
THE UNKNOTTING NUMBER AND CLASSICAL INVARIANTS I

MACIEJ BORODZIK AND STEFAN FRIEDL

Abstract. Given a knot K we introduce a new invariant coming from the Blanch-
field pairing and we show that it gives a lower bound on the unknotting number
of K. This lower bound subsumes the lower bounds given by the Levine-Tristram
signatures, by the Nakanishi index and it also subsumes the Lickorish obstruction
to the unknotting number being equal to one. Our approach in particular allows
us to show for 25 knots with up to 12 crossings that their unknotting number is at
least three, most of which are very difficult to treat otherwise.

1. Introduction

Let K ⊂ S3 be a knot. Throughout this paper a knot is always assumed to be
oriented. A crossing change is one of the two local moves on a knot diagram given
in Figure 1. The unknotting number u(K) of a knot K is defined to be the minimal

“+” “−”

negative crossing change

positive crossing change

Figure 1. Negative and positive crossing change.

number of crossing changes necessary to turn K into the unknot. The unknotting
number is one of the most elementary invariants of a knot, but also one of the most
intractable. Whereas upper bounds can be found readily using diagrams, it is much
harder to find non–trivial lower bounds.

In the paper we will for the most part study a closely related invariant, namely the
algebraic unknotting number ua(K), which is defined to be the minimal number of
crossing changes necessary to turn K into a knot with trivial Alexander polynomial.
By [Fo93] and [Sae99] this is equivalent to the original definition by Murakami [Muk90]
given in terms of ‘algebraic unknotting moves’ on Seifert matrices. It is clear that
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u(K) ≥ ua(K), and that in general this is not an equality. For example for any non–
trivial knot K with trivial Alexander polynomial we have u(K) ≥ 1 and ua(K) = 0.

1.1. Review of classical invariants. Let us first fix some terminology. Let F be
a Seifert surface for K and let v1, . . . , vn be a collection of embedded simple closed
curves on F which represent a basis for H1(F ;Z). The corresponding Seifert matrix
V is defined as the matrix with (i, j)-entry given by

lk(vi, v
+
j ),

where we denote by v+j the positive push-off of vj . The S–equivalence class of the
Seifert matrix is well-known to be an invariant of K (see e.g. [Lic97, Theorem 8.4] for
details). The S–equivalence class of the Seifert matrix will be denoted by V = VK .
By abuse of notation we will often denote by V = VK a representative of the S–
equivalence class. In this paper, by a classical invariant of a knot we mean an
invariant which is determined by VK .

Given a knot K we denote by X(K) = S3 \ νK the exterior of K and we denote
by Σ(K) its branched cover. We now give several well–known examples of classical
invariants which will play a rôle in the paper (in the following the matrix V is a
2n× 2n Seifert matrix for K):

(1) The Alexander polynomial is defined as

∆K(t) = t−n · det(V t− V t) ∈ Z[t±1].

Note that ∆K(t) is well-defined with no indeterminacy, and ∆K(1) = 1.
(2) The knot determinant det(K) = (−1)n det(V + V t), which in this paper is

viewed as a signed invariant.
(3) The isometry type of the linking pairing

l(K) : H1(Σ(K);Z)×H1(Σ(K);Z) −→ Q/Z,

which is isometric to the pairing

Z2n/(V + V t)Zn × Z2n/(V + V t)Z2n → Q/Z
(v, w) 7→ vt(V + V t)−1w.

We refer to [Go78] for details.
(4) The Blanchfield pairing

λ(K) : H1(X(K);Z[t±1])×H1(X(K);Z[t±1]) −→ Q(t)/Z[t±1]

which is a hermitian non–singular pairing on the Alexander moduleH1(X(K);Z[t±1]).
We refer to Section 2.2 for the definition.

(5) The Nakanishi index m(K), i.e. the minimal number of generators of the
Alexander module H1(X(K);Z[t±1]).

(6) Given z ∈ S1 the Levine-Tristram signature is defined as

σz(K) = sign(V (1− z) + V t(1− z−1)).

(Note that σ−1(K) is just the ordinary knot signature σ(K).)
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(7) Given z ∈ C \ {0, 1} the nullity is defined as

ηz(K) = null(V (1− z) + V t(1− z−1)),

furthermore η1(K) is by convention defined to be 0.

1.2. Classical bounds for the unknotting number. We will now quickly sum-
marize all previous classical lower bounds on the unknotting number which are known
to the authors.

The first lower bounds on the unknotting number go back to Wendt [We37], they
are subsumed by the following inequality due to Nakanishi [Na81]:

u(K) ≥ m(K).

We discuss it in Section 4.1
It has been known since the work of Murasugi [Mus65] that Levine–Tristram signa-

tures give rise to lower bounds on the unknotting number. In particular the following
inequality holds:

ua(K) ≥ µ(K) :=
1

2

(
max{ηz(K) + σz(K) | z ∈ S1}+max{ηz(K)− σz(K) | z ∈ S1}

)
.

This inequality is in all likelihood known to the experts, but we are not aware of a
reference and we thus give a proof (together with a more refined statement) in Section
4.2.

By Saeki [Sae99, Proposition 4.1] the topological 4–ball genus gtop4 (K) is a lower
bound on the algebraic unknotting number ua(K). Livingston [Liv11] introduced a
classical invariant ρ(K) which gives a lower bound on gtop4 (K). In Section 4.3 we will
slightly modify Livingston’s invariant to define a new classical invariant ρZ[t±1](K)
which satisfies

gtop4 (K) ≥ ρZ[t±1](K) ≥ ρ(K)

and we will show that n(K) ≥ ρZ[t±1](K).
We now recall several classical obstructions to a knot K having ‘small’ algebraic

unknotting number. If K can be unknotted using a single ǫ–crossing change (with
ǫ ∈ {−1, 1})), then by the work of Lickorish [Lic85] there exists a generator h of
H1(Σ(K);Z) such that

l(h, h) =
−2ǫ

det(K)
∈ Q/Z.

Recently Jabuka [Ja09] also introduced an obstruction to the unknotting number
being one, in Section 4.6 we will see that it is subsumed by the Lickorish obstruction.
Also note that the Lickorish obstruction was generalized by Fogel, Murakami and
Rickard (see [Fo93, Muk90, Lic11]) in terms of the Blanchfield pairing. Finally note
that if |σ(K)| = 4, then Stoimenow [St04, Proposition 5.2] gives a classical obstruction
to ua(K) = 2 in terms of the determinant of K. To the best of our knowledge the
above is a complete list of lower bounds on the unknotting number given by classical
invariants.



4 MACIEJ BORODZIK AND STEFAN FRIEDL

Remarks. (1) Lower bounds on the unknotting number have also been obtained
using gauge theory [CoL86, KMr93], Khovanov homology [Ras10] and Heegaard-
Floer homology [Ras03, OS03b, OS05, Ow08, Gr09, Sar10] and various other
methods [KM86, Kob89, ST89, Mi98, Tra99, St04, MQ06, GL06]. Note though,
that with the exception of the Rasmussen s–invariant, the Ozsváth–Szabo τ–
invariant and the Owens obstruction most of the above are in fact obstructions
to the unknotting number being equal to one or two.

(2) Without doubt, the most important result on unknotting numbers has been
the resolution of the Milnor conjecture by Kronheimer and Mrowka [KMr93]:

the unknotting number of the (p, q)–torus knot equals (p−1)(q−1)
2

. We also refer
to [OS03b, Ras10, Sar10] for alternative proofs. Finally we refer to [BW84]
for an interesting pre–gauge theory discussion of the problem.

1.3. Definition of the invariant n(K). Given a hermitian n × n-matrix A over
Z[t±1] with det(A) 6= 0 we denote by λ(A) the pairing

λ(A) : Z[t±1]n/AZ[t±1]n × Z[t±1]n/AZ[t±1]n → Q(t)/Z[t±1]
(a, b) 7→ atA−1b,

where we view a, b as represented by column vectors in Z[t±1]n. Note that λ(A) is a
non-singular, hermitian pairing.

Let K be a knot. We define n(K) to be the minimal size of a hermitian matrix A
over Z[t±1] such that

• λ(A) ∼= λ(K), i.e. λ(A) is isometric to the Blanchfield pairing of K, and
• the matrix A(1) is congruent over Z to a diagonal matrix which has ±1’s on
the diagonal.

In Section 2.2 we will see that the Blanchfield pairing of K can indeed be represented
by such a matrix A, i.e. we will show that n(K) is actually defined. We will fur-
thermore show that n(K) ≤ deg∆K(t) + 1. Note that n(K) = 0 if and only if the
Alexander polynomial of K is trivial. Finally note that n(K) is a classical invariant
since the Blanchfield pairing is a classical invariant.

