proposition 6.3 we show that if the fibering obstruction of Theorem 6.1
vanishes, then the conclusion of Theorem 6.4 holds. In particular this shows that our
fibering obstruction of Theorem 6.1 also contains the second classical condition on a
fibered knot K that ∆K(t) is monic. Theorem 6.4 also shows that the fibering ob-
struction of Theorem 6.1 contains Cha’s [Ch03] obstruction for fibered knots. Goda,
Kitano and Morifuji [GKM05] use the Reidemeister torsion corresponding to repre-
sentations π1(X(K)) → SL(F, k), F a field, to give fibering obstructions for knots.
The precise relationship to our obstructions is not known.

We point out that the before mentioned fibering obstructions of McMullen, Cochran,
Harvey and Turaev do not detect this monicness, and therefore they are only of limited
use as fiberedness obstructions. The idea of using monicness of the twisted Alexander
polynomial originated from Cha [Ch03] and our work generalizes Cha’s work to the
case of closed 3–manifolds.

The significance of Theorem 6.1 lies in the fact that it gives a fibering obstruction
for a wide class of representations and for any 3–manifold M , whereas the arguments
of [Ch03] and [GKM05] relied on the fact that ∂M 6= ∅. Note that our obstructions
only require the computation of twisted Alexander polynomials over principal ideal
domains F[t±1] (see Corollary 6.2). This can be done efficiently, whereas the compu-
tation of determinants over rings like Z[t±1] as in [Ch03] can be time consuming since
the size of the integers during the computation can become very large.

1.5. Examples. Consider the Conway knot K = 11401 (knotscape notation, cf. [HT]).
The diagram is given in Figure 1. For this knot ∆K(t) = 1, therefore the genus
bounds of McMullen, Turaev, Cochran and Harvey vanish. We found a representation
α : π1(X(K)) → GL(F13, 4) such that deg (τ(M,φ, α)) = 14. These computations
and all the following computations were done using the program KnotTwister [F05].
It follows from Theorem 3.1 that

2 genus(K)− 1 = ||φ||T ≥ 14

4
.

Hence genus(K) ≥ 18
8

= 2.25. Since genus(K) is an integer we get genus(K) ≥ 3.
Since there exists a Seifert surface of genus 3 for K (cf. Figure 1) it follows that the
genus of the Conway knot is 3. Gabai [Ga84] proved the same result using geometric
methods.
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Figure 1. The Conway knot 11401 and a Seifert surface of genus 3
(from [Ga84]).

We went over all knots with up to 12 crossings such that 2 genus(K) 6= deg(∆K(t)).
In all cases we found representations α : π1(X(K)) → GL(F13, k) which give the right
genus bounds. Using KnotTwister this process just takes a few seconds. We also
investigated the closed manifolds which are the result of 0–framed surgery along
these knots. Again in all cases we found representations such that twisted Alexander
polynomials give the right bound on the Thurston norm. In fact experience suggests
that if b1(M) = 1 then in most cases taking only a few non–trivial representations
will give the correct bound on the Thurston norm, regardless of whether M is closed
or not.

The situation for links is more complex. On the one hand in many interesting cases
twisted Alexander polynomials give the correct bound. For example in Section 9.5
we reprove results of Harvey on the ropelength of a certain link [Ha05]. In Section
9.6 we also give further evidence that McMullen’s Alexander norm [Mc02] and the
Thurston norm agree for all links with up to 9 crossings.

On the other hand boundary links have vanishing twisted Alexander polynomials
and therefore our lower bounds vanish. In Section 5 we show that in some cases
we can still extract lower bounds from the degrees of twisted Alexander polynomials
corresponding to the F[t±1]–torsion submodule of Hα

1 (X(L);Fk[t±1]) where X(L) is
the link complement in the 3–sphere (cf. Theorem 5.1).

In [FK05] we will show how twisted multivariable Alexander polynomials can be
used in many cases to completely determine the Thurston norm ball of link comple-
ments, generalizing results of McMullen and Turaev.

It is known that a knot K with 11 or fewer crossings is fibered if and only if K
satisfies

(1) ∆K(t) is monic and deg(∆K(t)) = 2 genus(K).

Hirasawa and Stoimenow had started a program to find all non–fibered 12–crossing
knots. Using methods of Gabai they showed that except for thirteen knots a 12–
crossing knot is fibered if and only if it satisfies condition (1). Furthermore they
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showed that among these 13 knots the knots 121498, 121502, 121546 and 121752 are not
fibered even though they satisfy condition (1).

Using Theorem 6.1 we confirmed the non–fiberedness of these 4 knots and we
showed that the remaining 9 knots are not fibered either. These 9 knots are:

121345, 121567, 121670, 121682, 121771, 121823, 121938, 122089, 122103.

This result completes the classification of all fibered 12–crossing knots. Jacob Ras-
mussen confirmed our results using knot Floer homology which gives a fibering ob-
struction as well (cf. [OS02, Section 3]).

As we pointed out our fibering obstructions work for closed manifolds as well. If
K is one of the 13 12–crossing knots in the previous paragraph, then we can easily
show using Theorem 6.1 and KnotTwister that the zero surgery on K in S3 is not
fibered. (See Section 9.2.)

1.6. Conjectures and symplectic manifolds. We propose the following conjec-
ture.

Conjecture 10.1. Let M be a 3–manifold and φ ∈ H1(M) non–trivial. Then (M, φ)
fibers over S1 if and only if for all epimorphisms α : π1(M) → G, G a finite group,
the twisted Alexander polynomial ∆α

1 (t) ∈ Z[t±1] is monic and

||φ||T =
1

|G| deg(τ(M,φ, α)).

We discuss this conjecture in detail in Section 10.6. We show that it holds in an
important case of satellite knots. We also show that it would follow from the ge-
ometrization conjecture and the following conjecture.

Conjecture 10.5. Let S be an incompressible surface in M and let N be M cut
along S. Let i : S → N be one of the two canonical inclusions of S into N . If
i∗ : Hα

1 (S;Z[G]) → Hα
1 (N ;Z[G]) is surjective for every homomorphism π1(M) → G,

G a finite group, then i∗ : π1(S) → π1(N) is surjective.

Note that the inclusion induced homomorphisms π1(S) → π1(M) and π1(N) →
π1(M) are clearly injections. Therefore Conjecture 10.5 becomes a conjecture in the
theory of 3–manifold groups.

Let M be a closed 3–manifold. Taubes conjectured that if S1 ×M is symplectic
then (M, φ) fibers over S1 for some φ ∈ H1(M). Vidussi [Vi99, Vi03] and Fintushel
and Stern [FS98, p. 398] showed using work of Taubes [Ta94, Ta95] that if S1×M is
symplectic then there exists φ ∈ H1(M) such that all abelian invariants of (M, φ) look
like invariants of fibered manifolds. In [FV05] the first author and Stefano Vidussi
will show that if S1×M is symplectic then there exists φ ∈ H1(M) such that (M, φ)
satisfies the assumptions of Conjecture 10.1. This gives very strong evidence for
Taubes’ conjecture and shows that Conjecture 10.1 implies Taubes’ conjecture.
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In Conjecture 10.6 we conjecture that twisted Alexander polynomials detect the
genus of hyperbolic knots. We show that this can also be reduced to a group theoretic
problem as in Conjecture 10.5.

1.7. Outline of the paper. In Section 2 we state some properties of the Thurston
norm and give a definition of twisted Alexander polynomials. In Section 3 we state
Theorem 3.1 (Main Theorem 1) and discuss related theorems. We give a proof of
Theorem 3.1 in Section 4. In Section 5 we show how in many important cases we can
drop the assumption that ∆α

1 (t) 6= 0 in Theorem 3.1 and still get lower bounds on
the Thurston norm. In Section 6 we consider fibered manifolds and give a proof of
Theorems 6.1 (Main Theorem 2) and 6.4. We formulate non–commutative versions
of Theorem 3.1 and Theorem 6.1 in Section 7. After showing in Section 8 how Fox
calculus can be used to efficiently compute twisted Alexander polynomials we discuss
a wealth of examples in Section 9. Finally in Section 10 we discuss and give further
evidence for Conjectures 10.1 and related conjectures.

Notations and conventions: We assume that all 3–manifolds are compact, ori-
ented and connected. All homology groups and all cohomology groups are with re-
spect to Z–coefficients, unless it specifically says otherwise. For a knot K in S3, we
denote the result of zero framed surgery along K by MK . For a link L in S3, X(L)
denotes the exterior of L in S3. (That is, X(L) = S3 \ νL where νL is an open
tubular neighborhood of L in S3). An arbitrary (commutative) field is denoted by
F. We identify the group ring F[Z] with F[t±1]. We denote the permutation group
of order k by Sk. For a 3–manifold M we use the canonical isomorphisms to iden-
tify H1(M) = Hom(H1(M),Z) = Hom(π1(M),Z). Hence sometimes φ ∈ H1(M) is
regarded as a homomorphism φ : π1(M) → Z (or φ : H1(M) → Z) depending on the
context.

Acknowledgments: The authors would like to thank Alexander Stoimenow for
providing braid descriptions for the examples and Stefano Vidussi for pointing out the
advantages of using Reidemeister torsion. The first author would also like to thank
Jerry Levine for helpful discussions and he is indebted to Alexander Stoimenow for
important feedback on the program KnotTwister.

2. The Thurston norm and twisted Alexander polynomials

2.1. The Thurston norm. For a connected CW complex X denote by χ(X) the
Euler characteristic of X. We define χ−(X) := max{−χ(X), 0}. For a non-connected
CW complex X define χ−(X) =

∑
χ−(Xi) where we sum over the connected com-

ponents of X. This is called the complexity of X. Now let M be a 3–manifold and
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φ ∈ H1(M). Then we define

||φ||T,M := min{χ−(S)},
where we take the minimum with respect to all properly embedded surfaces S which
are dual to φ. Note that we take the minimum over a non–empty set since any φ is
dual to a properly embedded surface (cf. [Th86]). If the manifold M is clear we will
just write ||φ||T .
Thurston [Th86] introduced || − ||T,M in a preprint in 1976 and proved the following
theorem (cf. [Oe86] [Kr98]) which justifies the name Thurston norm.

Theorem 2.1. (1) For φ, φ1, φ2 ∈ H1(M) and k ∈ N we have the following:

||kφ||T = k||φ||T ,
||φ1 + φ2||T ≤ ||φ1||T + ||φ2||T .

(2) There exists a seminorm || − ||T on H1(M ;R) which equals || − ||T on the
integral lattice H1(M).

(3) If no element in H1(M) is dual to an embedded surface of non–negative Euler
characteristic, then ||− ||T is in fact a norm. In particular if M is hyperbolic,
then || − ||T is a norm.

(4) The unit ball of the Thurston norm is a finite, convex, possibly non–compact
polyhedron.

Proof. (1) We refer to [Th86].
(2) It is now easy to see that the convex function ||−||T on H1(M) can be extended

to a seminorm || − ||T on H1(M ;R) (cf. [Th86, p. 104] for details).
(3) This follows immediately from the definition and from Thurston’s hyperbol-

icity theorem (cf. [Th82]).
(4) We refer to [Th86, Theorem 2].

¤
As an illustration we outline the proof of the following lemma. At several later

occasions we will make use of the arguments in this proof.

Lemma 2.2. Let K ⊂ S3 be a non–trivial knot and φ ∈ H1(X(K)) a generator.
Then ||φ||T = 2 genus(K)− 1.

Proof. Clearly a Seifert surface for K is dual to φ, hence ||φ||T ≤ 2 genus(K) − 1.
Denote the longitude of K by λ. If S is dual to φ with minimal complexity, then
∂S = [λ] ∈ H1(K×S1) (we identify ∂X(K) with K×S1). Note that every boundary
component of S is essential in K × S1. Otherwise we can find an innermost circle
which bounds a disk, which can then be attached to find a dual surface of lower
complexity.

Therefore each component of ∂S is non–trivial in H1(K × S1). Since at least one
component of ∂S represents [λ] ∈ H1(K × S1) it follows that in fact each component
of ∂S represents ±[λ] since the components are disjoint. In particular it follows
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that ∂S has an odd number of components. If ∂S has 2k + 1 components, then to
two adjacent components of ∂S with opposite orientations we can attach an annulus
and push this part off the boundary of X(K). Note that adding an annulus does
not change the complexity. Repeating this process gives a possibly disconnected
surface. One component is a Seifert surface F for K, and the remaining components
are closed. Since we can throw away the closed components it now follows that
||φ||T = b1(F )− 1 ≥ 2 genus(K)− 1. ¤

Strictly speaking the Thurston norm is not a norm, but only a seminorm. For
example if M = S1×S1×S1, then clearly every element in H2(M) is represented by
a disjoint union of tori, hence the Thurston norm vanishes completely on H1(M).

2.2. Alexander polynomials. Let M be a 3–manifold and φ ∈ H1(M). Let α :
π1(M) → GL(F, k) be a representation. We can now define a left Z[π1(M)]–module
structure on Fk ⊗F F[t±1] =: Fk[t±1] via α⊗ φ as follows:

g · (v ⊗ p) := (α(g) · v)⊗ (φ(g) · p) = (α(g) · v)⊗ (tφ(g)p)

where g ∈ π1(M), v ⊗ p ∈ Fk ⊗F F[t±1] = Fk[t±1].
Denote by M̃ the universal cover of M . Then the chain groups C∗(M̃) are in

a natural way right Z[π1(M)]–modules. Therefore we can form the tensor product
C∗(M̃)⊗Z[π1(M)]Fk[t±1]. Now we define the i–th twisted Alexander module of (M,φ, α)
to be

Hα⊗φ
∗ (M ;Fk[t±1]) := H∗(C∗(M̃)⊗Z[π1(M)] Fk[t±1]).

Usually we drop the notation φ and write Hα
∗ (M ;Fk[t±1]). Note that Hα

i (M ;Fk[t±1])
is a finitely generated module over the PID F[t±1]. Therefore there exists an isomor-
phism

Hα
i (M ;Fk[t±1]) ∼= F[t±1]f ⊕

k⊕
i=1

F[t±1]/(pi(t))

for p1(t), . . . , pk(t) ∈ F[t±1]. We define

∆α
M,φ,i :=

{ ∏k
i=1 pi(t), if f = 0

0, if f > 0.

This is called the i–th twisted Alexander polynomial of (M, φ, α). We furthermore

define ∆̃α
M,φ,i :=

∏k
i=1 pi(t) regardless of f . In most cases we drop the notations M

and φ and write ∆α
i (t) and ∆̃α

i (t). It follows from the structure theorem of finitely
generated modules over a PID that these polynomials are well–defined up to multi-
plication by a unit in F[t±1]. In Section 8 we will see that ∆α

i (t) and ∆̃α
i (t) can be

computed easily for i = 0, 1 given a presentation of π1(M).

Remark. The first twisted Alexander polynomial for a knot was originally defined by
Lin in 1990 using a presentation of the fundamental group [Lin01]. This was general-
ized by Jiang and Wang [JW93] and the multivariable twisted Alexander polynomial
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was first introduced by Wada [Wa94] given only a presentation of a group and a
representation to GL(R, k) where R is a UFD. Wada’s definition differs slightly from
our definition even in the case that it is associated to a representation to Z. Our
homological definition of twisted Alexander polynomials in the above was originally
introduced by Kirk and Livingston in [KL99a].

