CLARIFICATION TO 'NEW TOPOLOGICALLY SLICE KNOTS'

ABSTRACT. In [FT05] we claimed that the three figures of [FT05, Figure 7.1] represent the Stevedore knot 6_1 . In fact the middle knot is 9_{46} . In this note we clarify the situation and the ensuing examples.

Consider the knot K(n) in Figure 1. The left most band is twisted by n twists.

FIGURE 1. The knot K(n).

We summarize the properties of the knots K(n):

Lemma 1. (1) K(n) is a ribbon knot with a ribbon disk D such that $\pi_1(D) \cong$ $SR = \mathbb{Z} \ltimes \mathbb{Z}[1/2].$

(2) A Seifert matrix of K(n) is given by

$$\begin{pmatrix} n & 2 \\ 1 & 0 \end{pmatrix}.$$

- (3) The knot K(-2) is 6_1 .
- (4) The knot K(0) is 9_{46} .

Proof. Figure 2 shows that the knot K(n) is formed by band connected sum of two trivial knots. In particular K(n) is a ribbon knot. We refer to [GS99, p. 210–212] for the computation of the fundamental group of a ribbon disk complement. The argument in [GS99, p. 210–212] also shows immediately that the fundamental group is independent of n.

Now consider the Seifert surface for K(n) given in Figure 3 with the curves a, b representing a basis for H_1 . It is clear that with respect to this choice the Seifert matrix is given by

$$\begin{pmatrix} n & 2 \\ 1 & 0 \end{pmatrix}.$$

Date: December 13, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 57M25.

FIGURE 2. K(n) as band connected sum.

FIGURE 3. A Seifert surface for the knot K(n).

Now consider the isotopies given in Figure 4. Clearly for n = -2 the resulting knot equals the Stevedore knot 6_1 given in Figure 5.

Finally we turn to K(0). Note that K(0) has a diagram with 12 crossings. A direct computation shows that the Alexander polynomial equals $2t^2 - 5t + 2$ and that the Jones polynomial equals $t^{-6} - t^{-5} + t^{-4} - 2t^{-3} + t^{-2} - t^{-1} + 2$. The knot tables show that the only knot with 12 crossings or less with these polynomials is 9_{46} .

In [FT05, Section 7] we incorrectly thought that $K(0) = 6_1$. On pages 2153 and 2155 it should therefore say K(0) instead of 6_1 . The proof of [FT05, Proposition 7.7] is written for K(0).

In fact, as we will show now, a version of [FT05, Proposition 7.7] holds for all knots K(n), in particular for $K(-2) = 6_1$.

Indeed, consider the knot K(n) together with curves a, b as in Figure 3. For given knots C_{α}, C_{β} consider the knot $S = S(K(n), \alpha, \beta, C_{\alpha}, C_{\beta})$ which is the result of tieing the knots C_{α} and C_{β} into the bands α and β .

Proposition 2. If one of the following holds:

- (1) $\Delta_{C_{\alpha}}(t) \neq 1$ and $\Delta_{C_{\beta}}(t) \neq 1$ or
- (2) $\Delta_{C_{\beta}}(t) \neq 1 \text{ and } n \neq 0,$

then S has no h-ribbon with fundamental group SR.

Proof. Let $S = S(K(n), \alpha, \beta, C_{\alpha}, C_{\beta})$ be such a satellite knot for which (1) or (2) holds. Assume that S has in fact a h-ribbon D with fundamental group G :=

FIGURE 4. Isotopies of the knot K(n).

 $SR = \mathbb{Z} \ltimes \Lambda/(t-2)$. We denote the 0-framed surgery on S by M_S and we write $\Lambda := \mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$. We also write K = K(n). We write $N_D = M_S \setminus \nu D$. Then $\operatorname{Ker}\{H_1(M_S; \mathbb{Z}[\mathbb{Z}]) \to H_1(N_D; \mathbb{Z}[\mathbb{Z}])\}$ is a metabolizer for $B\ell(\mathbb{Z})$ (cf. e.g. [Fr04]). Note that α, β in Figure 3 lift to elements $\tilde{\alpha}, \tilde{\beta}$ in $H_1(M_S; \Lambda)$, in fact

$$H_1(M_S; \Lambda) \cong (\Lambda \tilde{\alpha} \oplus \Lambda \tilde{\beta})/(At - A^t).$$

Furthermore the Blanchfield pairing $B\ell(\mathbb{Z})$ with respect to the generators $\tilde{\alpha}$ and $\tilde{\beta}$ is given by the matrix $(t-1)(At-A^t)^{-1}$.