1.4. The main theorem. Our main theorem is the following.

Theorem 1.1. Let K be a knot which can be turned into an Alexander polynomial
one knot using u+ positive crossing changes and u− negative crossing changes. Then
there exists a hermitian matrix A(t) of size u+ + u− over Z[t±1] with the following
two properties:

(1) λ(A(t)) ∼= λ(K),
(2) A(1) is a diagonal matrix such that u+ diagonal entries are equal to −1 and

u− diagonal entries are equal to 1.

In particular ua(K) ≥ n(K).
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In Section 4 we will show that the lower bound on the algebraic unknotting number
from Theorem 1.1 contains, to the best knowledge of the authors, all previous classical
lower bounds to the unknotting number. This result can be summarized in the
following theorem:

Theorem 1.2. The invariant n(K) subsumes the following unknotting obstructions:

(1) the Nakanishi index (see Section 4.1),
(2) the invariant µ(K) (see Section 4.2),
(3) ρZ[t±1](K) and in particular Livingston’s invariant ρ(K) (see Section 4.3),
(4) the Fogel–Murakami–Rickard obstruction (see Section 4.4),
(5) the Lickorish obstruction and the Jabuka obstruction (see Section 4.5 and

Section 4.6),
(6) the Stoimenow obstruction (see Section 4.7).

In particular all of the above give lower bounds on the algebraic unknotting number.

The precise statements and the proofs are given in the indicated parts of Section 4.

Remark. The fact that n(K) subsumes all other classical lower bounds does not
invalidate those earlier bounds, since all but the first one are directly computable,
whereas at the moment there is no algorithm to calculate n(K) in general.

Remark. The fact that the earlier classical lower bounds on the unknotting number
give in fact lower bounds on the algebraic unknotting number can also at times be
deduced from reading carefully the original proofs.

Fogel [Fo94] proved the following remarkable partial converse to Theorem 1.1.

Theorem 1.3. If n(K) = 1, then ua(K) = 1.

Fogel’s proof is constructive in the sense that in many cases, given a knot K with
n(K) = 1, one can actually find explicitly a diagram and a crossing change which
turns K into an Alexander polynomial one knot. We refer to [Fo93, Section 3] and
[Fo94, Section 4] for more details. The results of Fogel make plausible the following
conjecture.

Conjecture 1.4. For any knot K we have

n(K) = ua(K).

We plan to investigate this conjecture in a future paper.

Remark. Theorem 1.2 can in particular be viewed as evidence towards Conjecture
1.4.

1.5. Diagrammatic comparison of classical invariants. In order to show how
the newly defined invariant n(K) fits into the bigger picture of knot invariants, we
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Figure 2. Diagrammatic summary of known invariants.

present in Figure 2 a diagram which shows the relationship between various topolog-
ical and classical invariants. Beyond the invariants introduced above we will also use
the following topological invariants:

g3(K) = minimal genus of a surface in S3 cobounding the knot K,
gsmooth
4 (K) = minimal genus of a smooth surface in D4 cobounding the knot K,
gtop4 (K) = minimal genus of a locally flat surface in D4 cobounding the knot K,

and the following classical invariants

η(K) := max{ηz(K) | z ∈ C \ {0}},
mR(K) := minimal number of generators of H1(X(K);R[t±1]),
nR(K) := minimal size of a hermitian matrix over R[t±1] representing

H1(X(K);R[t±1])×H1(X(K);R[t±1])→ R(t)/R[t±1].

It is straightforward to see that mR(K) = η(K). In a future paper [BF12b] we will
show that furthermore

nR(K) = max{µ(K), η(K)}.

In Figure 2 we use the following notation: given two knot invariants f and g we write
f(K) → g(K) if f(K) ≥ g(K) for every knot K. Furthermore we denote by P the
set of all prime power roots of unity.
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The existence of an arrow is in all cases either well-known, or a tautology or it
follows from the results in this section. If two invariants are not related by a concate-
nation of arrows, then in most cases it is known that they are unrelated. If an arrow
is not decorated by an ‘=’ sign, then in most cases it is known that the invariants are
indeed not equal.

1.6. Applications and examples. Our understanding of the relation between the
n(K) invariant and the presentation matrix for the linking pairing of the double
branched cover (cf. Section 3, especially Lemma 3.3) allows us to provide new com-
putable obstructions for u(K) = 2 and u(K) = 3, which are related to Owens’
obstruction from [Ow08]. The idea behind the results in Sections 5.2 and 5.3 is the
following. If the Blanchfield pairing can be realized by a n × n matrix over Z[t±],
then there exists an n× n integer matrix of a certain type which represents the link-
ing pairing l(K) of the double branched cover. Up to congruence there exist finitely
many such matrices, which furthermore in many cases can be listed explicitly. It is
then straightforward to verify whether or not l(K) can be represented by any of these
matrices.

Among knots with up to 12 crossings there are 25 knots with m(K) ≤ 2 and
µ(K) ≤ 4, but where our approach shows that n(K) ≥ 3. Out of these 25 knots
the Stoimenow obstruction detects four knots, to the best of our knowledge no other
classical obstruction applies to these 25 knots. Also, in most cases the Rasmussen s–
invariant and the Ozsváth–Szabó τ–invariant can not detect the unknotting number.
We furthermore checked the u(K) = 3 obstruction for all knots with up to 14 crossings
with |σ(K)| = 6 and m(K) ≤ 3. We found that it applies precisely to two such
knots, namely 14n12777 and 14a4637. We have not yet implemented the obstruction to
u(K) = n for higher values of n.

Our new obstruction to n(K) = 2 now allows us to completely determine the
algebraic unknotting number for all knots with up to 11 crossings. Details are given
in Section 6 and in [BF12a].

Acknowledgment. This paper greatly benefitted from conversations with Baskar
Balasubramanyam, Slaven Jabuka, Raymond Lickorish, Brendan Owens, Andrew
Ranicki, András Stipsicz and Alexander Stoimenow. We would like to thank Micah
Fogel for sending us his thesis and Hitoshi Murakami for supplying us with a copy of
[Muk90]. The website ‘knotinfo’ [CL11] which is maintained by Jae Choon Cha and
Chuck Livingston has been an invaluable tool for finding examples and testing our
algorithms. We are also very grateful that Alexander Stoimenow provided us with
braid descriptions for knots up to 14 crossings and we wish to thank Julia Collins for
help with obtaining Seifert matrices from the braid descriptions.

Finally we also would like to express our gratitude to the Renyi Institute for its
hospitality and to the London Mathematical Society for a travel grant.



8 MACIEJ BORODZIK AND STEFAN FRIEDL

2. Proof of Theorem 1.1

Throughout Section 2 we write

Λ := Z[t±1] and Ω := Q(t).

As usual we also identify Λ with the group ring of Z.

2.1. Poincaré duality and the universal coefficient spectral sequence. In
this section we will collect several facts which we will use continuously throughout
the paper.

Throughout the paper X will always denote a manifold whose first homology group

is isomorphic to Z. We denote the infinite cyclic covering of X by π : X̂ → X . Given

a submanifold Y ⊂ X we write Ŷ = π−1(Y ). Note that Z is the deck transformation

group of X̂ . This defines a canonical left action of Λ = Z[Z] on C∗(X̂, Ŷ ;Z). Given
any Λ-module N we now define

H∗(X, Y ;N) := H∗(HomΛ(C∗(X̂, Ŷ ;Z), N))

and

H∗(X, Y ;N) := H∗(C∗(X̂, Ŷ ;Z)⊗Λ N).

(Here, and throughout the paper, given a moduleH over Λ we denote byH the module
with the involuted Λ-structure, i.e. H = H as abelian groups, but multiplication by
p ∈ Λ in H is the same as multiplication by p in H .) In particular we can consider
the modules H∗(X, Y ; Λ), H∗(X, Y ; Λ), H∗(X, Y ; Ω), and H∗(X, Y ; Ω). When Y = ∅,
then we will suppress Y from the notation.

Note that the quotient field Ω is flat over the ring Λ. In particular we have
H∗(X, Y ; Ω) ∼= H∗(X, Y ; Λ)⊗Λ Ω and H∗(X, Y ; Ω) ∼= H∗(X, Y ; Λ)⊗Λ Ω.

Suppose thatX is an n-manifold, then for any Λ-moduleN Poincaré duality defines
isomorphisms of Λ-modules

Hi(X, ∂X ;N) ∼= Hn−i(X ;N)

Hi(X ;N) ∼= Hn−i(X, ∂X ;N).