For an oriented knot K we always assume that φ denotes the generator of H1(X(K))
given by the orientation. If α : π1(X(K)) → GL(Q, 1) is the trivial representa-
tion then the Alexander polynomial ∆α

1 (t) equals the classical Alexander polynomial
∆K(t) ∈ Q[t±] of the knot K.

Remark. When K is a knot, then the untwisted homology H1(X(K);F[t±1]) is F[t±1]–
torsion. But even for a knot complement it can happen that in the twisted case
Hα

1 (X(K);Fk[t±1]) is not F[t±1]–torsion (cf. e.g. [KL99a]).

If f = 0 then we write deg(f) = ∞, otherwise, for f =
∑n

i=m ait
i ∈ F[t±1] with

am 6= 0, an 6= 0 we define deg(f) = n−m. Note that deg (∆α
i (t)) is well–defined. The

following observation follows immediately from the classification theorem of finitely
generated modules over a PID.

Lemma 2.3. Hα
i (M ;Fk[t±1]) is a finite–dimensional F–vector space if and only if

∆α
i (t) 6= 0. If ∆α

i (t) 6= 0, then

deg (∆α
i (t)) = dimF

(
Hα

i (M ;Fk[t±1])
)
.

Furthermore deg(∆̃α
i (t)) = dimF

(
TorF[t±1](H

α
i (M ;Fk[t±1]))

)
.

If ∂M is empty or consists of tori and if ∆α
1 (t) 6= 0, then ∆α

i (t) 6= 0 for all i and
hence Hα

i (M ;Fk[t±1] ⊗F[t±1] F(t)) = 0 for all i (see Corollary 4.3). Therefore the
Reidemeister torsion τ(M, φ, α) ∈ F(t) is defined. We refer to [Tu01] for an excellent
introduction into the theory of Reidemeister torsion. τ(M,φ, α) ∈ F(t) is well–defined

up to multiplication by an element of the form rtk, r ∈ Im{π1(M)
α−→ GL(F, k)

det−→ F}.
We will not make use of this, and mostly use τ(M, φ, α) as a convenient way to store
information.

Lemma 2.4. (cf. [Tu01, p. 20]) If ∆α
1 (t) 6= 0, then τ(M,φ, α) is defined and

τ(M,φ, α) =
3∏

i=0

∆α
i (t)(−1)i+1 ∈ F(t).

3. Main Theorem 1: Lower bounds on the Thurston norm

3.1. Statement of Main Theorem 1. Our main theorem gives a lower bound for
the Thurston norm of a non–trivial element φ ∈ H1(M).
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Theorem 3.1 (Main Theorem 1). Let M be a 3–manifold whose boundary is empty
or consists of tori. Let φ ∈ H1(M) be non–trivial and let α : π1(M) → GL(F, k) be a
representation such that ∆α

1 (t) 6= 0. Then

||φ||T ≥ 1
k

deg(τ(M, φ, α))

= 1
k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)
.

The proof of the above theorem is given in Section 4. In Section 8 we will show how
to compute ∆α

1 (t) and ∆α
0 (t) using a presentation of π1(M). In Section 4.4 we will

also give a proof of the following proposition which allows us to compute ∆α
2 (t) using

the algorithm for computing the 0-th twisted Alexander polynomial.
Assume that F has a (possibly trivial) involution. Let 〈 , 〉 be the canonical her-

mitian inner product on Fk. Then there exists a unique representation α : π1(M) →
GL(F, k) such that

〈α(g−1)v, w〉 = 〈v, α(g)w〉
for all g ∈ π1(M) and v, w ∈ Fk.

Proposition 3.2. Let M be a 3–manifold whose boundary is empty or consists of tori
and let φ ∈ H1(M) be non–trivial. Let α : π1(M) → GL(F, k) be a representation
such that ∆α

1 (t) 6= 0.

(1) If M is closed, then
∆α

2 (t) = ∆α
0 (t−1).

(2) If M has non–empty boundary, then ∆α
2 (t) = 1.

In particular
deg (∆α

2 (t)) = b3(M) deg
(
∆α

0 (t)
)
.

For a unitary representation we have α = α, therefore we get the following impor-
tant special case of Theorem 3.1:

Theorem 3.3. Let M be a 3–manifold whose boundary is empty or consists of tori.
Let φ ∈ H1(M) be non–trivial and let α : π1(M) → GL(F, k) be a unitary represen-
tation such that ∆α

1 (t) 6= 0. Then

||φ||T ≥ 1

k

(
deg (∆α

1 (t))− (
1 + b3(M)

)
deg (∆α

0 (t))
)
.

Remark. (1) Our restriction to closed manifolds or manifolds whose boundary
consists of tori is not a significant restriction. Indeed, if ∂M has a spherical
boundary component, then gluing in a 3–ball does not change the Thurston
norm. Furthermore manifolds with a boundary component of genus greater
than 1 have in most cases vanishing twisted Alexander polynomials.

(2) We point out that a slightly different proof of Theorem 3.1 shows that in fact

Theorem 3.3 holds for all 3–manifolds if we replace b3(M) by b̃3(M) where

we define b̃3(M) = 1 if M is closed or if the boundary of M consists only of

spheres, and b̃3(M) = 0 otherwise.
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The following lemma shows that in most cases we can determine for a given φ ∈
H1(M) whether ||φ||T is even or odd. This means that we can ‘round up’ the lower
bounds from Theorem 3.1 to an even or odd number, depending on the parity of ||φ||T .
Recall that for a non–trivial φ ∈ H1(M) the divisibility of φ equals the maximum
natural number n such that 1

n
φ ∈ H1(M).

Lemma 3.4. Let φ ∈ H1(M) be primitive. If M is closed, then ||φ||T is even. Assume
that ∂M consists of a non–empty collection of tori N1 ∪ · · · ∪Ns. If φ|H1(Ni) = 0 then
let ni := 0, otherwise define ni to be the divisibility of φ|H1(Ni). Then

||φ||T ≡
( s∑

i=1

ni

)
mod 2.

Proof. Let S be a properly embedded surface dual to φ with minimal complexity. If
M is closed then S is closed, hence χ(S) is even. Now assume that ∂M is a collection
of tori. Then

χ−(S) ≡ b0(∂S) mod 2.

This follows from the observation that adding a 2–disk to each component of ∂S
gives a closed surface, which has even Euler characteristic. Now consider Ni. Clearly
S ∩ Ni is Poincaré dual to φ|H1(Ni). It follows from an argument as in Lemma 2.2
that, modulo 2, ∂S ∩Ni has ni components. ¤

In Section 9.2 we will see that Theorem 3.1 can be very successfully used to deter-
mine the genus of knots and the Thurston norm of closed manifolds. In particular we
give many examples of triples (M,φ ∈ H1(M), α : π1(M) → GL(F, k)) for which

b(M, φ, α) := 1
k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)

> b(M, φ) := deg(∆1(t))− deg(∆0(t))− deg(∆2(t)),

i.e., we have many examples where the degrees of twisted Alexander polynomials give
better bounds on the Thurston norm than the degree of the untwisted Alexander
polynomial. In most cases we have b(M, φ, α) ≥ b(M,φ). But if we take K to be the
knot 94, φ a generator of H1(X(K)), then there exists a map α : π1(X(K)) ³ S3 →
GL(Q, |S3|) with deg (∆α

0 (t)) = 2, and such that

∆α
1 (t) = 9− 13t2 − 8t4 + 24t6 − 8t8 − 13t10 + 9t12 ∈ Q[t±1].

Since ∆1(t) = 3− 5t + 5t2 − 5t3 + 3t4 it follows that

b(M, φ, α) =
5

3
< 3 = b(M, φ).

This example shows that twisted Alexander polynomials give at times bounds on
the Thurston norm that are worse than the bounds from the ordinary Alexander
polynomials. This should be compared to the situation of [Co04] (cf. also [Ha06]) :
Cochran’s sequence of higher order Alexander polynomials gives a never decreasing
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sequence of lower bounds on the genus of a knot.

In the following sections we discuss several interesting types of representations
which allow us to recover work of McMullen [Mc02] and Turaev [Tu02b].

3.2. The trivial representation: McMullen’s theorem. If we let α : π1(M) →
GL(F, 1) be the trivial representation then given any primitive φ ∈ H1(M) we have

Hα
0 (M ;F[t±1]) ∼= F[t±1]/{tif − f |i ∈ Z, f ∈ F[t±1]} ∼= F[t±1]/(t− 1).

Therefore ∆0(t) = t − 1. Since the trivial representation is unitary we immediately
get McMullen’s theorem from Theorem 3.3:

Theorem 3.5. [Mc02, Proposition 6.1] Let M be a 3–manifold whose boundary is
empty or consists of tori and φ ∈ H1(M) primitive. If ∆1(t) 6= 0, then for any field
F

||φ||T ≥ deg(∆1(t))−
(
1 + b3(M)

)
.

In fact McMullen showed more: he introduced a norm || − ||A on H1(M ;R), called
the Alexander norm, and showed that if b1(M) > 1 then

||φ||T ≥ ||φ||A
for all φ ∈ H1(M ;R). Furthermore ||φ||A ≥ deg(∆1(t))−1−b3(M) for all φ ∈ H1(M),
and equality holds for almost all φ ∈ H1(M). In [FK05] the authors will introduce
twisted Alexander norms which give lower bounds on the Thurston norm, extending
the work of McMullen and Turaev [Tu02a].

3.3. Abelian representations: Turaev’s theorem. The following was first shown
by Turaev [Tu02a].

Theorem 3.6. Let M be a 3–manifold whose boundary is empty or consists of tori,
φ ∈ H1(M) primitive, and α : π1(M) → H1(M) → GL(F, 1) a one–dimensional
representation which is non–trivial on Ker(φ). If ∆α

1 (t) 6= 0, then

||φ||T ≥ deg (∆α
1 (t)) .

Proof. Let β : π1(M) → GL(F, 1) be a representation. Using that φ : π1(M) → Z is
surjective one can easily show that

Hβ
0 (M ;F[t±1]) ∼= F[t±1]/{β(g)tφ(g)f − f | g ∈ π1(M), f ∈ F[t±1]} ∼= F

if β is trivial on Ker(φ), and Hβ
0 (M ;F[t±1]) = 0 otherwise. We apply this to

Hα
0 (M ;F[t±1]) and Hα

0 (M ;F[t±1]). Turaev’s theorem now follows from Theorem 3.1
and Proposition 3.2. ¤



THURSTON NORM, FIBERED MANIFOLDS AND TWISTED ALEXANDER POLYNOMIALS 15

This simple abelian version of Theorem 3.1 can already be very useful. Using results
of [FK05] one can show that for primitive φ ∈ H1(M)

||φ||A = max{deg (∆α
1 (t)) |α : π1(M) → H1(M)/Tor(H1(M)) → GL(C, 1)

non–trivial on Ker(φ)},
where ||φ||A denotes McMullen’s Alexander norm. Harvey [Ha05, Proposition 3.12]
showed that the invariant δ̄0(φ) in [Ha05] equals ||φ||A. This shows that Alexan-
der polynomials corresponding to one–dimensional representations contain all known
lower bounds on the Thurston norm coming from abelian covers.

3.4. Finite covers. Let M be a 3–manifold, φ ∈ H1(M) non–trivial and α : π1(M) →
G a homomorphism to a finite group. Then we get a representation α : π1(M) →
G → GL(F, |G|) via the regular representation of G. In Section 9.1 we will see that
this gives an abundant supply of representations. We denote the resulting Alexander
polynomials by ∆G

i (t), suppressing the homomorphism α in the notation.

Theorem 3.7. Let M be a 3–manifold whose boundary is empty or consists of tori,
φ ∈ H1(M) primitive, and α : π1(M) → G an epimorphism to a finite group. If
∆G

1 (t) 6= 0 then

||φ||T ≥ 1

|G|
(
deg

(
∆G

1 (t)
)− (

1 + b3(M)
)
deg

(
∆G

0 (t)
))

.

Since the representation α : π1(M) → G → GL(F, |G|) is unitary, Theorem 3.7
follows from Theorem 3.3. We outline an illuminating alternative proof of Theorem
3.7, using only McMullen’s Theorem 3.5. Let M be a 3–manifold and α : π1(M) → G
a homomorphism to a finite group G. We denote the induced G–cover of M by MG.
For φ : H1(M) → Z we denote the induced map H1(MG) → H1(M) → Z by φG.
Note that if φ : H1(M) → Z is non–trivial, then φG is non–trivial as well.

Lemma 3.8.
|G| · ||φ||T,M = ||φG||T,MG

∆G
M,φ,i(t) = ∆MG,φG,i(t), for all i

.

For the second part we refer to [FV05]. The first part was shown by Gabai [Ga83]. In
fact we will only need the inequality |G|·||φ||T,M ≥ ||φG||T,MG

which can easily be seen
directly using the fact that if SG is the G–cover of a surface S, then χ(SG) = |G|χ(S).

Alternative proof of Theorem 3.7. It is easy to see that φ(Ker(α)) 6= 0. Therefore
we can define n ∈ N to be the divisibility of φ restricted to Ker(α). Recall that

φG is given by H1(MG) ∼= H1(Ker(α)) → H1(M)
φ−→ Z. It follows that the element

1
n
φG ∈ H1(MG) is defined and primitive. Since α is an epimorphism, MG is connected

and we can apply Theorem 3.5 to conclude that∣∣∣∣ 1
n
φG

∣∣∣∣
T,MG

≥ deg
(
∆MG, 1

n
φG,1(t)

)− (
1 + b3(M)

)

= deg
(
∆MG, 1

n
φG,1(t)

)− (
1 + b3(M)

)
deg

(
∆MG, 1

n
φG,0(t)

)
.
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The second equality follows from the observation that ∆MG, 1
n

φG,0(t) = t − 1. By

Lemma 3.8 and the homogeneity of the Thurston norm we get

|G| · ||φ||T,M = ||φG||T,MG

= n
∣∣∣∣ 1

n
φG

∣∣∣∣
T,MG

≥ n
(
deg

(
∆MG, 1

n
φG,1(t)

)− (
1 + b3(M)

)
deg

(
∆MG, 1

n
φG,0(t)

))
.

Clearly ∆MG,φG,i(t) = ∆MG, 1
n

φG,i(t
n). Therefore n deg

(
∆MG, 1

n
φG,i(t)

)
= deg

(
∆MG,φG,i(t)

)
.

The theorem now follows immediately from Lemma 3.8. and the observation that
b3(MG) = b3(M). ¤

4. Proof of Main Theorem 1

4.1. Twisted Alexander polynomials of (M,φ).

Lemma 4.1. Let φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k) a repre-
sentation. Then Hα

3 (M ;Fk[t±1]) = 0 and Hα
0 (M ;Fk[t±1]) is finite dimensional as a

F–vector space.

Proof. First assume that M is closed. We make use of an argument in the proof of
[Mc02, Theorem 5.1]. Choose a triangulation τ of M . Let T be a maximal tree in
the 1-skeleton of τ and let T ′ be a maximal tree in the dual 1-skeleton. We collapse
T to form a single 0-cell and join the 3-simplices of T ′ to form a single 3-cell. Denote
the number of 1-cells by n. It follows from M closed that χ(M) = 0, hence there are
n 2-cells.