FIGURE 5. The Stevedore knot 6_1 .

First assume that
$$n = 3k$$
 for some k. Then for $P = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix}$ we have

$$P^t A P = \begin{pmatrix} 0 & 2\\ 1 & 0 \end{pmatrix} = A'$$

Note that A' is also a Seifert matrix for K. We get a commutative diagram

$$\begin{array}{ccccccccc} B\ell(\mathbb{Z}): & H_1(M_S;\Lambda) & \times & H_1(M_S;\Lambda) & \to & \mathbb{Q}(t)/\Lambda \\ & \uparrow \cong & \uparrow \cong & & \parallel \\ (t-1)(At-A^t)^{-1}: & \Lambda^2/(At-A^t) & \times & \Lambda^2/(At-A^t) & \to & \mathbb{Q}(t)/\Lambda \\ & \downarrow \cong & \downarrow \cong & & \parallel \\ (t-1)(A't-A'^t)^{-1}: & \Lambda^2/(A't-A'^t) & \times & \Lambda^2/(A't-A'^t) & \to & \mathbb{Q}(t)/\Lambda. \end{array}$$

Here the top vertical map is given by $(1,0) \to \tilde{\alpha}, (0,1) \to \tilde{\beta}$ and the bottom vertical map is given by $w \mapsto P^t w$.

We see immediately that $B\ell(\mathbb{Z})$ has two metabolizers, which are generated by $\tilde{\alpha}' = \tilde{\alpha}$ and $\tilde{\beta}' = \tilde{\beta} + k\tilde{\alpha}$.

In particular the map $\pi := \pi_1(M_S) \to \pi_1(N_D)$ is up to automorphism of G either of the form

$$\varphi_{\tilde{\alpha}'}: \pi_1(M_S) \to \pi/\pi^{(2)} \cong \mathbb{Z} \ltimes H_1(M_S; \Lambda) \to \mathbb{Z} \ltimes \left(H_1(M_S; \Lambda)/\tilde{\alpha'}\Lambda\right) \xrightarrow{\cong} SR$$

or it is of the same form with $\tilde{\alpha}'$ replaced by $\tilde{\beta}'$. We denote this homomorphism by $\varphi_{\tilde{\beta}'}$. By Theorem [FT05, Theorem 1.3] we get $\operatorname{Ext}^{1}_{\mathbb{Z}[G]}(H_{1}(M_{S};\mathbb{Z}[G]),\mathbb{Z}[G]) = 0$ with G-coefficients induced by either $\varphi_{\tilde{\alpha}'}$ or by $\varphi_{\tilde{\beta}'}$. Now consider coefficients induced by $\varphi_{\tilde{\alpha}'}(\alpha) = 0$ and $\varphi_{\tilde{\alpha}'}(\beta) \neq 0$. It therefore follows from [FT05, Lemma 6.2] that

$$H_1(M_S; \mathbb{Z}[G]) \cong H_1(M_K; \mathbb{Z}[G]) \oplus H_1(M_{C_\beta}; \mathbb{Z}[\mathbb{Z}]) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}[G].$$

We compute

 $\begin{aligned} & \operatorname{Ext}_{\mathbb{Z}[G]}^{1}(H_{1}(M_{S};\mathbb{Z}[G]),\mathbb{Z}[G]) \\ & \cong & \operatorname{Ext}_{\mathbb{Z}[G]}^{1}(H_{1}(M_{K};\mathbb{Z}[G]),\mathbb{Z}[G]) \oplus H_{1}(M_{C_{\beta}};\mathbb{Z}[\mathbb{Z}]) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}[G],\mathbb{Z}[G]) \\ & \cong & \operatorname{Ext}_{\mathbb{Z}[G]}^{1}(H_{1}(M_{K};\mathbb{Z}[G]),\mathbb{Z}[G]) \oplus \operatorname{Ext}_{\mathbb{Z}[G]}^{1}(H_{1}(M_{C_{\beta}};\mathbb{Z}[\mathbb{Z}]) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}[G],\mathbb{Z}[G]) \\ & \cong & \operatorname{Ext}_{\mathbb{Z}[G]}^{1}(H_{1}(M_{K};\mathbb{Z}[G]),\mathbb{Z}[G]) \oplus \operatorname{Ext}_{\mathbb{Z}[\mathbb{Z}]}^{1}(H_{1}(M_{C_{\beta}};\mathbb{Z}[\mathbb{Z}]),\mathbb{Z}[\mathbb{Z}]). \end{aligned}$