Finally we recall the universal coefficient spectral sequence (UCSS), we refer to
[Lev77, Theorem 2.3] for details. Let N be any Λ-module. Then the UCSS starts
with E2

p,q = ExtpΛ(Hq(X ; Λ), N) and converges to H∗(X ;N). The differentials at the
r−stage of this sequence have degree (1− r, r). Note that for any two Λ-modules H
and N the module Ext0Λ(H,N) is canonically isomorphic to HomΛ(H,N). Also note
that

ExtpΛ(H,N) = 0

for any p > 2 since Λ has cohomological dimension 2. Finally note that Z, viewed as
a Z[t±1]–module with trivial t–action, admits a resolution of length 1. It now follows
that ExtpΛ(Z, N) = 0 for any p > 1.
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2.2. Seifert matrices and Blanchfield pairings. Let K ⊂ S3 be a knot. We
consider the following sequence of maps:

(2.1)

Φ: H1(X(K); Λ) → H1(X(K), ∂X(K); Λ)

→ H2(X(K); Λ)
∼=
←− H1(X(K); Ω/Λ)

→ HomΛ(H1(X(K); Λ),Ω/Λ).

Here the first map is the inclusion induced map, the second map is Poincaré duality,
the third map comes from the long exact sequence in cohomology corresponding to
the coefficients 0 → Λ → Ω → Ω/Λ → 0, and the last map is the evaluation map.
It is well–known that the first map is an isomorphism, the second map is obviously
an isomorphism, and it follows from the UCSS (and the straightforward calculation
that ExtpΛ(Z,Ω/Λ) = 0 for p ≥ 1) that the evaluation map is also an isomorphism. It
follows that the above maps thus define a non-singular pairing

λ(K) : H1(X(K); Λ)×H1(X(K); Λ) → Ω/Λ
(a, b) 7→ Φ(a)(b),

called the Blanchfield pairing of K. This pairing is well-known to be hermitian, in
particular λ(K)(a1, a2) = λ(K)(a2, a1) and λ(K)(µ1a1, µ2a2) = µ1λ(K)(a1, a2)µ2 for
µi ∈ Λ, ai ∈ H1(X(K); Λ). We refer to [Bl57] for an alternative definition and for
further details.

Remark. The Alexander polynomial ∆K(t) is well-known to annihilate the Alexander
module. It now follows easily from the definition of λ(K), that λ(K) takes values in
∆K(t)

−1Z[t±1]/Z[t±1] ⊂ Q(t)/Z[t±1]. This fact also follows from the description of
the Blanchfield pairing in terms of Seifert matrices due to Kearton [Ke75, Section 8]
which we recall below.

Let V be any matrix of size 2k which is S–equivalent to a Seifert matrix for K.
Note that V − V t is antisymmetric and it satisfies det(V − V t) = (−1)k. It is well–
known that, possibly after replacing V by PV P t for an appropriate P , the following
equality holds:

(2.2) V − V t =

(
0 idk

− idk 0

)
.

Following [Ko89, Section 4] we now define AK(t) to be the matrix

(2.3)

(
(1− t−1)−1 idk 0

0 idk

)
V

(
idk 0
0 (1− t) idk

)
+

+

(
idk 0
0 (1− t−1) idk

)
V t

(
(1− t)−1 idk 0

0 idk

)
.
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Note that the matrix AK(t) is a hermitian matrix defined over Λ and note that
det(AK(1)) = (−1)k (see [Ko89]). Also note that

(2.4)

(
(1− t−1) idk 0

0 idk

)
AK(t)

(
(1− t) idk 0

0 idk

)
= (1− t)V + (1− t−1)V t.

We now have the following proposition.

Proposition 2.1. Let K be a knot and AK(t) as above, then λ(AK(t)) ∼= λ(K).

Note that the isometry type of the Blanchfield pairing in fact determines the S-
equivalence class of the Seifert matrix, see [Tro73] and [Ran03]. In that sense the
Blanchfield pairing is a ‘complete’ classical invariant, i.e. it determines all other
classical invariants.

Proof. First note that the Blanchfield pairing λ(K) is isometric to the following pair-
ing (we refer to [Ke75, Section 8] for details):

(2.5) Λ2k/(V t− V t)Λ2k × Λ2k/(V t− V t)Λ2k
(t−1)(V t−V t)−1

// Ω/Λ.

The notation we use here, and similarly below, means that to a, b ∈ Λ2k we associate
at(1− t)(V t− V t)−1b. We now write Λ0 := Z[t, t−1, (1− t)−1] and we let

P :=

(
t−1 idk 0

0 (t− 1)−1 idk

)
.

We consider the following commutative diagram:

Λ2k/AK(t)Λ
2k × Λ2k/AK(t)Λ

2k

��

AK(t)−1

// Ω/Λ

��
Λ2k

0 /AK(t)Λ
2k
0 × Λ2k

0 /AK(t)Λ
2k
0

(v,w)7→(Pv,Pw)
��

AK(t)−1

// Ω/Λ0

��
Λ2k

0 /PAK(t)Λ
2k
0 × Λ2k

0 /PAK(t)Λ
2k
0

=

��

(PAK(t)−1P
t
)−1

// Ω/Λ0

��
Λ2k

0 /(V t− V t)Λ2k
0 × Λ2k

0 /(V t− V t)Λ2k
0

(t−1)(V t−V t)−1

// Ω/Λ0

Λ2k/(V t− V t)Λ2k × Λ2k/(V t− V t)Λ2k

OO

(t−1)(V t−V t)−1

// Ω/Λ.

OO

Here the top vertical maps and the bottom vertical maps are induced by the inclusion
Λ → Λ0. Recall that multiplication by t − 1 induces an isomorphism of Λ2k/(V t −
V t)Λ2k and of Λ2k/AK(t)Λ

2k (see [Lev77]). It follows that the two aforementioned
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maps are isomorphisms of Λ-modules. For the third vertical map we made use of the
fact that

PAK(t)P
t
= (t− 1)−1(V t− V t)

and we used that

PAK(t)Λ2k
0 = PAK(t)P

t
Λ2k

0 = (t− 1)−1(V t− V t)Λ2k
0 = (V t− V t)Λ2k

0 .

Since all vertical maps on the left in the above commutative diagram are isomorphisms
we deduce from (2.5) that λ(AK(t)) ∼= λ(K).

�

We conclude this section with the following lemma:

Lemma 2.2. Let V be a matrix which is S–equivalent to a Seifert matrix of the knot
K and such that V satisfies (2.2). Let AK(t) be the matrix as in (2.3). Then the
matrix A(t) = AK(t) ⊕ (1) (i.e. the block diagonal sum of the matrices AK(t) and
(1)) represents λ(K) and the bilinear matrix A(1) is diagonalizable over Z.

Proof. Let V be a Seifert matrix of the knot K of size 2k satisfying (2.2). Then we
can write

V =

(
B C + I
Ct D

)

where B, C and D are k×k matrices, I is the identity matrix and moreover B = Bt,
D = Dt. It is easy to compute that

AK(1) =

(
B I
I 0

)
.

It is straightforward to verify that AK(1) is congruent over Q to the block sum of
I and −I, hence AK(1), viewed as a symmetric bilinear pairing, is indefinite. If we
consider A(t) = AK(t)⊕ (1) (which clearly represents the same Blanchfield pairing as
AK(t)), then A(1) is an indefinite, odd symmetric bilinear pairing over Z, hence by
[HM73, Theorem 4.3] it is diagonalizable. �

2.3. Definition of n(K). Let K ⊂ S3 be a knot. It follows from Lemma 2.2 that it
makes sense to define n(K) as the minimal size of a hermitian matrix A over Z[t±1]
such that

• λ(A) ∼= λ(K);
• the matrix A(1) is congruent over Z to a diagonal matrix which has ±1’s on
the diagonal.

In fact we can use Lemma 2.2 to deduce a more precise statement.

Lemma 2.3. For any knot K we have the following inequality

n(K) ≤ deg∆K(t) + 1.
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Proof. It is well–known, see e.g. [Lev70, p. 195] that any Seifert matrix is S–equivalent
to a matrix V which is non–singular and which satisfies (2.2). Since det(V t− V t) =
∆K(t) it follows easily that V is a matrix of size deg∆K(t). The corollary now follows
immediately from Lemma 2.2. �

Remarks. (1) Suppose that

V =

(
B C + I
Ct D

)

is a matrix of size deg∆K(t) which is S–equivalent to a Seifert matrix of K
and B = Bt, D = Dt. If B itself represents an odd pairing, then AK(1) is
already diagonalizable. In that case n(K) ≤ deg∆K(t).

(2) Fogel [Fo93, Section 3.3] gives examples of two knots K1 and K2 such that
n(K1#K2) = n(K1) = n(K2) = 1. This shows that the n(K) invariant is in
general not additive. This is in contrast to the conjecture that the unknotting
number is additive (see [Kir97, Problem 1.69 (B)] and see [Sch85] for some
strong evidence towards this conjecture).

2.4. The Blanchfield pairing and intersection pairings on 4–manifolds. We
now turn to the proof that ua(K) ≥ n(K). We will show that the 0–framed surgery on
a knot which can be turned into an Alexander polynomial one knot using u+ positive
and u− negative crossing changes cobounds a 4–manifold with certain properties. We
will then show that a matrix representing the equivariant intersection pairing on that
4–manifold gives in fact a presentation matrix for the Blanchfield pairing of K.