Write π := π1(M). From the CW structure we obtain a chain complex C∗ := C∗(M̃)

0 → C1
3

∂3−→ Cn
2

∂2−→ Cn
1

∂1−→ C1
0 → 0

where the Ci are free Z[π]-right modules. In fact Ck
i
∼= Z[π]k. Let Ai, i = 0, . . . , 3, be

the matrices with entries in Z[π] corresponding to the boundary maps ∂i : Ci → Ci−1

with respect to the bases given by the lifts of the cells of M to M̃ . Then we can
arrange the lifts such that

A3 = (1− g1, 1− g2, . . . , 1− gn)t,
A1 = (1− h1, 1− h2, . . . , 1− hn),

where {g1, . . . , gn} and {h1, . . . , hn} are generating sets for π1(M). Consider the chain
complex C∗ ⊗Z[π] Fk[t±1]

0 → C1
3⊗Z[π]Fk[t±1]

∂3⊗id−−−→ Cn
2⊗Z[π]Fk[t±1]

∂2⊗id−−−→ Cn
1⊗Z[π]Fk[t±1]

∂1⊗id−−−→ C1
0⊗Z[π]Fk[t±1] → 0.

Let B = (brs) be a p × q matrix with entries in Z[π]. We write brs =
∑

bg
rsg for

bg
rs ∈ Z, g ∈ π. We define (α⊗φ)(B) to be the p×q matrix with entries

∑
bg
rsα(g)tφ(g).

Since each
∑

bg
rsα(g)tφ(g) is a k × k matrix with entries in F[t±1] we can think of

(α⊗ φ)(B) as a pk × qk matrix with entries in F[t±1].
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Note that ∂i ⊗ id is represented by (α ⊗ φ)(Ai). Since φ is non-trivial there exist
k, l such that φ(gk) 6= 0 and φ(hl) 6= 0. It follows that (α ⊗ φ)(A1) and (α ⊗ φ)(A3)
have full rank over F[t±1]. The lemma now follows immediately in the case that M
is closed.

If M has boundary, then clearly Hα
3 (M ;Fk[t±1]) = 0. The argument that Hα

0 (M ;Fk[t±1])
is finite dimensional is exactly the same as in the closed case. ¤

We note that the fact that Hα
0 (M ;Fk[t±1]) is finite–dimensional was first proved

by Kirk and Livingston in [KL99a, Proposition 3.5].

Lemma 4.2. Assume that ∂M is empty or consists of tori and φ ∈ H1(M) is
non–trivial. Let α : π1(M) → GL(F, k) be a representation. If ∆α

1 (t) 6= 0, then
Hα

2 (M ;Fk[t±1]) is F[t±1]–torsion. In particular ∆α
2 (t) 6= 0.

Proof. We know that ∆α
i (t) 6= 0 for i = 0, 1, 3 by assumption and by Lemma 4.1. It

follows from the long exact homology sequence for (M,∂M) and from duality that
χ(M) = 1

2
χ(∂M). Hence χ(M) = 0 in our case. It follows from Lemma 4.14 (applied

to the field F(t)) that

3∑
i=0

(−1)idimF(t)
(
Hα

i (M ;Fk[t±1]⊗F[t±1] F(t))
)

= k · χ(M) = 0.

Note that Hα
i (M ;Fk[t±1] ⊗F[t±1] F(t)) = Hα

i (M ;Fk[t±1]) ⊗F[t±1] F(t) since F(t) is
flat over F[t±1]. By assumption Hα

i (M ;Fk[t±1]) ⊗F[t±1] F(t) = 0 for i 6= 2, hence
Hα

2 (M ;Fk[t±1])⊗F[t±1] F(t) = 0 by Lemma 4.14. ¤

We get the following corollary immediately from Lemmas 4.1 and 4.2.

Corollary 4.3. Let M be a 3–manifold whose boundary is empty or consists of tori.
Let φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k) a representation. If
∆α

1 (t) 6= 0 then ∆α
i (t) 6= 0 for all i, and ∆α

3 (t) = 1.

4.2. Main argument. In this section we prove Theorem 3.1. Before beginning the
proof we give relevant propositions and lemmas. In an attempt to make the proof
easier to read we prove several technical lemmas separately in Section 4.3. We also
need one delicate duality argument which we explain in detail in Section 4.4

Let M be a 3–manifold and α : π1(M) → GL(F, k) a representation. We will endow

any subset X ⊂ M with the representation given by π1(X) → π1(M)
α−→ GL(F, k).

Note that because of base point issues this induced homomorphism is only defined up
to conjugacy. But the homology groups Hα

∗ (X;Fk) are isomorphic, and their dimen-
sions over F are well-defined. We will therefore suppress base points and the choice
of paths connecting base points in our notation. Let bα

n(X) := dimF(H
α
n (X;Fk)) for

n ≥ 0.



18 STEFAN FRIEDL AND TAEHEE KIM

Proposition 4.4. Let φ ∈ H1(M) and S a properly embedded surface dual to φ.
Then

bα
1 (S) ≥ dimF

(
TorF[t±1]

(
Hα

1 (M ;Fk[t±1])
))

.

In particular if ∆α
1 (t) 6= 0, then bα

1 (S) ≥ deg (∆α
1 (t)).

Proof. Denote the components of S by S1, . . . , Sl. Denote by N the result of cutting
M along S. Denote by i+ and i− the two inclusions of S into ∂N induced by taking
the positive and the negative inclusions of S into N . We use the same notations i+
and i− for the induced homomorphisms on homology groups. Note that φ vanishes
on π1(N) and on every π1(Si). Indeed, every curve in Si can be pushed off into
N , where φ vanishes. It follows that Hα

i (N ;Fk[t±1]) ∼= Hα
i (N ;Fk) ⊗F F[t±1] and

Hα
i (S;Fk[t±1]) ∼= Hα

i (S;Fk) ⊗F F[t±1]. Therefore we have a commutative diagram if
exact sequences
(2)

→ Hα
i (S;Fk[t±1])

ti−−i+−−−−→ Hα
i (N ;Fk[t±1]) → Hα

i (M ;Fk[t±1]) →
↓∼= ↓∼= ↓= →

→ Hα
i (S;Fk)⊗F F[t±1]

ti−−i+−−−−→ Hα
i (N ;Fk)⊗F F[t±1] → Hα

i (M ;Fk[t±1]). →
Note that Ker{Hα

0 (S;Fk[t±1]) → Hα
0 (N ;Fk[t±1])} ⊂ Hα

0 (S;Fk)⊗FF[t±1] is a (possibly
trivial) free F[t±1]–module F . Therefore we get an exact sequence

Hα
1 (S;Fk)⊗F F[t±1]

ti−−i+−−−−→ Hα
1 (N ;Fk)⊗F F[t±1] → Hα

1 (M ;Fk[t±1])
∂−→ F → 0.

Since F[t±1] is a PID the map ∂ splits, i.e., Hα
1 (M ;Fk[t±1]) ∼= Ker(∂) ⊕ F . Using

appropriate bases the map ti−− i+, which represents the module Ker(∂), is presented
by a matrix of size dimF

(
Hα

1 (N ;Fk)
) × dimF

(
Hα

1 (S;Fk)
)

of the form At + B, A,B
matrices over F. It follows from Lemma 4.10 that

bα
1 (S) = dimF

(
Hα

1 (S;Fk)
) ≥ dimF

(
TorF[t±1](H

α
1 (M ;Fk[t±1]))

)
.

The last part of this proposition is obvious by Lemma 2.3. ¤
A weighted surface S̃ in M is a collection of pairs (Si, wi), i = 1, . . . , k where

Si ⊂ M are properly embedded, oriented, disjoint surfaces in M and wi are non–
negative integers. We denote the union

⋃
i,wi 6=0 Si ⊂ M by |S̃|.

Every weighted surface S̃ defines an element φS̃ :=
∑k

i=1 wi · PD([Si]) ∈ H1(M)
where PD(f) ∈ H1(M) denotes the Poincaré dual of an element f ∈ H2(M,∂M).
By taking wi parallel copies of Si we get an (unweighted) properly embedded oriented
surface S̃# such that φS̃ = PD(S̃#). An example of a the surface S̃# for a weighted

surface S̃ is given in Figure 2.
We need the following proposition proved by Turaev in [Tu02b].

Proposition 4.5. Let φ ∈ H1(M). Then there exists a weighted surface S̃ with

(1) φS̃ = φ,
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(S ,3)

(S ,1)

(S ,2)

3

1 2

Figure 2. Weighted surface in a handlebody.

(2) χ−(S̃#) = ||φ||T ,
(3) M \ |S̃| connected,
(4) wi 6= 0 for all i.

We give a quick outline of the proof.

Proof. Since φ is dual to an embedded surface, which we can view as a weighted
surface by giving weight 1 to each component, there exist weighted surfaces S̃ such
that S̃ satisfies properties (1), (2) and (4).

Now among these let S̃ = (Si, wi), i ∈ I, be a weighted surface with minimal
b0(M \ |S̃|). We have to show that b0(M \ |S̃|) = 1. Assume the contrary. Let N be a
component of M \ |S̃|. Denote by N̄ the closure of N in M . Let I+ (respectively I−)
be the set of all i ∈ I such that Si ⊂ ∂N̄ and the orientation of ∂N̄ induced by the
one of M induces the given orientation of Si (respectively the opposite orientation of
Si). Note that I+∪I− is non–empty since we assume that N 6= M \ |S̃|. We can write

∂N̄ =
⋃
i∈I+

Si ∪
⋃
i∈I−

−Si ∪ S ′

for some surface S ′. Clearly
∑

i∈I+

Si and
∑

i∈I−
Si are homologous in C2(M, ∂M). With-

out loss of generality we can assume that
∑

i∈I+

χ−(Si) ≥ ∑
i∈I−

χ−(Si) . Let l :=

min{wi|i ∈ I+}. Now let T̃ be the weighted surface which is the result of reduc-
ing the weights of Si, i ∈ I+, by l and increasing the weights of Si, i ∈ I−, by l.

Clearly φT̃ = φS̃, χ−(T̃#) ≤ χ−(S̃#). Furthermore b0(M \ |T̃ |) < b0(M \ |S̃|) since
at least one weight of a component Si, i ∈ I+∪ I−, became zero. This contradicts the
minimality of S̃. ¤
Lemma 4.6. Let φ ∈ H1(M) be primitive. Let S̃ denote the weighted surface as in
Proposition 4.5. Assume ∆α

1 (t) 6= 0. Then S := S̃# is either connected or bα
0 (Si) = 0

for any component Si of S.
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Proof. Denote by N the result of cutting M along S. Consider the Mayer–Vietoris
sequence (2) in Proposition 4.4

→ Hα
1 (M ;Fk[t±1])

→ Hα
0 (S;Fk)⊗F F[t±1]

ti−−i+−−−−→ Hα
0 (N ;Fk)⊗F F[t±1] → Hα

0 (M ;Fk[t±1]) → 0.

From ∆α
1 (t) 6= 0 it follows that Hα

1 (M ;Fk[t±1]) is F[t±1]–torsion. By Lemma 4.1
Hα

0 (M ;Fk[t±1]) is a finite–dimensional F–vector space, hence F[t±1]–torsion. If we
now consider the above exact sequence with F(t)–coefficients it follows that

(3) H0(S;Fk) ∼= H0(N ;Fk).

Since we can arrange wi parallel copies of Si inside ν(Si) in M , we see that N ∼=
(M \ ν|S̃|) ∪

l⋃
i=1

wi−1⋃
j=1

Si × [−1, 1]. Therefore we have the following isomorphisms

(4)
Hα

0 (S;Fk) ∼=
l⊕

i=1

Hα
0 (Si;Fk) ⊕

l⊕
i=1

Hα
0 (Si;Fk)wi−1

Hα
0 (N ;Fk) ∼= Hα

0 (M \ ν|S̃|;Fk) ⊕
l⊕

i=1

Hα
0 (Si;Fk)wi−1

where Hα
0 (Si;Fk)wi−1 :=

wi−1⊕
Hα

0 (Si;Fk). Note that the maps i+, i− : π1(Si) →
π1(M)

α−→ GL(F, k) factor through π1(M \ ν|S̃|). Therefore

(5) bα
0 (Si) ≥ bα

0 (M \ ν|S̃|), i = 1, . . . , l

by Lemma 4.13.
First consider the case bα

0 (M \ ν|S̃|) = 0. In that case it follows from the isomor-

phisms in (3) and (4) that
l⊕

i=1

H0(Si;Fk) = 0, hence bα
0 (Si) = 0 for all i = 1, . . . , l.

Now assume that bα
0 (M \ ν|S̃|) > 0. It follows immediately from the isomorphisms

in (3) and (4) and from the inequality (5) that l = 1. But since φ is primitive it also
follows that w1 = 1, i.e., S is connected. ¤
Lemma 4.7. Let φ ∈ H1(M) be primitive and ∆α

1 (t) 6= 0. Let S := S̃# denote the
same surface as in Proposition 4.5. Then

bα
0 (S) = deg (∆α

0 (t)) .

Proof. Let N be M cut along S. Since ∆α
1 (t) 6= 0, we have Hα

0 (S;Fk) ∼= Hα
0 (N ;Fk)

as F–vector spaces (see (2) in the proof of Lemma 4.6). First assume that bα
0 (Si) = 0

for every component Si of S. Then Hα
0 (S;Fk) = Hα

0 (N ;Fk) = 0. This implies that
Hα

0 (M ;Fk[t±1]) = 0 from the exact sequence (2) in the proof of Proposition 4.4, hence
∆α

0 (t) = 1.
Now assume that bα

0 (Si) 6= 0 for some i. By Lemma 4.6 S is connected. Hence
N is connected. It follows from Lemma 4.13 that the maps i+, i− : Hα

0 (S;Fk) →
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Hα
0 (N ;Fk) are surjective. Since Hα

0 (S;Fk) ∼= Hα
0 (N ;Fk) it follows that i+ and i−

induce isomorphisms on Hα
0 (S;Fk). Note that this argument uses that S is connected.

Let b := bα
0 (S) = bα

0 (N). Picking appropriate bases for Hα
0 (S;Fk) and Hα

0 (N ;Fk)
the sequence (2) becomes

Fb ⊗F F[t±1]
t·Id−J−−−−→ Fb ⊗F F[t±1] → Hα

0 (M ;Fk[t±1]) → 0,

where J : Fb → Fb is an isomorphism. It follows that Hα
0 (M ;Fk[t±1]) ∼= Fb ∼=

Hα
0 (S;Fk). The lemma now follows from Lemma 2.3. ¤

We note that from Lemmas 4.6 and 4.7 we immediately get the following useful
corollary:

Corollary 4.8. If ∆α
0 (t) 6= 1 and ∆α

1 (t) 6= 0, then there exists a surface of minimal
complexity dual to φ which is connected.

Lemma 4.9. Assume that ∂M is empty or consists of tori. Let φ ∈ H1(M) be
primitive and ∆α

1 (t) 6= 0. Let S := S̃# denote the same surface as in Proposition 4.5.
Then

bα
2 (S) = deg (∆α

2 (t)) .