Note that $H_1(M_{C_{\beta}}; \mathbb{Z}[\mathbb{Z}]) \cong H_1(S^3 \setminus C_{\beta}; \mathbb{Z}[\mathbb{Z}])$, in particular it is \mathbb{Z} -torsion free. It follows from [Le77, Theorem 3.4] that $\operatorname{Ext}^1_{\mathbb{Z}[\mathbb{Z}]}(H_1(M_{C_{\beta}}; \mathbb{Z}[\mathbb{Z}]), \mathbb{Z}[\mathbb{Z}]) \cong H_1(M_{C_{\beta}}; \mathbb{Z}[\mathbb{Z}])$, which is not possible since by assumption $\Delta_{C_{\beta}}(t) \neq 1$. The only other possibility is therefore that $\operatorname{Ext}^1_{\mathbb{Z}[G]}(H_1(M_S; \mathbb{Z}[G]), \mathbb{Z}[G]) = 0$ with *G*-coefficients induced by $\varphi_{\tilde{\beta}'}$. If n = 0, we then have $\varphi_{\tilde{\alpha}'}(\alpha) \neq 0$ and $\varphi_{\tilde{\alpha}'}(\beta) = 0$ and

$$H_1(M_S; \mathbb{Z}[G]) \cong H_1(M_K; \mathbb{Z}[G]) \oplus H_1(M_{C_{\alpha}}; \mathbb{Z}[\mathbb{Z}]) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}[G].$$

If $n \neq 0$, then we have $\varphi_{\tilde{\alpha}'}(\alpha) \neq 0$ and $\varphi_{\tilde{\alpha}'}(\beta) \neq 0$ and

$$H_1(M_S; \mathbb{Z}[G]) \cong H_1(M_K; \mathbb{Z}[G]) \oplus H_1(M_{C_\alpha}; \mathbb{Z}[\mathbb{Z}]) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}[G] \oplus H_1(M_{C_\beta}; \mathbb{Z}[\mathbb{Z}]) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}[G].$$

But in both cases the same calculation as above shows that we get a contradiction to either $n \neq 0$ or $\Delta_{C_{\alpha}}(t) \neq 0$.

Now assume that $n \neq 0$ (3). We claim that $\Lambda^2/(At - A^t)$ is cyclic. Indeed, using simultaneous row and column operations the presentation matrix $At - A^t$ can be turned into

$$\begin{pmatrix} k(t-1) & 2t-1 \\ 1-2t & 0 \end{pmatrix}$$

where $k \in \{1, 2\}$ and $k \equiv n(3)$. In the case k = 1 we can do the following row and column operations

$$\begin{pmatrix} t-1 & 2t-1 \\ t-2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -t & 2t-1 \\ t-2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -t & 2t-1 \\ 0 & (2t-1)(1-2t^{-1}) \end{pmatrix} \Rightarrow \begin{pmatrix} t & 0 \\ 0 & (2t-1)(1-2t^{-1}) \end{pmatrix}$$

This shows that $\Lambda^2/(At - A^t)$ is cyclic. A similar sequence of row and column operations proves the claim for k = 2. This shows that the Blanchfield form has a unique metabolizer. It is clear that this metabolizer is generated by $\tilde{\alpha}$. We can now conclude the proof as in the case $n \equiv 0$ (3).

Acknowledgment. We would like to thank Tim Cochran for communicating this error to us.

References

- [Fr04] S. Friedl, Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants, Algebraic and Geometric Topology, Vol. 4 (2004) 893–934.
- [FT05] S. Friedl, P. Teichner, New topologically slice knots, Geometry and Topology, Volume 9 (2005) Paper no. 48, 2129–2158.
- [GS99] R. Gompf, A Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, AMS (1999)

 $[{\rm Le77}]$ J. Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977) 1–50.