Given a knot K ⊂ S3 we denote in the following by M(K) the 0–framed surgery on
K. Furthermore, given a topological 4–manifold W with boundary M , we consider
the following sequence of maps

H2(W ;Z)
ı
−−→ H2(W,M ;Z)

PD
−−→ H2(W ;Z)

ev
−−→ HomZ(H2(W ;Z)),

where ı denotes the inclusion induced map, PD denotes Poincaré duality and ev
denotes the evaluation map. This defines a pairing

H2(W ;Z)×H2(W ;Z) −→ Z,

called the ordinary intersection pairing of W , which is well–known to be symmetric.
In the following we will several times make implicit use of the following lemma.

Lemma 2.4. Suppose the following hold:

(1) M is connected,
(2) H1(M ;Z)→ H1(W ;Z) is an isomorphism,
(3) H1(W ;Z) is torsion–free,

then the ordinary intersection pairing is non–singular.
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Proof. The assumption that H1(M ;Z) → H1(W ;Z) is an isomorphism implies by
Poincaré duality that H2(M ;Z)→ H3(W,M ;Z) is an isomorphism. From the univer-
sal coefficient theorem it follows that HomZ(H2(M ;Z),Z)→ HomZ(H3(W,M ;Z),Z)
is an isomorphism. But H2(M ;Z) ∼= H1(M ;Z) and H3(W,M ;Z) ∼= H1(W ;Z) ∼=
Hom(H1(W ;Z),Z) are torsion–free, it thus follows that H3(W,M ;Z)→ H2(M ;Z) is
an isomorphism. It follows from the long exact sequence of the pair (W,M) that the
map ı : H2(W ;Z)→ H2(W,M ;Z) is an isomorphism. The assumption that H1(W ;Z)
is torsion–free implies by the universal coefficient theorem that the evaluation map
ev : H2(W ;Z) → HomZ(H2(W ;Z),Z) is an isomorphism. It now follows that the
ordinary intersection pairing is non–singular. �

We now consider a topological 4–manifold W with boundary M such that π1(W ) =
Z. We then consider the following sequence of maps

(2.6) H2(W ; Λ)
ı
−−→ H2(W,M ; Λ)

PD
−−→ H2(W ; Λ)

ev
−−→ HomΛ(H2(W ; Λ),Λ),

where the first map is again the inclusion induced map, the second map is Poincaré
duality and the third map is the evaluation map. This composition of maps defines
a pairing

H2(W ; Λ)×H2(W ; Λ) −→ Λ,

which is well-known to be hermitian. We refer to this pairing as the twisted inter-
section pairing on W . Now we shall introduce a following notion, which we shall use
several times in the future.

Definition 2.5. Let K be a knot and M(K) the zero framed surgery on K. We shall
say that a four manifold W tamely cobounds M(K) if the following conditions are
satisfied:

(1) ∂W = M(K),
(2) the inclusion induced map H1(M(K);Z)→ H1(W ;Z) is an isomorphism,
(3) π1(W ) = Z,

If furthermore the intersection form on H2(W ;Z) is diagonalizable, we say that W
strictly cobounds M(K).

The following theorem will be the key ingredient in the proof that ua(K) ≥ n(K).

Theorem 2.6. Let K be a knot. Suppose there exists a topological 4–manifold W ,
which tamely cobounds M(K). Then H2(W ; Λ) is free of rank b2(W ). Furthermore,
if B is an integral matrix representing the ordinary intersection pairing of W , then
there exists a basis B for H2(W ; Λ) such that the matrix A(t) representing the twisted
intersection pairing with respect to B has the following two properties:

(1) λ(A(t)) ∼= λ(K),
(2) A(1) = B.

The proof of Theorem 2.6 is rather long and will require all of the following section.
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2.5. Proof of Theorem 2.6. Let K be a knot and letW be a topological 4–manifold
W , which tamely cobounds M(K). Throughout this section we write M := M(K).
We first want to prove the following lemma:

Lemma 2.7. The Λ–module H2(W ; Λ) is free of rank b2(W ).

Proof. We first want to show that H2(W ; Λ) is a free Λ-module. Note that H2(W ; Λ)
is a finitely generated Λ-module since Λ is Noetherian. By [Ka86, Corollary 3.7] the
module H2(W ; Λ) is free if and only if ExtiΛ(H2(W ; Λ),Λ) = 0 for i = 1, 2.

Note that π1(W ) ∼= Z implies that H1(W ; Λ) = 0. We also have H4(W ; Λ) = 0. We
furthermore have an isomorphism H0(M ; Λ)→ H0(W ; Λ). We thus conclude from the
long exact homology sequence corresponding to the pair (W,M) that H0(W,M ; Λ) =
0 and H1(W,M ; Λ) = 0.

Recall that the UCSS (see Section 2.1) starts with E2
p,q = ExtpΛ(Hq(W ; Λ),Λ) and

converges to H∗(W ; Λ). Furthermore the differentials have degree (1 − r, r). By the
above we have E2

p,q = 0 for q = 1 and q = 4. Since Λ has cohomological dimension 2
we also have E2

p,q = 0 for p ≥ 3. Finally note that

E2
2,0 = Ext2Λ(H0(W ; Λ),Λ) = Ext2Λ(Λ/(t− 1)Λ,Λ) = 0.

It now follows from the UCSS that we have a monomorphism

E2
1,2 = Ext1Λ(H2(W ; Λ),Λ) −→ H3(W ; Λ).

But H3(W ; Λ) ∼= H1(W,M ; Λ) = 0. Similarly, it follows from the UCSS that we have
a monomorphism

E2
2,2 = Ext2Λ(H2(W ; Λ),Λ) −→ H4(W ; Λ).

But H4(W ; Λ) ∼= H0(W,M ; Λ) = 0. This concludes the proof of the claim that
H2(W ; Λ) is a free module.

We now turn to the proof that H2(W ; Λ) is a free Λ-module of rank s := b2(W ).
It remains to show that H2(W ; Λ) is of rank s. Since Ω is flat over Λ, it suffices
to show that dimΩ(H2(W ; Ω)) = s. It is clear that Hi(W ; Ω) = 0 for i = 0, 1, 4.

Furthermore H3(W ; Ω) ∼= H1(W,M ; Ω). But since Ω is a field the latter is isomorphic

to H1(W,M ; Ω) which is zero. We thus calculate

dimΩ(H2(W ; Ω)) =

4∑

i=0

(−1)i dimΩ(Hi(W ; Ω)) = χ(W ).

Now note that b0(W ) = b1(W ) = 1 and b4(W ) = 0. Also note that H3(W ;Z) =
H1(W,M ;Z) = 0 since we assume that H1(M ;Z)→ H1(W ;Z) is an isomorphism. It
thus follows that b3(W ) = 0, and we see that χ(W ) = b2(W ) = s. This concludes the
proof of the lemma. �

We now write s = b2(W ). We pick a basis B for H2(W ; Λ) and denote by A = A(t)
the corresponding s × s–matrix representing the twisted intersection pairing. Note
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that A is a hermitian s × s-matrix. By the argument of [FHMT07, Lemma 2.2] we
see that the matrix A(1) represents the ordinary intersection pairing on H2(W ;Z).
In particular there exists an integral matrix P such that PA(1)P t = B. After acting
on the basis B by the matrix P we can without loss of generality assume that in fact
A(1) = B. The following lemma now concludes the proof of Theorem 2.6.

Lemma 2.8. The pairing λ(A) is isometric to λ(K).

The proof of the lemma will require the remainder of this section. We first want
to prove the following claim:

Claim. The following is a short exact sequence:

(2.7) 0 −→ H2(W ; Λ) −→ H2(W,M ; Λ) −→ H1(M ; Λ) −→ 0.

Proof. To prove the claim we first consider the following exact sequence

H2(M ; Λ) −→ H2(W ; Λ) −→ H2(W,M ; Λ) −→ H1(M ; Λ) −→ H1(W ; Λ) −→ . . .

Recall that H1(W ; Λ) = 0. Also note that

H2(M ; Λ)⊗Λ Ω ∼= H2(M ; Ω) ∼= H1(M ; Ω) ∼= HomΩ(H1(M ; Ω),Ω) = 0

since H1(M ; Ω) = H1(M ; Λ) ⊗Λ Ω = 0 (here we used that H1(M ; Λ) is torsion). In
particular H2(M ; Λ) is torsion and the map H2(M ; Λ) → H2(W ; Λ) is trivial since
H2(W ; Λ) is a free Λ-module. This now concludes the proof of the claim. �

We now define a Blanchfield pairing on H1(M ; Λ) and an intersection pairing on
H2(W,M ; Λ). First of all, similar to (2.1) we can consider the following sequence of
isomorphisms:

H1(M ; Λ)
PD
−−→ H2(M ; Λ)

∼=
←− H1(M ; Ω/Λ)

ev
−−→ HomΛ(H1(M ; Λ),Ω/Λ).