Proof. Let S̃ = (Si, wi)i=1,...,l be the weighted surface with wi 6= 0 for all i from

Proposition 4.5. Let N be M cut along S = S̃#. Let I ′ := {i ∈ {1, . . . , l}|Si closed}
and I ′′ := {i ∈ {1, . . . , l}|Si has non–empty boundary}. Denote the union of wi

parallel copies of Si, i ∈ I ′, by S ′ ⊂ S. Clearly bα
2 (S) = bα

2 (S ′).
Note that we can write ∂N = S ′+ ∪ S ′− ∪ W for some surface W where S ′− and

S ′+ are the images of the two canonical inclusion maps of S ′ → N . It follows from
Lemmas 4.1 and 4.2 that the long exact sequence (2) becomes

0 → Hα
2 (S ′;Fk)⊗F F[t±1]

ti−−i+−−−−→ Hα
2 (N ;Fk)⊗F F[t±1] → Hα

2 (M ;Fk[t±1]) → 0.

Clearly we are done once we show that i−, i+ : Hα
2 (S ′;Fk) → Hα

2 (N ;Fk) are isomor-
phisms. Considering the sequence with F(t)–coefficients it follows that Hα

2 (S ′;Fk) and
Hα

2 (N ;Fk) have the same dimension as F-vector spaces. It is therefore enough to show
that i− and i+ are injections, or equivalently that the maps Hα

2 (S ′±;Fk) → Hα
2 (N ;Fk)

are injections.
Consider the short exact sequence

Hα
3 (N, S+;Fk) → Hα

2 (S ′+;Fk) → Hα
2 (N ;Fk).

By Poincaré duality and by Lemma 4.15 we have

Hα
3 (N,S ′+;Fk) ∼= H0

α(N, S ′− ∪W ;Fk) ∼= HomF(H
α
0 (N, S ′− ∪W ;Fk),F).

Claim.

Hα
0 (N, S ′− ∪W ;Fk) = 0.
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Recall that

N ∼= M \ ν|S̃| ∪
⋃

i∈I′

wi−1⋃
j=1

Si × [0, 1] ∪
⋃

i∈I′′

wi−1⋃
j=1

Si × [0, 1]

which equals the decomposition of N into connected components. Clearly there exists
a surjective map

ϕ : {components of S ′− ∪W} → {components of N},
such that S0 ⊂ ∂(ϕ(S0)) for every component S0 of S ′−∪W . Therefore it follows from
Lemma 4.13 that Hα

0 (S ′−∪W ;Fk[t±1]) → Hα
0 (N ;Fk[t±1]) is surjective. The claim now

follows from the long exact homology sequence. ¤
Now we can conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality we can assume that φ is primi-
tive since the Thurston norm and the degrees of twisted Alexander polynomials are
homogeneous. Let S̃ be the weighted surface from Proposition 4.5. Let S := S̃#. By
Lemma 4.14 we have

||φ||T = max{0, b1(S)− (b0(S) + b2(S))}
≥ b1(S)− (b0(S) + b2(S))

= 1
k

(bα
1 (S)− (bα

0 (S) + bα
2 (S))) .

The Theorem now follows immediately from Proposition 4.4 and Lemmas 4.1, 4.7,
4.9 and 2.4.

¤
4.3. Lemmas used in the proof of Main Theorem 1.

Lemma 4.10. Let A,B be p× q–matrices over a field F. Let H be a F[t±1]–module
with the presentation matrix At + B. Then dimF(TorF[t±1](H)) ≤ min(p, q).

Proof. This lemma is well–known, and a proof in the much harder non–commutative
case is given by Harvey [Ha05, Proposition 9.1]. Therefore we give just an outline for
the proof. Let C = At + B. Using row and column operations over the PID F[t±1]
we can transform C into a matrix of the form



f1(t) 0 . . . 0 0
0 f2(t) . . . 0 0

0 0
. . . 0 0

0 0 . . . fl(t) 0
0 0 . . . 0 (0)p−l×q−l




for some fi(t) ∈ F[t±1] \ {0}. Clearly dimF(TorF[t±1](H)) =
∑l

i=1 deg(fi(t)). Since
row and column operations do not change the ideals of F[t±1] generated by minors
(cf. [CF77, p. 101]), and since any k × k minor of At + B has degree at most k, it

follows that
∑l

i=1 deg(fi(t)) ≤ min(p, q). ¤
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Lemma 4.11. Let X be a CW–complex and let A be a left Z[π1(X)]–module. Then
Hi(X; A) ∼= Hi(π1(X); A) for i = 0, 1.

The above lemma is immediate from the observation that adding cells of dimension
greater than or equal to 3 to X gives the Eilenberg–Maclane space K(π1(X), 1), but
does not change the two lowest homology groups.
The following lemma was proved by Kirk and Livingston in [KL99a, Theorem 2.1].

Lemma 4.12. Let φ ∈ H1(M) be primitive. Denote the cover of M corresponding
to φ by Mφ, i.e., π1(Mφ) = Ker(φ). Then

Hα
i (M ;Fk[t±1]) ∼= Hα

i (Mφ;Fk),

for all i and

Hα
i (M ;Fk[t±1]) ∼= Hi(Ker(φ);Fk)

for i = 0, 1.

Proof. Let µ ∈ π1(M) such that φ(µ) = 1. Then the chain map

C∗(M̃)⊗Z[π1(M)] Fk[t±1] → C∗(M̃)⊗Z[ker(φ)] Fk

s⊗ (v ⊗ tk) 7→ sµk ⊗ α(µ)−kv

defines a chain homotopy which shows that Hα
∗ (M ;Fk[t±1]) ∼= Hα

∗ (Mφ;Fk). Further-
more Hα

i (Mφ;Fk[t±1]) ∼= Hα
i (Ker(φ);Fk[t±1]) for i = 0, 1 by Lemma 4.11. ¤

Lemma 4.13. Let V be an F–vector space. Let A be a group and α : A → GL(V ) a
representation. If ϕ : B → A is a homomorphism, then Hα◦ϕ

0 (B; V ) → Hα
0 (A; V ) is

surjective.

Proof. The lemma follows immediately from the commutative diagram of exact se-
quences

0 → {α(ϕ(b))v − v|b ∈ B, v ∈ V } → V → H0(B; V ) → 0
↓ ↓ ↓

0 → {α(a)v − v|a ∈ A, v ∈ V } → V → H0(A; V ) → 0

and the observation that the vertical map on the left is injective. ¤

Lemma 4.14. Let X be an n–manifold, K a field, and α : π1(X) → GL(K, k) a
representation. Then

n∑
i=0

(−1)ndimK(Hα
∗ (X;Kk)) = kχ(X).

Proof. Write π := π1(X) and denote the universal cover of X by X̃. Pick a finite cell
decomposition of X and pick an π–equivariant lifting of the cell decomposition to a
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cell decomposition of X̃. Then we get the following equalities for Euler characteristics
of K–complexes:∑n

i=0(−1)ndimK(Hα
∗ (X;Kk)) = χ(Hα

∗ (X;Kk))

= χ(H∗(C∗(X̃;Z)⊗Z[π] Kk))

= χ(C∗(X̃;Z)⊗Z[π] Kk)

= χ(C∗(X;Z)⊗Z Z[π]⊗Z[π] Kk)

= χ(C∗(X;K)⊗K Kk)

= kχ(C∗(X;K))

= kχ(H∗(X;K))

= kχ(X).

¤
4.4. Duality arguments. In this section we clarify a delicate duality argument.
Since this is perhaps of independent interest, and since we need it in [F05b] we will
explain this in the non–commutative setting.

In this section let R be a (possibly non–commutative) ring with involution r 7→ r
such that ab = b · a. Let V be a left R–module together with a map β : π1(M) →
GL(V, R). This representation β can be used to define a left Z[π1(M)]–module struc-
ture on V which commutes with the R–module structure. Pick a non–singular R–
sesquilinear inner product 〈 , 〉 : V × V → R. This means that for all v, w ∈ V and
r ∈ R we have

〈vr, w〉 = 〈v, w〉r, 〈v, wr〉 = r〈v, w〉
and 〈 , 〉 induces via v 7→ (w 7→ 〈v, w〉) an R–module isomorphism V ∼= HomR(V, R).
Here we view HomR(V, R) as right R–module homomorphisms where R gets the right
R–module structure given by involuted left multiplication. Furthermore consider
HomR(V,R) as a right R–module via right multiplication in the target R.

There exists a unique representation β̄ : π1(M) → GL(V, R) such that

〈β(g−1)v, w〉 = 〈v, β̄(g)w〉
for all v, w ∈ V, g ∈ π1(M). Note that β̄ induces a left Z[π1(M)]–module structure on
V (which is possibly different from that induced from β) which commutes with the R–
module structure. To clarify which Z[π1(M)]–module structure we use, we sometimes
denote V with the Z[π1(M)]–module structure induced from β (respectively β̄) by
V (β) (respectively V (β̄)). Note that they are the same viewed as R–modules.

Lemma 4.15. [KL99a, p. 638] Let X be an n–manifold, V an R–module and β :
π1(X) → GL(V ) a representation. Let 〈 , 〉 : V ×V → R be a non–singular sesquilin-
ear inner product as above. If R is a PID then

Hβ
n−i(X; V (β)) ∼= HomR(Hβ

i (X, ∂X; V (β̄)), R)⊕ ExtR(Hβ
i−1(X, ∂X; V (β̄)), R)

as R–modules.
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Here we equip H∗(−, V ), H∗(−, V ) with the right R–module structures given on V .
Also for a right R–module H we view HomR(H, R) as a right R–module homomor-
phisms where R gets the right R–module structure given by involuted left multipli-
cation. We consider HomR(H, R) as a right R–module via right multiplication in the
target R.

Proof. Let π := π1(X). Let V (β)′ = V (β) as R–modules equipped with the right
Z[π1(M)]–module structure given by v · g := β(g−1)v for v ∈ V (β) and g ∈ π. By
Poincaré duality

Hβ
n−i(X; V (β)) ∼= H i(X, ∂X; V (β)′) := Hi

(
HomZ[π](C∗(X̃, ∂X̃), V (β)′)

)
,

where X̃ denotes the universal cover of X. Using the inner product we get a map

HomZ[π](C∗(X̃, ∂X̃), V (β)′) → HomR

(
C∗(X̃, ∂X̃)⊗Z[π] V (β̄), R

)
f 7→ ((c⊗ w) 7→ 〈f(c), w〉) .

Note that this map is well–defined since 〈β(g−1)v, w〉 = 〈v, β̄(g)w〉. It is now easy to
see that this defines in fact an isomorphism of right R–module chain complexes.

Now we can apply the universal coefficient theorem for chain complexes over the
PID R to C∗(X̃, ∂X̃)⊗Z[π] V (β̄). The lemma is now immediate. ¤

Now assume that the field F has a (possibly trivial) involution. We equip Fk with
a hermitian inner product, denoted by 〈 , 〉.
Proof of Proposition 3.2. We extend the involution on F to F[t±1] by taking t 7→ t−1.
Now equip Fk[t±1] with the hermitian inner product defined by 〈vti, wtj〉 := 〈v, w〉tit−j

for all v, w ∈ Fk. To simplify the notation we denote Fk[t±1](α⊗φ) and Fk[t±1](α⊗ φ)
just by Fk[t±1]. The Z[π1(M)]–module structure on Fk[t±1] will always be clear from
the context.

Note that F[t±1] is a PID. We apply Lemma 4.15 with R = F[t±1], V = Fk[t±1] and
β = α⊗ φ, and get

Hα⊗φ
2 (M ;Fk[t±1]) ∼= HomF[t±1]

(
Hα⊗φ

1 (M, ∂M ;Fk[t±1]),F[t±1]
)

⊕ ExtF[t±1]

(
Hα⊗φ

0 (M, ∂M ;Fk[t±1]),F[t±1]
)

as F[t±1]–modules. Since ∆α
1 (t) 6= 0, Hα⊗φ

2 (M ;Fk[t±1]) is F[t±1]–torsion by Lemma
4.2. Hence the first summand on the right hand side is zero.

By Lemma 4.1 Hα⊗φ
0 (M ;Fk[t±1]) is F[t±1]–torsion. From the long exact homology

sequence of the pair (M,∂M) it follows that Hα⊗φ
0 (M, ∂M ;Fk[t±1]) is also F[t±1]–

torsion. Since Hα⊗φ
0 (M, ∂M ;Fk[t±1]) is a finitely generated F[t±1]–torsion module and

F[t±1] is a PID, ExtF[t±1](H
α⊗φ
0 (M,∂M ;Fk[t±1]),F[t±1]) ∼= Hα⊗φ

0 (M,∂M ;Fk[t±1]).

If M is closed then we get Hα
2 (M ;Fk[t±1]) ∼= Hα⊗φ

0 (M ;Fk[t±1]). Note that α⊗ φ =
α⊗ (−φ). Therefore we deduce that ∆α

2 (t) = ∆α
0 (t−1).
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If ∂M 6= 0, then by Lemma 4.13 the map Hα⊗φ
0 (∂M ;Fk[t±1]) → Hα⊗φ

0 (M ;Fk[t±1])

is surjective, hence Hα⊗φ
0 (M,∂M ;Fk[t±1]) = 0. This shows that Hα

2 (M ;Fk[t±1]) = 0
and hence ∆α

2 (t) = 1. ¤

5. The case of vanishing Alexander polynomials

Let L be a boundary link (for example a split link). It is well–known that the
multivariable Alexander polynomial of L has to vanish (cf. [Hi02]). With a little
extra care it is not hard to show that the twisted multivariable and twisted one–
variable Alexander polynomials vanish as well. (See [FK05] for the definition of
twisted multivariable Alexander polynomials.) Therefore Theorem 3.1 can not be
applied to get lower bounds on the Thurston norm.

It follows clearly from Proposition 4.4 and Lemma 4.9 that the condition ∆α
1 (t) 6=

0 is only needed to ensure that there exists a surface S dual to φ with bα
0 (S) =

deg (∆α
0 (t)) and bα

2 (S) = deg (∆α
2 (t)). Sometimes upper bounds on bα

0 (S) and bα
2 (S)

can be obtained using alternative arguments.

Theorem 5.1. Let M be a 3–manifold such that H1(M)
i∗−→ H1(∂M) is an injection

where i∗ is the inclusion–induced homomorphism. Let N be a torus component of
∂M and φ ∈ H1(N) ∩ Im(i∗) primitive, and α : π1(M) → GL(F, k) a representation.
Then

||(i∗)−1(φ)||T,M ≥ 1

k
deg(∆̃α

1 (t))− 1.

Proof. Let us consider the following commutative diagram

H1(M) ↪→ H1(∂M)
↓ ↓

H2(M, ∂M) ↪→ H1(∂M),

where the vertical maps are given by Poincaré duality. An embedded surface S in M
is dual to (i∗)−1(φ) if and only if ∂S is dual to φ. It follows that

||(i∗)−1(φ)||T,M = min{χ−(S)|S properly embedded, ∂S Poincaré dual to φ ∈ H1(∂M)}.
Let c ⊂ N be a simple closed curve Poincaré dual to φ. Since N is a torus we can
use an argument as in the proof of Lemma 2.2 and it follows that

||(i∗)−1(φ)||T,M = min{χ−(S)|S properly embedded and ∂S = c}.
Let S be a (possibly disconnected) surface with minimal complexity such that ∂S = c.
By throwing away the components of S which do not contain c, we can assume that S
is connected. Hence b0(S) = 1 and b2(S) = 0. In particular bα

0 (S) ≤ k and bα
2 (S) = 0.

Therefore using Proposition 4.4 and Lemmas 2.3 and 4.14 we obtain that

||φ||T ≥ b1(S)− b0(S)− b2(S)
= 1

k
(bα

1 (S)− bα
0 (S)− bα

2 (S))

≥ 1
k

deg(∆̃α
1 (t))− 1.
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¤

We will apply this theorem later to the complement of a link L = L1∪· · ·∪Lm ⊂ S3.
In this case we can take φ to be dual to the meridian of the ith component Li. Then
it follows from the proof of Theorem 5.1 and an argument as in the proof of Lemma
2.2 that ||(i∗)−1(φ)||T = 2 genus(Li)− 1, where genus(Li) denotes the minimal genus
of a surface in X(L) bounding a parallel copy of Li. Similar results were obtained by
Turaev [Tu02b, p. 14] and Harvey [Ha05, Corollary 10.4].

The following observation will show that in more complicated cases there is no
immediate way to determine b0(S): if L = L1 ∪ L2 is a split oriented link, and
φ : H1(X(L)) → Z given by sending the meridians to 1, then the surface of minimal
complexity dual to φ is the disjoint union of the Seifert surfaces of L1 and L2. This
follows immediately from the proof that the genus is additive, i.e., genus(L1#L2) =
genus(L1) + genus(L2) (cf. [Lic97, p. 18]). In particular b0(S) = 2. On the other
hand if L1 and L2 are parallel copies of a knot with opposite orientations and φ :
H1(X(L)) → Z is again given by sending the meridians to 1, then the annulus S
between L1 and L2 is dual to φ with complexity zero. In particular it is connected,
hence b0(S) = 1.

6. Main theorem 2: Obstructions to fiberedness

Let M be a 3–manifold and φ ∈ H1(M). We say (M, φ) fibers over S1 if the
homotopy class of maps M → S1 induced by φ : π1(M) → H1(M) → Z contains a
representative that is a fiber bundle over S1.

Theorem 6.1 (Main Theorem 2). Let M be a 3–manifold and φ ∈ H1(M) such
that (M,φ) fibers over S1 and such that M 6= S1×D2,M 6= S1×S2. If α : π1(M) →
GL(F, k) is a representation, then ∆α

1 (t) 6= 0 and

||φ||T = 1
k

deg(τ(M,φ, α))

= 1
k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)
.

If α is unitary, then also

||φ||T =
1

k

(
deg (∆α

1 (t))− (
1 + b3(M)

)
deg (∆α

0 (t))
)
.

Proof. Let S be a fiber of the fiber bundle M → S1. Clearly S is dual to φ ∈ H1(M)
and it is well–known that S is Thurston norm minimizing. Note that Hα

i (M ;Fk[t±1]) ∼=
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Hα
i (S;Fk) by Lemma 4.12. By assumption S 6= D2 and S 6= S2. Therefore by Lem-

mas 4.14, 4.12 and 2.3 we get

||φ||T = χ−(S)

= b1(S)− b0(S)− b2(S)

= 1
k

(bα
1 (S)− bα

0 (S)− bα
2 (S))

= 1
k

(
dimF

(
Hα

1 (M ;Fk[t±1])
)− dimF

(
Hα

0 (M ;Fk[t±1])
)− dimF

(
Hα

2 (M ;Fk[t±1])
))

= 1
k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)

= deg(τ(M,φ, α)).

The unitary case follows now immediately from Proposition 3.2. ¤
Remark. This theorem has been known for a long time for the untwisted Alexander
polynomial of fibered knots. McMullen, Cochran, Harvey and Turaev prove corre-
sponding equalities in their respective papers [Mc02, Co04, Ha05, Tu02b].

Since ||φ||T might be unknown for a given example the following corollary gives a
more practical fibering obstruction.

Corollary 6.2. Let M be a 3–manifold and φ ∈ H1(M) such that (M, φ) fibers over
S1 and such that M 6= S1 ×D2,M 6= S1 × S2. Let F and F′ be fields. Consider the
untwisted Alexander polynomial ∆1(t) ∈ F[t±1]. For any representation α : π1(M) →
GL(F′, k) we have

deg(∆1(t))−
(
1 + b3(M)

)
=

1

k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)
.

Proof. The Corollary follows immediately from applying Theorem 6.1 to the trivial
representation π1(M) → GL(F, 1) and to the representation α. ¤

Let α : π1(M) → GL(R, k) be a representation where R is a Noetherian UFD,
for example R = Z or a field F. Then Cha [Ch03] defined the twisted Alexander
polynomial ∆α

1 (t) ∈ R[t±1] which is well–defined up to multiplication by a unit in
R[t±1]. Cha’s definition of twisted Alexander polynomials generalizes our definition.
Given a prime ideal p ⊂ R we denote the quotient field of R/p by Fp. Furthermore we

denote by αp the representation π1(M)
α−→ GL(R, k) → GL(Fp, k) where GL(R, k) →

GL(Fp, k) is induced from the canonical map πp : R → R/p → Fp.

Proposition 6.3. Let M be a 3–manifold whose boundary is empty or consists of
tori and let R be a Noetherian UFD. Let φ ∈ H1(M) be non–trivial and α : π1(M) →
GL(R, k) a representation. Then ∆

αp

1 (t) is non–trivial and

||φ||T =
1

k
deg(τ(M, φ, αp))

for all prime ideals p if and only if ∆α
1 (t) ∈ R[t±1] is monic and

||φ||T =
1

k
deg(τ(M, φ, α))
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We will prove Proposition 6.3 at the end of this section. By combining Theorem 6.1
and Proposition 6.3 we immediately get the following theorem.

Theorem 6.4. Let M be a 3–manifold. Let φ ∈ H1(M) be non–trivial such that
(M, φ) fibers over S1 and such that M 6= S1 × D2,M 6= S1 × S2. Let R be a
Noetherian UFD and α : π1(M) → GL(R, k) a representation. Then ∆α

1 (t) ∈ R[t±1]
is monic and

||φ||T =
1

k
deg(τ(M,φ, α)).

Remark. (1) Theorem 6.4 shows that the fibering obstructions from Theorem 6.1
contain Neuwirth’s theorem that ∆K(t) ∈ Z[t±1] is monic for a fibered knot.

(2) Cha’s methods in [Ch03] can be used to show that if (M, φ) fibers over S1,
∂M 6= ∅ and if α : π1(M) → GL(R, k), R a Noetherian UFD, is a represen-
tation factoring through a finite group G, then the corresponding Alexander
polynomial ∆α

1 (t) ∈ R[t±1] is monic. Thus Theorems 6.1 and 6.4 generalize
Cha’s results.

(3) Goda, Kitano and Morifuji [GKM05] use the Reidemeister torsion correspond-
ing to representations π1(X(K)) → SL(F, k), F a field, to give fibering obstruc-
tions for a knot K.

(4) As we explain in the introduction the significance of our results lies in the fact
that they also give fibering obstructions for closed manifolds and that they
are very efficient to compute.

Remark. In Section 10 we conjecture that a converse to Theorem 6.4 holds. As we
explained in the introduction a proof of this conjecture implies Taubes’ conjecture.

Proof of Proposition 6.3. We only prove this proposition in the case that M is closed.
The case that ∂M is a non–empty collection of tori is very similar. Note that in either
case χ(M) = 0.

As in the proof of Lemma 4.1 we can find a CW–structure for M such that the
chain complex of the universal cover M̃ is as follows

0 → C3(M̃)
∂3−→ C2(M̃)

∂2−→ C1(M̃)
∂1−→ C0(M̃) → 0

where Ci(M̃) ∼= Z[π1(M)] for i = 0, 3 and Ci(M̃) ∼= Z[π1(M)]n for i = 1, 2. Let
Ai, i = 0, . . . , 3 over Z[π1(M)] be the matrices corresponding to the boundary maps
∂i : Ci → Ci−1 with respect to the bases given by the lifts of the cells of M to M̃ . We
can arrange the lifts such that

A3 = (1− g1, 1− g2, . . . , 1− gn)t,
A1 = (1− h1, 1− h2, . . . , 1− hn),

where {g1, . . . , gn} and {h1, . . . , hn} are generating sets for π1(M). Since φ is non–
trivial there exist r, s such that φ(gr) 6= 0 and φ(hs) 6= 0. Let B3 be the r-th row of
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A3. Let B2 be the result of deleting the r-th column and the s–th row from A2. Let
B1 be the s–th column of A1. Note that

det((α⊗ φ)(B3)) = det(id− (α⊗ φ)(gr)) = det(id− φ(gr)α(gr)) 6= 0

since φ(gr) 6= 0. Similarly det((α ⊗ φ)(B1)) 6= 0 and det((αp ⊗ φ)(Bi)) 6= 0, i = 1, 3
for any prime ideal p. We need the following theorem which can be found in [Tu01].

Theorem 6.5. [Tu01, Theorem 2.2, Lemma 2.5, Theorem 4.7] Let S be a Noetherian
UFD. Let β : π1(M) → GL(S, k) be a representation and ϕ ∈ H1(M).

(1) If det((β ⊗ ϕ)(Bi)) 6= 0 for i = 1, 2, 3, then Hβ
i (M ; Sk[t±1])) is S[t±1]–torsion

for all i.
(2) If Hβ

i (M ; Sk[t±1])) is S[t±1]–torsion for all i, and if det((β ⊗ ϕ)(Bi)) 6= 0 for
i = 1, 3, then det((β ⊗ ϕ)(B2)) 6= 0 and

3∏
i=1

det((β ⊗ ϕ)(Bi))
(−1)i+1

=
3∏

i=0

(
∆β

i (t)
)(−1)i+1

= τ(M,ϕ, β).

First assume that ∆
αp

1 (t) 6= 0 and

||φ||T =
1

k

(
deg

(
∆

αp

1 (t)
)− deg

(
∆

αp

0 (t)
)− deg

(
∆

αp

2 (t)
))

for all prime ideals p. By Corollary 4.3 we get ∆
αp

i (t) 6= 0 for all i, in particular
H

αp

i (M ;Fk
p[t

±1]) is Fp[t
±1]–torsion for all i and all prime ideals p. It follows from

Theorem 6.5 that det((αp ⊗ φ)(B2)) 6= 0. Clearly this also implies that det((α ⊗
φ)(B2)) 6= 0. Since we already know that det((α ⊗ φ)(Bi)) 6= 0 for i = 1, 3 it follows
from Theorem 6.5 that Hα

i (M ; Rk[t±1]) is R[t±1]–torsion for all i.
It follows from [Tu01, Lemma 4.11] that ∆α

0 (t) divides det((α⊗φ)(B1)) = det(id−
φ(hs)α(hs)) which is a monic polynomial in R[t±1] since φ(hs) 6= 0 and since det(α(g))
is a unit. But then ∆α

0 (t) is monic as well. The same argument (again using [Tu01,
Lemma 4.11]) shows that ∆α

2 (t) is monic. It follows from the proof of Lemma 4.1
that Hα

3 (M ; Rk[t±1]) = 0, hence ∆α
3 (t) = 1.

Denote the map R → R/p → Fp by πp. We also denote the induced map R[t±1] →
Fp[t

±1] by πp. It follows from Theorem 6.5 that

3∏
i=0

πp

(
∆α

i (t)(−1)i+1
)

=
3∏

i=1

πp (det((α⊗ φ)(Bi)))
(−1)i+1

=
3∏

i=1

det((αp ⊗ φ)(Bi))
(−1)i+1

=
3∏

i=0

∆
αp

i (t)(−1)i+1

for all prime ideals p. By assumption we get

1

k

3∑
i=0

(−1)i+1 deg
(
πp (∆α

i (t))
)

=
1

k

3∑
i=0

(−1)i+1 deg
(
∆

αp

i (t)
)

= ||φ||T



THURSTON NORM, FIBERED MANIFOLDS AND TWISTED ALEXANDER POLYNOMIALS 31

for all p. Since ∆α
i (t) is monic for i = 0, 2, 3 it follows that

deg
(
πp (∆α

1 (t))
)

= deg
(
πq (∆α

1 (t))
)

for all prime ideals p and q. Since R is a UFD it follows that ∆α
1 (t) is monic. Hence

deg (πp (∆α
i (t))) = deg (∆α

i (t)) for all i and all prime ideals p and clearly

||φ||T =
1

k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)
.

Now assume that ∆α
1 (t) ∈ R[t±1] is monic and

||φ||T =
1

k

(
deg (∆α

1 (t))− deg (∆α
0 (t))− deg (∆α

2 (t))
)
.

The same argument as above shows that ∆α
i (t), i = 0, 2, 3, are monic as well. Recall

that det(α ⊗ φ)(Bi), i = 1, 3, are monic polynomials. It follows from Theorem 6.5
that

det(α⊗ φ)(B2) = det(α⊗ φ)(B1) det(α⊗ φ)(B3)
3∏

i=0

(∆α
i (t))(−1)i+1

is a quotient of monic non–zero polynomials. In particular det(αp⊗φ)(B2) = πp(det(α⊗
φ)(B2)) 6= 0. It now follows immediately from Theorem 6.5 that H

αp

i (M ;Fk
p [t

±1])) is

Fp[t
±1]–torsion for all i. In particular ∆

αp

1 (t) 6= 0. Using arguments as above we now
see that

deg(τ(M,φ, αp)) = 1
k

(
deg

(
∆

αp

1 (t)
)− deg

(
∆

αp

0 (t)
)− deg

(
∆

αp

2 (t)
))

= 1
k

3∑
i=0

(−1)i+1 deg
(
∆

αp

i (t)
)

= 1
k

3∑
i=0

(−1)i+1 deg (πp (∆α
i (t)))

= 1
k

3∑
i=0

(−1)i+1 deg (∆α
i (t))

= ||φ||T .

¤
Remark. Let α : π1(M) → GL(Z, k) be a representation. Then it is in general not
true that ∆

αp

1 (t) = πp(∆
α
1 (t)) ∈ Fp[t

±1] (we use the notation of Proposition 6.3), not
even if (M,φ) fibers over S1. Indeed, let K be the trefoil knot and ϕ : π1(X(K)) → S3

the unique epimorphism. Consider the representation α(ϕ) : π1(X(K)) → GL(Z, 2)
as in Section 9.1. Then deg (π3(∆

α
1 (t))) = 2, but deg (∆α3

1 (t)) = 3.

7. Non–commutative versions of the Main Theorems

In this section we formulate and outline the proof of non–commutative versions of
Theorems 3.1 and 6.1. Let K be a skew field and γ : K→ K a ring homomorphism.
Then denote by Kγ[t

±1] the twisted Laurent polynomial ring over K. More precisely
the elements in Kγ[t

±1] are formal sums
∑s

i=−r ait
i with ai ∈ K. Addition is given
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by addition of the coefficients, and for multiplication one has to apply the rule tia =
γ(a)ti for any a ∈ K. We denote Kk ⊗K Kγ[t

±1] by Kk
γ[t

±1].
Let π be a group and φ : π → Z a homomorphism. A representation α : π →

GL(Kγ[t
±1], k) is called φ–compatible if for any g ∈ π we have α(g) = Atφ(g) with

A ∈ GL(K, k). This generalizes a notion of Turaev [Tu02b]. Note that if β : π →
GL(F, k) is a representation, then β ⊗ φ : π → GL(F[t±1], k) is φ–compatible.