This defines a hermitian non-singular pairing

(2.8) H1(M ; Λ)×H1(M ; Λ) −→ Ω/Λ.

It is well-known that the natural map H1(X(K); Λ)→ H1(M ; Λ) is an isomorphism,
and it follows immediately that the Blanchfield pairing on X(K) is isometric to the
pairing (2.8) on M .

Secondly, we consider the following sequence of maps

(2.9)
H2(W,M ; Λ)

PD
−−→ H2(W ; Λ)→ H2(W ; Ω) ∼= H2(W,M ; Ω)
ev
−→ Hom(H2(W,M ; Λ),Ω).

Here, for the third map we made use of the fact that H1(M ; Λ) is Λ-torsion, there-
fore (2.7) implies that the inclusion induced map H2(W,M ; Ω) → H2(W ; Ω) is an
isomorphism. The other maps in (2.9) are given by Poincaré duality, inclusion of
rings and the evaluation homomorphism. The sequence of maps in (2.9) now defines
a hermitian pairing

H2(W,M ; Λ)×H2(W,M ; Λ) −→ Ω.
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Claim. The intersection pairing on W , the intersection pairing on H2(W,M ; Λ) and
the Blanchfield pairing on M fit into the following commutative diagram, where the
left vertical maps form a short exact sequence:

(2.10) H2(W ; Λ)×H2(W ; Λ)

��

// Λ

��
H2(W,M ; Λ)×H2(W,M ; Λ)

��

// Ω

��
H1(M ; Λ)×H1(M ; Λ) // Ω/Λ.

Proof. In the previous claim we already showed that the left vertical maps form a
short exact sequence. We now consider the following diagram

H2(W ; Λ)×H2(W ; Λ)

��

// Λ

��
H2(W ; Ω)×H2(W ; Ω)

��

// Ω

��
H2(W,M ; Ω)×H2(W,M ; Ω) // Ω

H2(W,M ; Λ)×H2(W,M ; Λ)

OO

// Ω.

OO

The pairings on Ω–homology are defined in complete analogy to the corresponding
pairings on Λ–homology, and the vertical maps are the obvious maps. It now follows
easily from the definitions that this is a commutative diagram. Since the image of
H2(W ; Λ) → H2(W,M ; Ω) lies in the image of H2(W,M ; Λ) → H2(W,M ; Ω) it now
follows that the top square in the diagram of the claim commutes.

We now consider the following diagram

(2.11) H2(W,M ; Λ) //

��

H1(M ; Λ)

��

H2(W ; Λ)

��

H2(M ; Λ)

Hom(H2(W,M ; Λ),Ω)

��

H1(M ; Ω/Λ)

∼=

OO

��

Hom(H2(W,M ; Λ),Ω/Λ) Hom(H1(M ; Λ),Ω/Λ)oo
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where the left middle vertical map is a part of the definition of the intersection pairing
on H2(W,M ; Λ), furthermore the horizontal maps are the maps induced by long
exact sequences corresponding to the pair (W,M). By [Lei06, Section 6] this diagram
commutes. This now implies that the lower square in the claim also commutes. �

Claim. The evaluation map

H2(W ; Λ)
ev
−−→ HomΛ(H2(W ; Λ),Λ)

is an isomorphism.

Proof. In order to prove the claim we have to study the UCSS corresponding to
H2(W ; Λ). Note that Ext1Λ(H0(W ; Λ),Λ) = Λ/(t− 1)Λ is Λ-torsion, hence the differ-
ential

d2 : E
2
1,0 = Ext1Λ(H0(W ; Λ),Λ) −→ E2

0,2 = Ext0Λ(H2(W ; Λ),Λ)

is zero since Ext0Λ(H2(W ; Λ),Λ) = HomΛ(H2(W ; Λ),Λ) is Λ-torsion free. It now
follows (using the earlier discussion) that the UCSS for H2(W ; Λ) gives rise to the
desired isomorphism

(2.12) H2(W ; Λ)
∼=
−−→ Ext0Λ(H2(W ; Λ),Λ) = HomΛ(H2(W ; Λ),Λ).

�

Recall that we picked a basis B for H2(W ; Λ) and that we denote by A = A(t)
the corresponding matrix representing the twisted intersection pairing on H2(W ; Λ).
Now note that by Poincaré duality and by the above claim we have two isomorphisms

(2.13) H2(W,M ; Λ)
PD
−−→
∼=

H2(W ; Λ)
ev
−−→
∼=

HomΛ(H2(W ; Λ),Λ).

We now endow H2(W,M ; Λ) with the basis C which is dual to B. It follows easily
from (2.6) and (2.13) that the inclusion induced map H2(W ; Λ)→ H2(W,M ; Λ) with
respect to the bases B and C is given by A.

We now rewrite the diagram (2.10) in terms of our bases, we thus obtain the
following diagram

Λs × Λs

(v,w)7→(Av,Aw)
��

(v,w)7→vtAw
// Λ

��
Λs × Λs

(v,w)7→vtA−1w
//

��

Ω

��
H1(M ; Λ)×H1(M ; Λ) // Ω/Λ.

The statement of Lemma 2.8 now follows from this diagram and the fact that the left
vertical maps form a short exact sequence. This concludes the proof of Theorem 2.6.
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2.6. Proof of Theorem 1.1. Clearly the following theorem, combined with Theorem
2.6 implies Theorem 1.1 from the introduction.

Theorem 2.9. LetK be a knot such that u+ positive crossing changes and u− negative
crossing changes turn K into an Alexander polynomial one knot J . Then there exists
an oriented topological 4–manifold W which strictly cobounds M(K). Moreover, the
intersection pairing on H2(W ;Z) is represented by a diagonal matrix of size u+ + u−

such that u+ entries are equal to −1 and u− entries are equal to +1.

Proof. We first recall the following well known reinterpretation of a crossing change.
Let K ⊂ S3 be a knot. Suppose we perform an ǫ–crossing change along a crossing.
We denote by D ⊂ S3 an embedded disk which intersects K in precisely two points
with opposite orientations, one point on each strand involved in the crossing change.
If we now perform ǫ–surgery on the curve c, then the resulting 3–manifold Σ is
diffeomorphic to S3, and K ⊂ Σ is the result of performing an ǫ–crossing change.

In the following we will use the following notation: let c1, . . . , cs be simple closed
curves which form the unlink in S3 and let ǫ1, . . . , ǫs ∈ {−1, 1}, then we denote by
Σ(c1, . . . , cs, ǫ1, . . . , ǫs) the result of performing ǫi–surgery along ci for i = 1, . . . , s.
Note that this 3–manifold is diffeomorphic to the standard 3–sphere.

Let K be a knot such that u+ positive crossing changes and u− negative crossing
changes turn K into an Alexander polynomial one knot J . Put differently, there
exists an Alexander polynomial one knot J such that u+ negative crossing changes
and u− negative positive changes turn J into K. We write s = u+ + u− and ni = −1
for i = 1, . . . , u+ and ni = 1 for i = u+ + 1, . . . , u+ + u−. By the above discussion
there exist simple closed curves c1, . . . , cs in X(J) with the following properties:

(1) c1, . . . , cs are the unlink in S3,
(2) the linking numbers lk(ci, K) are zero,
(3) the image of J in

Σ(c1, . . . , cs, n1, . . . , ns)

is the knot K.

Note that the curves c1, . . . , cs lie in S3 \ νJ and we can thus view them as lying
in M(J). The manifold M(K) is then the result of ni surgery on ci ⊂ M(J) for
i = 1, . . . , s.

Since J is a knot with trivial Alexander polynomial it follows from Freedman’s
theorem (see [FQ90, Theorem 117B]), that J is topologically slice, in fact there exists
a locally flat slice disk D ⊂ D4 for J such that π1(D

4 \ D) = Z. We now write
X := D4 \ νD. Then X is an oriented topological 4–manifold X with the following
properties:

(1) ∂X = M(J) as oriented manifolds,
(2) π1(X) = Z,
(3) H1(M(J);Z)→ H1(X ;Z) is an isomorphism,
(4) H2(X ;Z) = 0.
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We denote byW the 4-manifold which is the result of adding 2-handles along c1, . . . , cs ⊂
M(J) with framings n1, . . . , ns to X . Note that ∂W = M(K) as oriented manifolds.
We will henceforth write M = M(K). Note that the curves c1, . . . , cs are null-
homologous, it follows easily that the map H1(M ;Z)→ H1(W ;Z) is an isomorphism
and that π1(W ) ∼= Z. It thus remains to prove the following claim:

Claim. The ordinary intersection pairing on W is represented by a diagonal matrix
of size u++u− such that u+ diagonal entries are equal to −1 and u− diagonal entries
are equal to 1.