Theorem 7.1. Let M be a 3–manifold whose boundary is empty or consists of tori.
Let φ ∈ H1(M) be non–trivial, and α : π1(M) → GL(Kγ[t

±1], k) a φ–compatible
representation. Then

||φ||T ≥ 1

k

(
dimK

(
Hα

1 (M ;Kk
γ[t

±1])
)− dimK

(
Hα

0 (M ;Kk
γ[t

±1])
)− dimK

(
Hα

2 (M ;Kk
γ[t

±1]
))

.

Furthermore this inequality becomes an equality if (M, φ) fibers over S1 and if M 6=
S1 ×D2,M 6= S1 × S2.

Proof. First note that if φ vanishes on X ⊂ M then α restricted to π1(X) lies in
GL(K, k) ⊂ GL(Kγ[t

±1], k) since α is φ–compatible. Therefore Hα
i (X;Kk

γ[t
±1]) ∼=

Hα
i (X;Kk) ⊗K Kγ[t

±1]. The proofs of Theorem 3.1 and Theorem 6.1 can now easily
be translated to this non–commutative setting. One only has to replace Lemma 4.10
(which uses determinants) by its non–commutative version proved by Harvey [Ha05,
Proposition 9.1]. ¤

Since dimF
(
Hα

i (M ;Fk[t±1])
)

= deg (∆α
i (t)) this theorem is a generalization of The-

orems 3.1 and 6.1. It also generalizes the results of Cochran [Co04], Harvey [Ha05]
and Turaev [Tu02b]. To our knowledge it is the strongest theorem of its kind.

8. Computing twisted Alexander polynomials

In this section we will show how to compute ∆α
0 (t), ∆α

1 (t) and ∆̃α
1 (t) efficiently.

Let M be a 3–manifold and let 〈g1, . . . , gs|r1, . . . , rq〉 be a presentation of π1(M). Let
φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k) a representation.

First, ∆α
1 (t) and ∆̃α

1 (t) can be computed using Fox calculus as follows. By [CF77,
p. 98] there exist unique maps ∂i : 〈g1, . . . , gs〉 → Z〈g1, . . . , gs〉 such that

∂i(gj) = δij, for any i, j,
∂i(uv) = ∂i(u) + u∂i(v), for any u, v ∈ 〈g1, . . . , gs〉.

This gives indeed well–defined maps. Denote by f 7→ f̄ for f ∈ Z[π1(M)] the involu-
tion induced by ḡ = g−1 for any g ∈ π1(M). Then apply the map

α⊗ φ : Z[π1(M)] → Mk×k(F[t±1])

to the entries of the s × q–matrix (∂i(rj)). We denote the resulting sk × qk–matrix
over F[t±1] by A. Since F[t±1] is a PID we can do row and column operations to get
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A into the following form



p1(t) 0 . . . 0 0
0 p2(t) . . . 0 0

0 0
. . . 0 0

0 0 . . . pl(t) 0
0 0 . . . 0 (0)ks−l×kq−l




where pi(t) ∈ F[t±1] \ {0}.
Proposition 8.1. If l < k(s− 1) then ∆α

1 (t) = 0. Otherwise

∆α
1 (t) =

l∏
i=1

pi(t).

Furthermore ∆̃α
1 (t) =

∏l
i=1 pi(t) regardless of l.

Proof. Write π := π1(M) and K := K(π, 1). By Lemma 4.11 Hα
1 (M ;Fk[t±1]) ∼=

Hα
1 (K;Fk[t±1]). Therefore it suffices to compute the latter homology.
Note that we can assume that K has one 0–cell, s 1–cells corresponding to the

generators g1, . . . , gs and q 2–cells corresponding to the relations r1, . . . , rq. Denote

the universal cover of K by K̃. Let p ∈ K be the point corresponding to the 0–cell.
Denote the preimage of p under the map K̃ → K by p̃. Note that Ci(K̃, p̃) = Ci(K̃)
for i ≥ 1. Therefore we get an exact sequence

C2(K̃)⊗Z[π] Fk[t±1]
d2⊗id−−−→ C1(K̃)⊗Z[π] Fk[t±1] → Hα

1 (K, p;Fk[t±1]) → 0.

The equivariant lifts of the cells gives Z[π]–bases for C2(K̃) and C1(K̃). As Harvey
[Ha05, Section 6] pointed out, the Z[π]–right module homomorphism d2 : C2(K̃) →
C1(K̃) with respect to these bases is given by the s × q–matrix (∂i(rj)). Clearly

A = (α⊗ φ)(∂i(rj)) now represents d2 ⊗ id. Therefore A is a presentation matrix for
Hα

1 (K, p;Fk[t±1]). Now consider the following diagram whose rows are exact:

0→Hα
1 (K;Fk[t±1])→ Hα

1 (K, p;Fk[t±1]) →Hα
0 (p;Fk[t±1])→Hα

0 (K;Fk[t±1])
‖ ↓∼= ↓∼= ‖

0→Hα
1 (K;Fk[t±1])→

l⊕
i=1

F[t±1]/(pi(t))⊕ Fks−l[t±1]→ Fk[t±1] →Hα
0 (K;Fk[t±1]).

By Lemma 4.1 Hα
0 (K;Fk[t±1]) is torsion over F[t±1]. It follows that the kernel of

the homomorphism Fk[t±1] → Hα
0 (K;Fk[t±1]) is isomorphic to Fk[t±1] again. Putting

all these together it follows that if ks − l > k then ∆α
1 (t) = 0, otherwise ∆α

1 (t) =∏l
i=1 pi(t). Clearly it also follows that ∆̃α

1 (t) =
∏l

i=1 pi(t). ¤

Now apply α⊗ φ to the 1× s–matrix (1− g−1
1 , . . . , 1− g−1

s ). Denote the resulting
k × sk–matrix by B. Since F[t±1] is a PID we can do row and column operations to
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get B into the following form



q1(t) . . . 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . . qk(t) 0 . . . 0




where qi(t) ∈ F[t±1].

Proposition 8.2.

∆α
0 (t) =

k∏
i=1

qi(t).

Proof. We use the same notation as in the proof of the previous proposition. We have
an exact sequence

C1(K̃)⊗Z[π] Fk[t±1]
d1⊗id−−−→ C0(K̃)⊗Z[π] Fk[t±1] → Hα

0 (K;Fk[t±1]) → 0.

Consider the Z[π]–right module homomorphism d1 : C1(K̃) → C0(K̃) together with
the bases given by cells. Then d1 is represented by the 1× s–matrix (1− g−1

1 , . . . , 1−
g−1

s ). Therefore B is a presentation matrix for Hα
0 (K;Fk[t±1]). ¤

We recall that by Proposition 3.2 we can compute ∆α
2 (t) = 1 if M has non–empty

boundary, and ∆α
2 (t) = ∆α

0 (t−1) if M is closed. Therefore ∆α
2 (t) can be computed

using the above algorithm.

Remark. All the computations can be done over the ring F[t±1]. Therefore we can
apply the Euclidean algorithm to quickly find a ‘diagonal’ form for the matrix A.

9. Examples

9.1. Representations of 3–manifold groups. Let M be a 3–manifold. Assume we
are given a presentation 〈g1, . . . , gs|r1, . . . , rt〉 for π1(M). Then finding a representa-
tion to GL(F, k) for some k is easy in theory: it is enough to assign arbitrary elements
in GL(F, k) to g1, . . . , gs and check whether these satisfy the relations. Our experience
shows that this is not an effective way of finding representations since GL(Fp, k) has

approximately pk2
elements, and therefore there are

(
pk2)s

possible assignments of
elements in GL(Fp, k) to s generators.

Therefore in our applications we first find homomorphisms π1(M) → G, G a finite
group, and then find a representation of F[G]. In all our examples we take G = Sk

for some k. (Metabelian groups can also be useful.) The first choice of a represen-
tation for Sk that comes to mind is Sk → GL(F, k) where Sk acts by permuting the
coordinates. But Sk leaves the subspace {(v, v, . . . , v)|v ∈ F} ⊂ Fk invariant, hence
this representation is ‘not completely non–trivial’. To avoid this we prefer to work
with a slightly different representation of Sk. If ϕ : π1(M) → Sk is a homomorphism
then we consider

α(ϕ) : π1(M)
ϕ−→ Sk → GL(Vk−1(F)),



THURSTON NORM, FIBERED MANIFOLDS AND TWISTED ALEXANDER POLYNOMIALS 35

where

Vl(F) := {(v1, . . . , vl+1) ∈ Fl+1|
l+1∑
i=1

vi = 0}.

Clearly dimF(Vl(F)) = l and Sl+1 acts on it by permutation. Since α(ϕ) is a subrep-
resentation of a unitary representation, α(ϕ) is unitary itself. These representations
are easy to find and remarkably useful for our purposes.

We quickly explain why this approach is promising. Recall that irreducible man-
ifolds with b1(M) ≥ 1 are Haken. Thurston [Th82] (cf. also [He87]) showed that
the fundamental group of a Haken manifold is residually finite. Recall that a group
G is called residually finite if for every g 6= e ∈ G there exists a homomorphism
α : G → H, H a finite group, such that α(g) 6= e. Furthermore the free product
of residually finite groups is residually finite. This shows that any manifold we are
interested in has many homomorphisms to finite groups. In fact the geometrization
conjecture implies that all 3–manifold groups are residually finite.

Note that every finite group G is a subgroup of S|G|. In particular the homomor-
phisms to Sk, k ∈ N, contain all homomorphisms to all finite groups.

9.2. Knots with up to 12 crossings: genus bounds and fiberedness. In this
section we give sharp bounds on the genus of all knots with 12 crossings or less. Also
we detect all non–fibered knots with 12 crossings or less.

I. Knot genus: Given a diagram for a knot one can find a Seifert surface using
Seifert’s algorithm (cf. [Rol90]). This gives an upper bound on the genus of a knot.
It turns out that for all knots with 10 or fewer crossings the (untwisted) Alexander
norm determines the knot genus, that is, we have

2 genus(K) = deg(∆K(t)).

This equality also holds for all alternating knots (cf. [Cr59, Mu58a, Mu58b]). On the
other hand it is known that

2 genus(K) > deg(∆K(t))

for many knots with more than 10 crossings. We will discuss all 11–crossing and all
12–crossing knots with this property in this section.

There are 36 knots with 12 crossings or less for which genus(K) > 1
2
deg ∆K(t).

The most famous and interesting examples are K = 11401 (the Conway knot) and
11409 (the Kinoshita–Terasaka knot). Here we use the knotscape notation. Using
geometric methods Gabai [Ga84] showed that the genus of the Conway knot is three
and that the genus of the Kinoshita–Terasaka knot is two. The computation of the
genus for all 11–crossing knots was done by Jacob Rasmussen, using a computer
assisted computation of the Oszváth–Szabó knot Floer homology (cf. also [OS04a]
and [OS04b]).
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We first consider the Conway knot K = 11401 whose diagram is given in Figure
3. This knot has Alexander polynomial one, i.e., the degree of ∆K(t) equals zero.
Furthermore this implies that π1(X(K))(1) is perfect, i.e., π1(X(K))(n) = π1(X(K))(1)

for any n > 1. (For a group G, G(n) is defined inductively as follows; G(0) := G and
G(n+1) := [G(n), G(n)].) Therefore the genus bounds of Cochran [Co04] and Harvey
[Ha05] vanish as well.

a

e

f

h

j
k

g

i

b

c
d

Figure 3. The Conway knot 11401 and the Kinoshita–Terasaka knot 11409.

The fundamental group π1(X(K)) is generated by the meridians a, b, . . . , k of the
segments in the knot diagram of Figure 3. The relations are

a = jbj−1, b = fcf−1, c = g−1dg, d = k−1ek,
e = h−1fh, f = igi−1, g = e−1he, h = c−1ic,
i = aja−1, j = iki−1, k = e−1ae.

Using the program KnotTwister [F05] we found the homomorphism ϕ : π1(X(K)) →
S5 given by

A = (142), B = (451), C = (451), D = (453),
E = (453), F = (351), G = (351), H = (431),
I = (351), J = (352), K = (321),

where we use cycle notation. The generators of π1(X(K)) are sent to the element
in S5 given by the cycle with the corresponding capital letter. We then consider

α := α(ϕ) : π1(X(K))
ϕ−→ S5 → GL(V4(F13)). Using KnotTwister we compute

deg (∆α
0 (t)) = 0 and we compute the twisted Alexander polynomial to be

∆α
1 (t) = 1+6t+9t2 +12t3 + t5 +3t6 + t7 +3t8 + t9 +12t11 +9t12 +6t13 + t14 ∈ F13[t

±1].

Note that α is unitary and we can therefore apply Theorem 3.3 which says that if
∆α

1 (t) 6= 0, then

genus(K) ≥ 1

2k

(
deg (∆α

1 (t))− deg (∆α
0 (t))

)
+

1

2
.
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Therefore in our case we get

genus(K) ≥ 1

8
· 14 +

1

2
=

18

8
= 2.25.

Since genus(K) is an integer we get genus(K) ≥ 3. Since there exists a Seifert surface
of genus 3 for K (cf. [Ga84] and Figure 1) it follows that the genus of the Conway
knot is three.

For the Kinoshita–Terasaka knot K we found a map ϕ : π1(X(K)) → S5 such that

∆
α(ϕ)
1 (t) ∈ F13[t

±1] has degree 12 and deg
(
∆

α(ϕ)
0 (t)

)
= 0. It follows from Theorem

3.3 that genus(K) ≥ 1
8
· 12 + 1

2
= 2. A Seifert surface of genus two is given in [Ga84].

Note that in this case our inequality is strict, hence ‘rounding up’ is not necessary.
Our table below shows that this is surprisingly often the case.

Table 1 gives all knots with 12 crossings or less for which deg(∆K(t)) < 2 genus(K).
We obtained the list of these knots from Alexander Stoimenow’s knot page [Sto]. One
can also find the genus of all these knots on his knot page. We compute twisted

Alexander polynomials using KnotTwister and representations α(ϕ) : π1(X(K))
ϕ−→

Sk → GL(Vk−1(F13)). Our genus bounds from Theorem 3.3 give (by rounding up if
necessary) the correct genus in each case. All of the representations which give us

the correct genus bounds have the property that deg
(
∆

α(ϕ)
0 (t)

)
= 0.

Using KnotTwister it takes only a few seconds to find such representations and to
compute the twisted Alexander polynomial.

II. Fiberedness: It is known that a knot with 11 or fewer crossings is fibered if and
only if the Alexander polynomial is monic and deg(∆K(t)) = 2 genus(K). Hirasawa
showed that the knots 121498, 121502, 121546 and 121752 are not fibered even though
their Alexander polynomials are monic and deg(∆K(t)) = 2 genus(K).

Now consider the knot K = 121345. Its Alexander polynomial equals ∆K(t) =
1−2t+3t2−2t3 + t4 and its genus equals two. Therefore K has the abelian invariants
of a fibered knot, i.e., ∆K(t) is monic and 2 genus(K) = deg(∆K(t)). It follows from
Corollary 6.2 that if K were fibered, then for any field F and any representation
α : π1(M) → GL(F, k) the following would hold:

deg(∆K(t)) =
1

k

(
deg (∆α

1 (t))− deg (∆α
0 (t))

)
+ 1.