Recall that the curves c1, . . . , cs form the unlink in S3 and that the linking numbers
lk(ci, J) are zero. In particular the curves c1, . . . , cs are also null homologous in M(J).
It is clear that we can now find disjoint surfaces F1, . . . , Fs in M(J)× [0, 1] such that
∂Fi = ci × 1. By adding the cores of the 2–handles attached to the ci we now obtain
closed surfaces C1, . . . , Cs in W . It is straightforward to see that Ci · Cj = 0 for
i 6= j and Ci ·Ci = ni. A Meyer–Vietoris argument shows that the surfaces C1, . . . , Cs

present a basis for H2(W ;Z). In particular the intersection matrix on W with respect
to this basis is given by (Ci · Cj), i.e. it is a diagonal matrix such that u+ diagonal
entries are equal to −1 and u− diagonal entries are equal to 1. This concludes the
proof of the claim.

�

Remark. In the proof of Theorem 2.9 (and thus in the proof that ua(K) ≥ n(K)),
we made use of Freedman’s theorem that a knot with trivial Alexander polynomial is
topologically slice. This deep topological fact is not necessary to prove Theorem 1.1,
but it simplifies the algebra and the exposition.

If a knot K has unknotting number u, then Montesinos [Mo73] has shown that the
2–fold branched cover Σ(K) is given by Dehn surgery on some framed link in S3 with
u components, with half-integral framing coefficients. This fact is used in the original
proof of the Lickorish obstruction and it lies at the heart of some of the deepest results
on unknotting numbers (see e.g. [OS05] and [Ow08]) which are obtained by studying
Heegaard–Floer invariants of the compact 3–manifold Σ(K).

Let K be a knot such that u+ positive crossing changes and u− negative crossing
changes turn K into the unknot. If we take X = S1 × D3 in the proof of Theorem
2.9, then we immediately see that there exists an oriented smooth 4–manifold W
which satisfies the Properties (1) – (4) of Theorem 2.9. This suggests that further
information on unknotting numbers can be obtained from considering higher cyclic
covers (or the infinite cyclic cover) of M(K).

3. The Blanchfield pairing and the linking pairing

In this section we will relate the Blanchfield pairing to the linking pairing on the
homology of the 2–fold branched cover of a given knot K.
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3.1. Preliminary results. The following proposition is a key tool in relating n(K)
to other invariants:

Proposition 3.1 ([Ran81, Proposition 1.7.1]). Let A and B be hermitian matrices
over Z[t±1] with det(A(1)) = det(B(1)) = ±1. Then λ(A) ∼= λ(B) if and only if A
and B are related by a sequence of the following three moves:

(1) replace C by PCP
t
where P is a matrix over Z[t±1] with det(P ) = ±1,

(2) replace C by the block sum C ⊕D where D is a hermitian matrix over Z[t±1]
with det(D) = ±1,

(3) the inverse of (2).

We can now prove the following lemma:

Lemma 3.2. Let A(t) be a hermitian matrix over Z[t±1] with λ(A(t)) ∼= λ(K), then

sign(A(z))− sign(A(1)) = σz(K), for any z ∈ S1 and
null(A(z)) = ηz(K), for any z ∈ C \ {0, 1}.

Proof. First let D(t) be any hermitian matrix over Z[t±1]. It is well–known that the
function

S1 → Z

z 7→ sign(D(z))

is constant outside of the set of zeros of D(t). In particular if det(D(t)) = ±1, then
the signature function is constant. It now follows easily from Proposition 2.1 that if
A(t) and B(t) are hermitian matrices over Z[t±1] with λ(A(t)) ∼= λ(B(t)), then

sign(A(z))− sign(A(1)) = sign(B(z))− sign(B(1)) for any z ∈ S1.

The first claim now follows from (2.4) and Proposition 2.1. The proof of the second
statement also follows from a similar argument. �

3.2. Linking pairings. We will now relate the Blanchfield pairing to the linking
pairing on the 2–fold branched cover. Later on, this will allow us to relate n(K) to the
Lickorish obstruction and the Jabuka obstruction, as well as to get new computable
obstructions to n(K) = 2 or n(K) = 3.

A linking pairing is a non-singular symmetric bilinear pairing H×H → Q/Z where
H is a finite abelian group of odd order. If l and l′ are isometric linking pairings,
then we write l ∼= l′. An example is the linking pairing l(K) defined on H1(Σ(K)).

Given a symmetric integral matrix A with det(A) odd we denote by l(A) the linking
pairing which is defined as follows:

Zn/AZn × Zn/AZn → Q/Z
(v, w) 7→ vtA−1w.

Given a linking pairing l : H ×H → Q/Z and n ∈ Z, coprime to |H|, we denote by
n · l the linking pairing given by (n · l)(v, w) := n · l(v, w).

We can now formulate and prove the following lemma.
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Lemma 3.3. Let K be a knot and let A(t) be a hermitian matrix over Z[t±1] such
that λ(A(t)) ∼= λ(K). Then

l(A(−1)) ∼= 2l(K).

Proof. We now denote byM the set of all hermitian matrices A over Z[t±1] such that
det(A(1)) = ±1. We say that A,B ∈ M are equivalent, written A ∼ B, if λ(A) and
λ(B) are isometric. We furthermore denote by L the set of isometry classes of linking
pairings. We consider the map

Φ:M → L
A(t) 7→ l(A(−1)).

(Note that det(A(−1)) ≡ det(A(1)) = ±1 mod 2.) It follows immediately from
Proposition 3.1 that the map Φ descends to a map

M/ ∼ −→ L.

Let V be a Seifert matrix forK. We define AK(t) as in Section 2.2. It is well-known
(see e.g. [Go78]) that the linking pairing l = l(K) on H1(Σ(K);Z) is isometric to
l(V + V t).

An argument analogous to the proof of Proposition 2.1 with Λ replaced by Z, Λ0

replaced by Z[1
2
] and t replaced by −1 then shows that the linking pairing Φ(AK(t))

is isometric to the pairing 2l(K).
Now let A(t) be a hermitian matrix over Z[t±1] such that λ(A(t)) ∼= λ(K). Then

A(t) ∼ AK(t) and it follows from the above that

l(A(−1)) = Φ(A(t)) ∼= Φ(AK(t)) ∼= 2l(K).

�

3.3. The linking pairing and the algebraic unknotting number. In the follow-
ing we refer to a positive definite matrix as (+1)–definite and we refer to a negative
definite matrix as a (−1)–definite matrix. We now have the following theorem.

Theorem 3.4. If n(K) = n, then there exists a symmetric n × n–matrix A over Z

which has the following three properties:

(1) | det(A)| = | det(K)|,
(2) l(A) ∼= 2l(K),
(3) A modulo two equals the identity matrix.

If σ(K) = 2n · ǫ with ǫ ∈ {−1, 1}, then we can furthermore arrange that A has the
following two properties:

(4) A is ǫ–definite,
(5) the diagonal entries of A modulo four are equal to −ǫ.

Remark. Theorem 3.4 is closely related to [Ow08, Theorem 3], which is the main
technical theorem of [Ow08]. More precisely, Owens shows in [Ow08, Theorem 3]
that if u(K) = u, then Σ(K) can be obtained by Dehn surgery along a u–component
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link with a certain framing matrix. It then follows from that surgery description of
Σ(K) that there exists a u × u–matrix A over Z which has properties described in
Theorem 3.4.

Proof. Since n(K) = n we can find a hermitian n × n–matrix B(t) over Z[t±1] such
that λ(B) ∼= λ(K) and such that B(1) is diagonalizable over Z. Note that B(t) in
particular represents the Alexander module, it follows that det(B(t)) = ±∆K(t), i.e.
det(B(1)) = ±1 and det(B(−1)) = ± det(K).

Let P be an invertible integral matrix such that PB(1)P t is diagonal. After re-
placing B by PBP t we can thus arrange that B(1) is already diagonal. We denote
the diagonal entries by ǫ1, . . . , ǫn. We furthermore denote by bij = bij(t) the entries
of B = B(t). The fact that bii(1) = ǫi and the fact that bii(t

−1) = bii(t) implies that

bii = ǫi + (t− 1)(t−1 − 1)cii

for some polynomial cii ∈ Z[t±1] with cii(t
−1) = cii(t). Furthermore, given i 6= j, the

fact that bij(1) = 0 implies that

bij = (t− 1) · cij

for some cij ∈ Z[t±1]. By Lemma 3.3 the matrix A := B(−1) represents 2l(K). By
the above we have det(A) = ± det(K). It follows immediately from the above that
A = B(−1) agrees with the identity matrix modulo two.

We now assume that σ(K) = 2n · ǫ with ǫ ∈ {−1, 1}. It follows from Lemma 3.2
that sign(B(−1)⊕−B(1)) = sign(B(−1))− sign(B(1)) = 2n · ǫ. Since B is an n×n–
matrix this implies that sign(B(−1)) = n · ǫ and sign(B(1)) = −n · ǫ. In particular
A = B(−1) is ǫ–definite. Since B(1) is ǫ–definite it follows also that ǫi = −ǫ for
i = 1, . . . , n. Since bii = ǫ+ (t− 1)(t−1 − 1)cii it now follows that A has the desired
fourth property. �

4. Comparison of classical invariants

In this section we show that n(K) subsumes the classical invariants stated in The-
orem 1.2. We discuss each of the criteria of Theorem 1.2 in a separate subsection.

4.1. Lower bounds on ua(K): The Nakanishi index. Let K be a knot. The
first lower bounds on the unknotting number u(K) were given by Wendt [We37] who
showed that

u(K) ≥ minimal number of generators of H1(Σ(K);Z).

(See also [Kin57, Kin58] and [BW84, Section E] for further details). These lower
bounds are subsumed by the Nakanishi index. More precisely, by [Na81, Theorem 3]
(see also [Ka96, Theorem 11.5.1]) we have the following inequality:

u(K) ≥ m(K).
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It is clear that if a hermitian matrix A over Z[t±1] satisfies λ(K) ∼= λ(A), then A is
also presentation matrix for the Alexander module. We thus see that

n(K) ≥ m(K).

Together with Theorem 1.1 this implies that m(K) gives in fact a lower bound on
the algebraic unknotting number. This can also be deduced from modifying the proof
provided by Nakanishi.

4.2. Lower bounds on ua(K): The Levine–Tristram signatures and the nul-

lities. Levine–Tristram signatures are well–known to give lower bounds on the topo-
logical 4–genus gtop4 (K) of a knot, and hence lower bounds to the algebraic unknotting
number. (See [Mus65], [Lev69], [Tri69] and [Ta79] for details.) But in fact the fol-
lowing stronger inequality holds:

Theorem 4.1. Let K be a knot which can be turned into an Alexander polynomial
one knot using u+ positive crossing changes and u− negative crossing changes. Then
for any z ∈ S1 we have

−2u− ≤ ηz(K) + σz(K) ≤ 2u+

in particular we have

n(K) ≥ µ(K) :=
1

2

(
max{ηz(K) + σz(K) | z ∈ S1}+max{ηz(K)− σz(K) | z ∈ S1}

)
.

We expect that this theorem is known to the experts, but we are not aware of a
proof in the literature.

Proof. By Theorem 1.1 there exists a hermitian matrix A(t) of size u+ + u− over
Z[t±1] with the following two properties:

(1) A(1) is a diagonal matrix such that u+ diagonal entries are equal to −1 and
u− diagonal entries are equal to 1,

(2) λ(A(t)) ∼= λ(K).

Now let z ∈ S1. We denote by b+ (respectively b−, b0) the number of positive (respec-
tively negative, zero) eigenvalues of A(z). Then it follows from Lemma 3.2 that

ηz(K) + σz(K) = null(A(z)) + sign(A(z))− sign(A(1))
= b0 + (b+ − b−)− (−u+ + u−)
= b0 + b+ + b− − (−u+ + u−)− 2b−
≤ (u+ + u−)− (−u+ + u−) = 2u+.

Similarly one shows that ηz(K) + σz(K) ≥ −2u−. �
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4.3. Lower bounds on ua(K): The Livingston invariant. We first recall the
definition of Livingston’s invariant. Let S be a subring of Q(t). We denote by Q
its quotient field and we denote by W (S → Q) the Witt group of non-degenerate
hermitian pairings over free S-modules which become non-singular after tensoring
with Q. Put differently, W (S → Q) is the Witt group of hermitian matrices over S
such that the determinant is a unit in Q. We refer to [HM73] and [Ran81] for details.

Let K ⊂ S3 be a knot. We define ρS(K) to be the minimal size of a square matrix
representing AK(t) in W (S → Q). It follows from (2.4) that for S = Q(t) we obtain
Livingston’s invariant ρ(K) (see [Liv11]). It follows immediately from the definitions
that

ρ(K) = ρQ(t)(K) ≤ ρZ[t±1](K)

for any knot K. For the reader’s convenience we will provide a proof to the following
proposition, which is well known to the experts,

Proposition 4.2. Let K be a knot. Then

2gtop4 (K) ≥ ρZ[t±1](K).

We expect that ρZ[t±1](K) is the ‘best possible’ lower bound on the topological
4–genus which can be obtained from the Seifert matrix.

Proof. Let F be a Seifert surface of genus k for K. Denote by g the topological
4-genus of K. In that case the argument provided in the appendix of [Liv11] shows
that there exist k − g linearly independent curves on F on which the Seifert pairing
vanishes. Since the intersection pairing on F is determined by the Seifert pairing it
follows that the pairwise intersection numbers of the curves are zero. In particular we
can extend this set of linearly independent curves to a symplectic basis on H1(F ;Z).
The corresponding Seifert matrix V now has the following two properties:

V =



0k−g×k−g ∗k−g×k−g ∗k−g×2g

∗k−g×k−g ∗k−g×k−g ∗k−g×2g

∗2g×k−g ∗2g×k−g ∗2g×2g


 and V − V t =

(
0 idk

− idk 0

)
,

where the subscripts indicate the size of the matrix. It now follows that AK(t) (as
defined in Section 2.2) is of the form

AK(t) =



0k−g×k−g ∗k−g×k−g ∗k−g×2g

∗k−g×k−g ∗k−g×k−g ∗k−g×2g

∗2g×k−g ∗2g×k−g ∗2g×2g


 .

It is well-known that one can find an invertible matrix P over Z[t±1] such that

PAK(t)P
t =




0k−g×k−g Bk−g×k−g 0k−g×2g

Bt
k−g×k−g 0k−g×k−g 0k−g×2g

02g×k−g 02g×k−g C2g×2g


 ,

where B is a (k− g)× (k − g) matrix and C is a 2g× 2g-matrix. It now follows that
AK(t) and the 2g×2g–matrix C represent the same element inW (Z[t±1]→ Q(t)). �
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The classical invariant 1
2
ρZ[t±1](K) gives a lower bound on the topological 4–ball

genus and thus on the algebraic unknotting number. The following lemma now says,
that as a lower bound on ua(K), the invariant 1

2
ρZ[t±1](K) is subsumed by n(K).

Lemma 4.3. For any knot K we have

n(K) ≥
1

2
ρZ[t±1](K).

Proof. Recall that we denote by M the set of all hermitian matrices A over Z[t±1]
such that det(A(1)) = ±1 and we write A ∼ B if λ(A) and λ(B) are isometric. We
now consider the map

M → W (Z[t±1]→ Q(t))
A(t) 7→ A(t)⊕−A(1).

Note that it is well–known that given a hermitian matrix D(t) over Z[t±1] with
det(D(t)) = ±1 the pairings D(t) and D(1) define the same element in W (Z[t±1]→
Q(t)) (see [Ran81] for details). It now follows from Proposition 3.1 that the above
map descends to a map

M/ ∼ −→ W (Z[t±1] −→ Q(t)).

The lemma now follows immediately from the definitions. �

Remark. In [Liv11] Livingston shows that ρ(K) is completely determined by the
Levine–Tristram signatures. In an interesting twist Livingston [Liv11, Section 3.1]
gives an example which shows that in general ρ(K) ≥ µ(K). The invariant µ(K) is
thus not the optimal lower bound on the algebraic unknotting number which can be
obtained from the Levine–Tristram signatures and the nullities.

4.4. The unknotting number one obstruction by Fogel–Murakami–Rickard.

The following unknotting number one obstruction was proved by H. Murakami [Muk90]
and Fogel [Fo93, p. 32] and it was already known to John Rickard [Lic11].

Theorem 4.4. Let K be a knot and let ǫ ∈ {−1, 1}. If K can be turned into an
Alexander polynomial one knot using one ǫ–crossing change, then there exists a gen-
erator g of H1(X(K);Z[t±1]) such that

λ(g, g) =
−ǫ

∆K(t)
∈ Q(t)/Z[t±1].

We will now see that it is an almost immediate corollary to Theorem 1.1.

Proof. It follows from Theorem 1.1 that λ(K) ∼= λ(p(t)) for a polynomial p(t) with
p(1) = −ǫ. Since p(t) represents the Alexander module and since ∆K(1) = 1 it follows
that p(t) = −ǫ∆K(t). In particular there exists a generator g of H1(X(K);Z[t±1])
such that

λ(g, g) =
1

−ǫ∆K(t)
=
−ǫ

∆K(t)
∈ Q(t)/Z[t±1].

�
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4.5. The unknotting number one obstruction by Lickorish. The following
theorem was proved by Lickorish [Lic85] (see also [CoL86, Proposition 2.1]).

Theorem 4.5. Let K be a knot and let ǫ ∈ {−1, 1}. If K can be unknotted using
one ǫ–crossing change, then there exists a generator h of H1(Σ(K);Z) such that

l(h, h) =
−2ǫ

det(K)
∈ Q/Z.