We found a representation α : π1(X(K)) → S4 such that for the canonical represen-
tation α : π1(X(K)) → S4 → GL(F3, 4) given by permuting the coordinates, we get
deg(∆α

1 (t)) = 7 and deg (∆α
0 (t)) = 1. We compute

1

4
deg (∆α

1 (t))− 1

4
deg (∆α

0 (t)) + 1 =
10

4
6= 4 = deg(∆K(t)).

Hence K is not fibered.
Now consider α : π1(X(K)) → S4 → GL(Z, 4), the second map being the canonical

representation induced from permutation on the basis elements. Then according to
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Knotscape name 11401 11409 11412 11434 11440 11464

genus bound from ∆K(t) 0 0 2 1 2 1
dimension of α(ϕ) 4 4 4 4 2 4

degree of ∆
α(ϕ)
1 (t) 19 12 20 12 10 12

genus bound from ∆α
1 (t) 2.25 2.00 3.00 2.00 3.00 2.00

Knotscape name 11519 121311 121316 121319 121339 121344

genus bound from ∆K(t) 2 1 2 1 1 2
dimension of α(ϕ) 4 3 2 2 4 4

degree of ∆
α(ϕ)
1 (t) 20 9 10 10 12 20

genus bound from ∆
α(ϕ)
1 (t) 3.00 2.00 2.75 3.00 2.00 3.00

Knotscape name 121351 121375 121412 121417 121420 121509

genus bound from ∆K(t) 2 2 1 1 2 2
dimension of α(ϕ) 2 4 4 4 4 2

degree of ∆
α(ϕ)
1 (t) 10 20 12 20 20 10

genus bound from ∆
α(ϕ)
1 (t) 3.00 3.00 2.00 3.00 3.00 3.00

Knotscape name 121519 121544 121545 121552 121555 121556

genus bound from ∆K(t) 2 2 2 2 2 1
dimension of α(ϕ) 4 4 4 4 2 2

degree of ∆
α(ϕ)
1 (t) 20 20 20 20 10 6

genus bound from ∆
α(ϕ)
1 (t) 3.00 3.00 3.00 3.00 3.00 2.00

Knotscape name 121581 121601 121609 121699 121718 121745

genus bound from ∆K(t) 1 0 1 1 0 1
dimension of α(ϕ) 4 5 4 4 4 4

degree of ∆
α(ϕ)
1 (t) 12 13 12 12 12 12

genus bound from ∆
α(ϕ)
1 (t) 2.00 1.80 2.00 2.00 2.00 2.00

Knotscape name 121807 121953 122038 122096 122100 122118

genus bound from ∆K(t) 1 2 2 2 2 2
dimension of α(ϕ) 4 2 4 4 2 4

degree of ∆
α(ϕ)
1 (t) 12 10 20 20 10 20

genus bound from ∆
α(ϕ)
1 (t) 2.00 3.00 3.00 3.00 3.00 3.00

Table 1. Computation of degrees of twisted Alexander polynomials.

Proposition 6.3 our computation can also be interpreted as saying that ∆α
1 (t) ∈ Z[t±1]

is not monic.
Similarly we found altogether 13 knots which are not fibered; we list them in

Table 2. We used Corollary 6.2 as above. That is, we compared the degrees of
untwisted Alexander polynomials with the degrees of twisted Alexander polynomials
corresponding to some representation π1(S

3 \ K) → Sk → GL(Fp, k) where Sk →
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GL(Fp, k) is the canonical representation. Stoimenow and Hirasawa then showed that

Knotscape name 121345 121498 121502 121546 121567 121670 121682

Order of permutation group k 4 5 5 3 5 5 4
Order p of finite field 3 2 11 2 3 2 3

Knotscape name 121752 121771 121823 121938 122089 122103

Order of permutation group k 3 3 5 5 5 4
Order p of finite field 2 7 7 11 2 3

Table 2. Alexander polynomials of non–fibered knots

the remaining 12–crossing knots are fibered if and only if the Alexander polynomial
is monic and if deg(∆K(t)) = 2 genus(K). So Corollary 6.2 was crucial in finding all
non–fibered 12–crossing knots.

Remark. Jacob Rasmussen confirmed our results using knot Floer homology which
gives a fibering obstruction as well (cf. [OS02, Section 3]).

9.3. Closed manifolds. In this short section we intend to show that twisted Alexan-
der polynomials are also very useful for studying closed manifolds.

Let K ⊂ S3 be a non–trivial knot and φ a generator of H1(X(K)). Since H1(X(K)) ∼=
H1(MK) we will denote the corresponding generator of H1(MK) by φ as well. Let S
be a minimal Seifert surface for K. Adding a disk to S along the boundary clearly
gives a closed surface Ŝ dual to φ ∈ H1(MK), hence ||φ||T,MK

≤ ||φ||T,X(K)−1. Gabai

[Ga87, Theorem 8.8] showed that Ŝ is in fact norm minimizing. In particular for a
non–trivial knot K

||φ||T,MK
= ||φ||T,X(K) − 1 = 2 genus(K)− 2.

If K fibers, then clearly (MK , φ) fibers over S1 as well. Gabai [Ga87] showed the
converse; a knot K is fibered if and only if MK is fibered.

We will quickly discuss the manifolds MK with K a knot with 12 crossings or
less. Let K = 11409, the Kinoshita–Terasaka knot. Previously we computed that
genus(K) = 3. By Gabai’s theorem above ||φ||T,MK

= 3−1 = 2. We will confirm this
using Theorem 3.3. The fundamental group π1(X(K)) is generated by the meridians
a, b, . . . , k of the segments in the knot diagram of Figure 3. The relations are

a = hbh−1, b = i−1ci, c = fdf−1, d = k−1ek,
e = gfg−1, f = dgd−1, g = j−1hj, h = kik−1,
i = g−1jg, j = b−1kb, k = e−1ae.

Let λ ∈ π1(X(K)) represent the longitude, then π1(MK) = π1(X(K))/〈λ〉. Note that

λ = hi−1fk−1gdj−1kg−1b−1e−1a.



40 STEFAN FRIEDL AND TAEHEE KIM

This can be seen by following the knot starting at a, and picking up a generator at
each undercrossing. The extra term a is needed to get a curve which has linking
number zero with the knot K.

Up to conjugation there exists a unique homomorphism ϕ : π1(X(K)) → S5 and
it factors through ϕ : π1(MK) → S5. For MK using KnotTwister we compute

deg
(
∆

α(ϕ)
X(K),0(t)

)
= deg

(
∆

α(ϕ)
MK ,0(t)

)
= 0 and deg

(
∆

α(ϕ)
X(K),1(t)

)
= 12 and deg

(
∆

α(ϕ)
MK ,1(t)

)
=

8 where α(ϕ) : π1(MK) → S5 → GL(V4(F13)). From Theorem 3.3 and the computa-
tion of twisted Alexander polynomials we get the following bounds on the Thurston
norm:

for X(K), deg (∆α
1 (t)) = 12 ⇒ ||φ||T,X(K) ≥ 12

4
= 3,

for MK , deg (∆α
1 (t)) = 8 ⇒ ||φ||T,MK

≥ 8
4

= 2.

Note that the degree of the twisted Alexander polynomial of X(K) ‘drops by just
the right amount’ to give again the correct Thurston norm for MK . In particular
this shows that twisted Alexander polynomials also determine ||φ||T,MK

. Our com-
putations show that in fact for all knots with 12 crossings or less twisted Alexander
polynomials determine the Thurston norm of MK .

Let K be one of the 13 non–fibered knots with 12 crossings with monic Alexander
polynomial and deg(∆K(t)) = 2 genus(K). Then MK is not fibered by Gabai [Ga87].
Corollary 6.2 and the computations with KnotTwister show that twisted Alexan-
der polynomials also detect that these manifolds are not fibered, confirming Gabai’s
result.

9.4. Satellite knots. We will show how to find lower bounds for the genus of satellite
knots. We will see that even though we are interested in the genus of a knot we
sometimes have to study the Thurston norm of a link complement.

Let K and C be knots in S3. Let A ⊂ S3 \K be a simple closed curve, unknotted
in S3. Then X(A) is a solid torus. Let ψ : ∂X(A) → ∂X(C) be a diffeomorphism
which sends a meridian of A to a longitude of C, and a longitude of A to a meridian
of C. The space

X(A) ∪ψ X(C)

is a 3-sphere and the image of K is denoted by S := S(K,C,A). We say S is the
satellite knot with companion C, orbit K and axis A. Note that we replaced a tubular
neighborhood of C by a knot in a solid torus, namely K ⊂ X(A).

In [FT05] the first author and Peter Teichner study examples where K is the knot
61, C is an arbitrary knot, and A is a knot as in Figure 4. In [FT05] they show that
all these knots are topologically slice, but it is not known whether they are smoothly
slice or not. Chuck Livingston asked what the genus of these satellite knots equals.

Proposition 9.1. Let K ⊂ S3 be a non–trivial knot, and A ⊂ X(K) a simple closed
curve such that [A] = 0 ∈ H1(X(K)), which is unknotted if considered as a knot in
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A

Figure 4. Knot 61 with choice of A and considered as a knot in the
solid torus X(A).

S3. Let C be another knot. Now let S := S(K, C, A) be the satellite knot. Then

genus(S) =
1

2
(||φ||T,X + 1),

where X := S3 \ (νK ∪ νA) and φ : H1(X) → Z is given by sending the meridian of
K to one, and the meridian of A to zero.

Proof. For convenience let us identify ∂X with K × S1 ∪A× S1. We also identify K
with K × {∗} ⊂ ∂X. It follows from [Sc53], [BZ03, p. 21] that (F denotes a surface)

genus(S) = min{genus(F )|F ⊂ X properly embedded and ∂F = K}
since the linking number of A and K equals zero. This also implies that φ : H1(A×
S1) → H1(X)

φ−→ Z is the zero map. Similar to the proof of Lemma 2.2 one can now
show that

||φ||T = min{2 genus(F )− 1|F ⊂ X properly embedded and K ⊂ ∂F, F dual to φ}
= min{2 genus(F )− 1|F ⊂ X properly embedded and ∂F = K}
= 2 genus(S)− 1.

¤
Hence in order to determine the genus of S(K, C, A) for any knot C we have to

determine the Thurston norm of ||φ||T,X . For X, we compute that the untwisted
Alexander polynomial ∆1(t) = 0. Hence we need twisted coefficients to get non–
trivial bounds.

Now consider the representation α : π1(X) → GL(F13, 1) given by α(µK) = 6 and
α(µA) = 2, where µK (respectively µA) denotes the meridian of K (respectively A).
For X we compute ∆α

1 (t) = 1 + 2t + 2t2 + 4t3 ∈ F13[t
±1]. It follows from Theorem 3.6

that ||φ||T,X ≥ 3.
Consider Figure 5. It shows the link K∪A and a Seifert surface of genus one for K.

The knot A intersects this Seifert surface twice. Therefore adding a hollow 1–handle
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gives a Seifert surface of genus two for K which does not intersect A. Therefore
||φ||T,X ≤ 3. Hence ||φ||T,X = 3 and by Proposition 9.1 we get genus(S) = 2.

A
K

Figure 5. Seifert surface for K ⊂ S3 \K ∪ A.

Using Fox calculus we computed the untwisted multivariable Alexander polynomial

∆(x, y) = x3y3 − x3y − x2y3 + x2y + xy2 − x− y2 + 1 ∈ Z[x±1, y±1],

here Z[x±1, y±1] = Z[H1(X)], where x corresponds to a meridian of K and y corre-
sponds to a meridian of A. It follows that the Alexander norm ||φ||A equals 3. The
Alexander norm gives a better bound than the untwisted Alexander polynomial since
φ is an extreme point of the Alexander norm ball (cf. [Mc02]). For manifolds the
multivariable Alexander polynomial has to be computed by finding the greatest com-
mon divisor of the determinants of minors, which is not an easy task in more complex
cases. In contrast, the computation of twisted Alexander polynomials is very fast.
This shows that even if the Alexander norm gives the correct result for the Thurston
norm, it is still useful to study twisted Alexander polynomials.

9.5. Ropelength. For a smooth curve K in S3 we can define its length Len(K), and
for a collection of curves L we can define its thickness τ(L). The ropelength of a knot
K is defined to be the quotient of its length and its thickness. We refer to [CKS02]
for more details. Cantarella, Kusner and Sullivan [CKS02, Corollary 22] proved the
following theorem.

Theorem 9.2. If K is a non–trivial curve of unit thickness, then

Len(K) ≥ 2π
(
2 +

√
2 genus(K)− 1

)
.

Let L = L1∪· · ·∪Lm be a collection of smooth curves of unit thickness with meridians
µ1, . . . , µm. If φ1, . . . , φm ∈ H1(X(L)) is the dual basis, then

Len(Li) ≥ 2π
(
1 +

√
||φi||T

)
.
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Clearly our methods now give lower bounds on the length of a component of a
collection of curves of unit thickness. In [CKS02] the authors consider the link in
Figure 6. Denote the component represented by a circle by L1, and the other com-

Figure 6

ponent by L2. Denote the meridian of Li by µi for i = 1, 2. Attach a half–sphere
to L1 ‘below the paper plane’. Removing three disks and adding star shaped ‘pants’
gives a Seifert surface for L1 of genus two which does not intersect L2. In [CKS02]
the authors conjectured that the above surface is minimal, i.e., that ||φ1||T = 3 for
φ1 the homomorphism with φ1(µ1) = 1, φ1(µ2) = 0. Harvey [Ha05, Section 8] used
higher–order Alexander polynomials to prove the conjecture in the positive. We will
reprove this using twisted Alexander polynomials.

Consider the representation α : π1(X(L)) → GL(F13, 1) given by α(µ1) = 10 and
α(µ2) = 7. Then ∆̃α

1 (t) = 1 + 4t2 + 2t3 ∈ F13[t
±1]. It follows from Theorem 5.1 that

||φ||T ≥ 3
1
− 1 = 2. By Lemma 3.4 ||φ||T ≡ 10 + 7 mod 2, hence it is odd. Therefore

||φ||T ≥ 3, which reproves the conjecture of [CKS02]. In particular it follows that the
ropelength of L1 is at least 2π(1 +

√
3). Using similar arguments, one can show that

the ropelength of L2 is also at least 2π(1 +
√

3).

9.6. 9–crossing links. McMullen [Mc02] determined the Thurston norm for all links
with 9 or fewer crossings and with three or fewer components, except for 93

21, 9
2
41, 9

2
50

and 93
15 (here we use Rolfsen’s [Rol90] notation). For the link 93

21 the multivari-
able Alexander polynomial vanishes, and also all twisted Alexander polynomials we
computed vanish.

In the case of the other three links McMullen computed the Alexander norm, but
could not show that it agrees with the Thurston norm for all φ. We computed twisted
Alexander polynomials for the extreme points of the Alexander norm ball for the links
92

41 and 92
50 and our computations strongly suggest that the Alexander norm agrees

with the Thurston norm in these two cases.

9.7. Dunfield’s link. We will show that our invariants also detect subtle examples
of pairs (X(L), φ) where L is a link in S3 and φ ∈ H1(X(L)), which do not fiber over
S1. Consider the link L in Figure 7 from [Du01]. Denote the knotted component
by L1 and the unknotted component by L2. Let x, y ∈ H1(X(L)) be the elements
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Figure 7. Dunfield’s link.

represented by a meridian of L1 respectively L2. Then the multivariable Alexander
polynomial equals

∆X(L) = xy − x− y + 1 ∈ Z[H1(X(L))] = Z[x±1, y±1].

The Alexander norm ball (cf. [Mc02] for a definition) and the Thurston norm ball
(which is determined in [FK05]) are given in Figure 8. Dunfield [Du01] showed that

(−1,0)

(0,1)

(0,−1)

(1,0)

(0,−1)

(0,1)

1
2( )1

2
,

1
2
, 1

2( )

Figure 8. Alexander norm ball and Thurston norm ball for Dunfield’s link.

(X(L), φ) fibers over S1 for all φ ∈ H1(M) in the cone on the two open faces with
vertices (−1

2
, 1

2
), (0, 1) respectively (0,−1), (1

2
,−1

2
). He also showed that (X(L), φ)

does not fiber over S1 for any φ ∈ H1(X(L)) lying outside the cone. Later in [FK05]
the authors completely determined the Thurston norm of X(L).

Now let φ be the homomorphism given by φ(x) = 1, φ(y) = −1. In that case φ is
inside the cone on an open face of the Alexander norm ball and ∆1(t) = 1−3t+3t2−
t3 ∈ Z[t±1] is monic. Hence the abelian invariants are inconclusive whether (X(L), φ)
is fibered or not. On the other hand we found a representation π1(X(L)) → S3 →
GL(F2, 3) such that ∆α

1 (t) = 0 ∈ F2[t
±1]. Therefore (X(L), φ) does not fiber over

S1 by Theorem 6.1. Note that the fact that (X(L), φ) does not fiber over S1 also
follows from the fact that φ is not in the cone on a top–dimensional open face of the
Thurston norm ball (cf. [Th86] and [Oe86]).

10. Conjectures
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10.1. Fiberedness conjecture. In Section 9.2 we saw that twisted Alexander poly-
nomials very successfully detect non–fibered knots and non–fibered manifolds. In
fact, if K is not fibered, then in most cases ∆K(t) is not monic. If ∆K(t) is not
monic, then the computations suggest that most non–trivial representations will give
a twisted Alexander polynomial which is not monic. Loosely speaking, it seems that
if K is not fibered, then a twisted Alexander polynomial is monic only by chance. In
fact we think that the representations from homomorphisms to finite groups suffice
to detect non–fibered knots. More precisely, we propose the following conjecture.

Conjecture 10.1. Let M be a 3–manifold and φ ∈ H1(M) non–trivial. Then (M, φ)
fibers over S1 if and only if for all epimorphisms α : π1(M) → G, G a finite group,
the twisted Alexander polynomial ∆G

1 (t) ∈ Z[t±1] is monic and

||φ||T =
1

|G| deg(τ(M,φ, α)).

We give some further supporting evidence. It is well–known that fibered manifolds
are prime. We have the following result.

Lemma 10.2. Let M be a 3–manifold which is not prime and let φ ∈ H1(M). If the
geometrization conjecture holds, then there exists an epimorphism π1(M) → G, G a
finite group, such that ∆G

1 (t) = 0 ∈ Z[t±1].

Proof. First assume that M = M1#M2 with b1(Mi) > 0, i = 1, 2. If φ : H1(Mi) →
H1(M) → Z, i = 1, 2 is non–trivial, then H0(Mi;Z[t±1]) is Z[t±1]–torsion for i = 1, 2,
but H0(S

2;Z[t±1]) is not Z[t±1] torsion. It follows from the Mayer–Vietoris exact
sequence that H1(M ;Z[t±1]) is not Z[t±1]–torsion.

Now assume that φ : H1(M1) → H1(M) → Z is trivial. Then H0(M1Z[t±1]) is not
Z[t±1]–torsion, hence by Lemma 4.14 (applied to the field Q(t)) together with Propo-
sition 3.2 it follows that H1(M1;Z[t±1]) is not Z[t±1]–torsion. Since H1(S

2;Z[t±1]) = 0
it follows from the Mayer–Vietoris exact sequence that H1(M ;Z[t±1]) is not Z[t±1]–
torsion.

If M = M1#M2 with b1(Mi) > 0, i = 1, 2, then an easy Mayer–Vietoris argument
for the homology of M = M1 ∪S2 M2 with Z[t±1]–coefficients shows that we have
∆α

1 (t) = 0 for all α : π1(M) → G, G a finite group. In the proof we need the fact
which follows from Lemma 4.14 (applied to the field Q(t)) that if φ vanishes on Mi,
then Hα

1 (Mi;Z[t±1]) is not Z[t±1]–torsion.
Now assume that M = M1#M2 with b1(M1) > 0 and b1(M2) = 0, M2 6= S3. By the

Poincaré conjecture (a consequence of the geometrization conjecture), π1(M2) 6= 0,
and by [He87] and the geometrization conjecture there exists a non–trivial epimor-
phism α : π1(M2) → G, G a finite group. Denote the homomorphism π1(M) =
π1(M1) ∗ π1(M2) → π1(M2) → G by α as well. Then

∆G
1 (t) = ∆MG,φG,1(t)
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by Lemma 3.8 where MG is the cover of M corresponding to M . But the prime
decomposition of MG has |G| copies of M1, in particular by the above observation
that ∆M,φ,1(t) = ∆MG,φG,1(t) = 0. ¤

Proposition 10.3. Let S = S(K, C, A) be a satellite knot with A ∈ π1(S
3 \ K)(1)

and ∆C(t) 6= 1. Then there exists a homomorphism α : π1(S) → G, G a finite group,
such that ∆G

X(S),1(t) is not monic.

Note that combining this proposition with Theorem 6.1 we come close to reproving
the more general fact that if K and C are any knots and A ∈ π1(S

3 \K)(1) then S is
not fibered, which follows from studying π1(S

3 \ S)(1) (cf. [BZ03, p. 64]).

Proof. First let α : π1(X(K)) → G be any homomorphism to a finite group. Denote
the order of α(A) ∈ G by r and write LC,r for the r–fold cover of S3 branched along
C. By [Ch03, Section 4] there exists a surjective map π1(X(S)) → π1(X(K)) such
that ∆G

X(S),1(t) ∈ Z[t±1] is an annihilator for H1(LC,r)⊗Z Z[t±1].

Clearly we are done, once we can arrange α such that H1(LC,r) is either infinite or
non–trivial torsion. By Riley [Ri90] the finite values |H1(LC,r)| grow exponentially in
r, in particular there exists R ∈ N such that H1(LC,r) is either infinite or non–trivial
torsion for all r ≥ R.

Since π1(X(K)) is residually finite (cf. [Th82, He87]) an easy argument shows that
we can find an epimorphism α : π1(X(K)) → G, G finite, such that α(Ak) 6= e for
any k < R. In particular the order of α(A) in G is bigger than or equal to R. ¤

We explain a possible approach to Conjecture 10.1. Let M be a 3–manifold whose
boundary is empty or consists of tori and φ ∈ H1(M) non–trivial. Assume that
for every representation α : π1(M) → G, G a finite group, the twisted Alexander
polynomial ∆G

1 (t) is monic and

||φ||T =
1

|G| deg(τ(M,φ, α)).

Assuming the geometrization conjecture we get from Lemma 10.2 that M is prime.
Let S be a surface dual to φ with minimal complexity. Clearly Hα

0 (M ;Z[G][t±1]) 6=
0 , hence ∆G

0 (t) 6= 1. Combining this observation with the fact that ∆G
1 (t) 6= 0 (which

is obvious from the assumption), we can assume by Corollary 4.8 that S is connected.
Then let N be the result of cutting M along S. Denote the positive and the negative
inclusions of S into N by i+ and i−. Since S is minimal, i+ : π1(S) → π1(N) is
injective by Dehn’s Lemma. Since M is prime it follows easily from Stallings’ theorem
[St62] that (M, φ) fibers over S1 if and only if i+ : π1(S) → π1(N) is surjective (cf.
also [Ka96, p. 84] in the knot complement case).

Proposition 10.4. Hα
1 (S;Z[G]) and Hα

1 (N ;Z[G]) are free abelian groups of the same
rank.
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Proof. First note that Hα
1 (S;Z[G]) is the first homology of the cover of S correspond-

ing to π1(S) → G, hence Hα
1 (S;Z[G]) is free abelian.

Let p be a prime. It follows from the proof of Proposition 6.3 that ∆
αp

1 (t) 6= 0 for
the representation αp : π1(M) → G → GL(Fp, |G|). In particular . By Lemma 4.2
Hα

2 (M ;Fp[G][t±1]) is Fp[t
±1]–torsion. Therefore we have a short exact sequence

0 → H
αp

1 (S;Fp[G])⊗FpFp[t
±1] → H

αp

1 (N ;Fp[G])⊗FpFp[t
±1] → H

αp

1 (M ;Fp[G][t±1]) → 0.

In particular H
αp

1 (S;Fp[G]) ∼= H
αp

1 (N ;Fp[G]) for every prime p as Fp–vector spaces.
Note that Hα

0 (S;Z[G]) ∼= Z[G/Im{π1(S) → G}] and Hα
0 (N ;Z[G]) ∼= Z[G/Im{π1(N) →

G}] in particular both are Z–torsion free. It follows from the universal coefficient the-
orem applied to the Z–module complex C∗(S̃)⊗Z[π1(S)] Z[G] that

Hα
1 (S;Z[G])⊗Z Fp

∼= H
αp

1 (S;Fp[G])

for every prime p. The same statement holds for N . Combining our results we
see that Hα

1 (S;Z[G]) ⊗Z Fp
∼= Hα

1 (N ;Z[G]) ⊗Z Fp for any prime p. It follows that
Hα

1 (S;Z[G]) ∼= Hα
1 (N ;Z[G]).

¤
Now consider the exact sequence

Hα
1 (S;Z[G])⊗ Z[t±1]

ti+−i−−−−−→ Hα
1 (N ;Z[G])⊗ Z[t±1] → Hα

1 (M ;Z[G][t±1]) → 0.

Since Hα
1 (S;Z[G]) and Hα

1 (N ;Z[G]) are free abelian groups of the same rank it follows
that ∆G

1 (t) = det(ti+ − i−) (we refer to [Ch03] for the definition of ∆G
1 (t) ∈ Z[t±1]).

Using Lemmas 4.7, 4.9 and 4.14 we see that the assumption

||φ||T =
1

|G|
(
deg

(
∆G

1 (t)
)− deg

(
∆G

0 (t)
)− deg

(
∆G

2 (t)
) )

implies that deg(det(ti+ − i−)) = deg
(
∆G

1 (t)
)

= rank(Hα
1 (S;Z[G])). In particular

det(i+) 6= 0 and det(i−) 6= 0. The assumption that the twisted Alexander polynomial
∆G

1 (t) is monic implies that in fact det(i+) = ±1 and det(i−) = ±1. Therefore
the question is whether i+ : π1(S) → π1(N) is surjective if i+ : Hα

1 (S;Z[G]) →
Hα

1 (N ;Z[G]) is surjective for every representation π1(M) → G, G a finite group.
This discussion shows that Conjecture 10.1 follows from the geometrization con-

jecture and the following group–theoretic question.

Conjecture 10.5. Let S be an incompressible surface in a 3–manifold M and let N
be M cut along S. Let i : S → N be one of the positive and the negative inclusions of
S into N . If i : Hα

1 (S;Z[G]) → Hα
1 (N ;Z[G]) is surjective for every homomorphism

π1(M) → G, G a finite group, then i : π1(S) → π1(N) is surjective.

Note that it is well–known that the inclusion induced homomorphisms π1(S) →
π1(M) and π1(N) → π1(M) are injections. We think that an affirmative answer to the
above conjecture will need a strong condition on π1(M) (of which π1(N) and π1(S) are
subgroups) such as subgroup separability, which is conjectured to hold for fundamental
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groups of hyperbolic manifolds (cf. [Th82]) but does not hold for fundamental groups
in general (cf. [NW01]). On the other hand, knots which are not hyperbolic are
either torus knots (and therefore fibered), or satellite knots, which can perhaps be
dealt with differently, as in Proposition 10.3.

10.2. Knot genus conjecture. As we pointed out in Section 5 there exist many
manifolds such that ∆α

1 (t) = 0 for all φ ∈ H1(M) and all representations α. Even
though Theorem 5.1 can still give some partial information, it is clear that in the
case b1(M) > 1 in general we can not expect to get the Thurston norm from twisted
Alexander polynomials. As we pointed out in Section 5, we can not even determine
whether a surface with minimal complexity dual to some φ ∈ H1(M) is connected or
not.

It follows immediately from the definition of twisted Alexander polynomials that
∆α

1 (t) is determined by the fundamental group of M . Therefore it is a natural question
whether the Thurston norm is determined by the fundamental group. Note that the
Thurston norm of a manifold is determined by its prime components. If M is a
prime manifold with H1(M) 6= 0, then M is Haken and by Waldhausen’s work it is
determined by its peripheral system. In particular if M is closed and Haken, then it
is determined by its fundamental group.

In the case of a knot complement X(K) Feustel and Whitten [FW78, Corollary 3]
showed that the genus of a knot K is determined by π1(X(K)). We do not know
whether π1(M) determines the Thurston norm for every manifolds with boundary.

We conjecture that twisted Alexander polynomials determine the genus of hyper-
bolic knots. More precisely we formulate the following conjecture.

Conjecture 10.6. Let K ⊂ S3 be a hyperbolic knot and φ ∈ H1(X(K)) a generator.
Then there exists an epimorphism α : π1(M) → G such that

1

|G|
(
deg

(
∆G

1 (t)
)− deg

(
∆G

0 (t)
) )

> ||φ||T − 1.

It turns out that this question is similar in nature to Conjecture 10.1. Indeed, let
S be a minimal Seifert surface for K. Then the maps

i+, i− : π1(S) → π1(S
3 \ νS)

are injective. The goal now is to show that there exists a map π1(X(K)) → G such
that the induced maps on homology

i+, i− : Hα
1 (S;Z[G]) → Hα

1 (S3 \ νS;Z[G])

are ‘almost’ injective. For example if Hα
1 (S;Z[G]) and Hα

1 (S3 \ νS;Z[G]) are isomor-
phic as Z–modules and i+, i− are isomorphisms, then ∆G

1 (t) has degree rankZ(H
α
1 (S;Z[G]))

and therefore

||φ||T =
1

|G|
(
deg

(
∆G

1 (t)
)− deg

(
∆G

0 (t)
) )

.
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Hence again we have to detect a property of the map on the fundamental group level
in a map of appropriate homology groups.

Remark. Let K1 and K2 be knots and assume there exists an epimorphism ϕ :
π1(X(K1)) → π1(X(K2)). Simon asked (cf. question 1.12 (b) on Kirby’s problem list
[Kir97]) whether this implies that genus(K1) ≥ genus(K2). Let α : π1(X(K2)) → G
be an epimorphism to a finite group. By [KSW04] ∆α

K2
(t) divides ∆α◦ϕ

K1
(t). Thus

our results strongly suggest an affirmative answer to Simon’s question, and clearly a
positive solution to our conjecture would answer Simon’s question.
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