We will now show that if a knot satisfies the conclusion of Theorem 4.4, then the
Lickorish obstruction vanishes. This shows in particular that the Lickorish obstruction
gives in fact an obstruction to the algebraic unknotting number being equal to one.

Theorem 4.6. Let K be a knot and let η ∈ {−1, 1}. Suppose there exists a generator
k of H1(X(K);Z[t±1]) such that

λ(k, k) =
η

∆K(t)
∈ Q(t)/Z[t±1].

Then there exists a generator h of H1(Σ(K);Z) such that l(h, h) = 2η
det(K)

∈ Q/Z.

Proof. Suppose there exists a generator k of H1(X(K);Z[t±1]) such that

λ(k, k) =
η

∆K(t)
=

1

η∆K(t)
∈ Q(t)/Z[t±1]

for some η ∈ {−1, 1}. This is equivalent to saying that λ is isometric to λ(η∆K(t)).
It follows from Lemma 3.3 that

2l(K) ∼= l(η∆(−1)) = l(η det(K)) ∈ Q/Z.

This means that there exists a generator g for H1(Σ(K);Z) such that

2l(g, g) =
η

det(K)
=

1

η det(K)
∈ Q/Z.

Since det(K) is an odd number it follows that k = 2g is also a generator forH1(Σ(K);Z),
and it is easy to see that it has the required properties. �

Remarks. (1) We could also easily have deduced Theorem 4.6 from Theorem 3.4.
Put differently, the Lickorish obstruction is precisely the obstruction of The-
orem 3.4 to n(K) = 1.

(2) Stoimenow [St04, p. 763 and Conjecture 7.4] conjectures that the Lickorish ob-
struction contains the obstructions to u(K) = 1 obtained from the Jones poly-
nomial which was found by Miyazawa [Mi98], Traczyk [Tra99] and Stoimenow
[St04].
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4.6. The unknotting number one obstructions by Jabuka. In the following we
denote by W (Q) the Witt group of non-singular bilinear symmetric pairings over Q.
Note that we can think of W (Q) also as the Witt group of symmetric matrices over
Q with non-zero determinant. We refer to [Ja09, Section 2], [HM73] and [Ran81] for
details. Given a knot K Jabuka [Ja09] denotes by ϕ(K) the element in the Witt group
W (Q) defined by VK + V t

K . The following is now Jabuka’s obstruction to u(K) = 1:

Theorem 4.7. Let K be a knot and let ǫ ∈ {−1, 1}. If K can be unknotted using
one ǫ–crossing change, then ϕ(K) is represented by the diagonal matrix with entries
2ǫ and −2ǫ det(K).

Remark. The statement of Theorem 4.7 is precisely the statement of [Ja09, Corol-
lary 1.2], the only difference is that we view the determinant of a knot as a signed
invariant, i.e. we write det(K) = det(V + V t), whereas Jabuka uses | det(V + V +)|
as the definition of the determinant of a knot.

Note that if a knot K can be turned into an Alexander polynomial one knot using
one ǫ–crossing change, then it follows from Theorem 4.1 that σ(K) ∈ {0, 2ǫ}. The
following result thus shows that the Lickorish obstruction together with the signature
obstruction subsumes the Jabuka obstruction.

Theorem 4.8. Let K be a knot and let ǫ ∈ {−1, 1}. If σ(K) ∈ {0, 2ǫ} and if
there exists a generator h of H1(Σ(K);Z) such that l(h, h) = −2ǫ

det(K)
∈ Q/Z, then the

conclusion of Theorem 4.7 also holds.

Remark. Jabuka [Ja09] showed that in general the Lickorish obstruction is stronger
than the obstruction provided by Theorem 4.7, e.g. the Jabuka obstruction vanishes
for K = 88, but the Lickorish obstruction detects that u(88) ≥ 2.

In our proof of Theorem 4.8 we will need the following well–known elementary
lemma:

Lemma 4.9. Let K be a knot, then

sign(∆K(−1)) = (−1)σ(K)/2.

We provide a proof for the reader’s convenience.

Proof. Let V be a Seifert matrix for K. Without loss of generality we can assume
that V is a 4k × 4k–matrix. We denote by p the number of positive eigenvalues of
V + V t and we denote by n the number of negative eigenvalues of V + V t. It follows
that

sign(∆K(−1)) = sign((−1)−2k det(−V − V t))

= sign(det(V + V t)) = (−1)n = (−1)
n−p

2
+n+p

2

= (−1)−σ(K)/2 · (−1)2k

= (−1)σ(K)/2.

�
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Proof of Theorem 4.8. We will use the notation of the proof of Theorem 4.6. We
denote by W (Z) the Witt group of non-singular pairings over Z. Note that the
signature defines an isomorphism

(4.1) sign : W (Z) −→ Z

We refer to [HM73] for details. We say that a linking pairing H × H → Q/Z is
metabolic if there exists a subspace P ⊂ H with P = P⊥. We denote by W (Z,Q)
the Witt group of linking pairings modulo metabolic pairings.

By definition any pairing in W (Q) can be represented by a rational matrix. After
multiplying by a sufficiently large square we can also represent a given pairing by
an integral symmetric n × n–matrix A. To such a matrix we then associate the
linking pairing l(A). Note that l(−A) = −l(A) in the group W (Z,Q). Also note
that the above assignment descends to a well-defined map W (Q) → W (Z,Q) and it
is well-known that the sequence

(4.2) 0 −→W (Z) −→W (Q) −→ W (Z,Q) −→ 0

is exact. We refer to [HM73, p. 90] and to [Ran81] for details.
Now let K be a knot and V a Seifert matrix for K. Recall (see e.g. [Go78]) that the

linking pairing l = l(K) is isometric to l(V + V t). Now suppose we have ǫ ∈ {−1, 1}
such that the following hold:

(1) σ(K) ∈ {0, 2ǫ},
(2) there exists a generator h of H1(Σ(K);Z) such that l(h, h) = −2ǫ

d
∈ Q/Z,

where we write d = det(K).

We can now prove the following claim.

Claim. The element in W (Q) represented by (V + V t)⊕ (2ǫ/d)⊕ (−2ǫ) gets sent to
the trivial element in W (Z,Q).

In the following we identify the linking pairing l(K) with the pairing on Z/d given
by l(a, b) = −2ǫab

d
∈ Q/Z. Now recall that the image of (V + V t)⊕ (2ǫ/d)⊕ (−2ǫ) is

represented by the pairing l(K)⊕ l(2ǫd)⊕ l(−2ǫ). We consider the map

Z/2⊕ Z/d → Z/2d
(x, y) 7→ xd+ 2y.

It is straightforward to verify that this map induces an isometry

l(−2ǫ)⊕ l(K) −→ l(−2ǫd).

Put differently, the pairing l(K) ⊕ l(2ǫ/d) ⊕ l(−2ǫ) represents the trivial element in
W (Z,Q). This concludes the proof of the claim.

It follows from Lemma 4.9 and from σ(K) ∈ {0, 2ǫ} that the signature of the matrix
(V + V t) ⊕ (2ǫ/d) ⊕ (−2ǫ) is zero. It now follows from the claim, the short exact
sequence (4.2) and (4.1) that (V + V t)⊕ (2ǫ/d)⊕ (−2ǫ) represents the zero element
in W (Q). The fact that (2ǫ/d) = (2ǫ · d) ∈ W (Q) now completes the proof of the
theorem. �



THE UNKNOTTING NUMBER AND CLASSICAL INVARIANTS I 29

4.7. The unknotting number two obstruction by Stoimenow. Stoimenow proved
the following theorem.

Theorem 4.10 (Stoimenow, [St04, Theorem 5.2]). Let K be a knot with |σ(K)| = 4
such that det(K) is a square. If det(K) has no divisors of the form 4r + 3, then
u(K) > 2.

Our next theorem shows that the n(K) obstruction contains the Stoimenow ob-
struction. This shows in particular that the Stoimenow obstruction is an obstruction
to the algebraic unknotting number being equal to two. The latter result can also be
shown by reading carefully the original proof.

Theorem 4.11. Let K be a knot with |σ(K)| = 4 such that det(K) is a square. If
n(K) = 2, then det(K) has a divisor of the form 4k + 3.

Proof. Let K be a knot with |σ(K)| = 4 and such that det(K) is a square and
suppose that n(K) = 2. Without loss of generality we can assume that σ(K) = 4.
By Theorem 3.4 there exists a positive definite matrix A with | det(A)| = | det(K)|
such that

A =

(
4k + 3 2m
2m 4l + 3

)
,

for some k, l,m ∈ Z. Note that A being positive definite and det(K) being a square
implies that in fact det(A) = det(K).

Since A is positive definite it also follows that 4k + 3 > 0 and that

det(A) = (4k + 3)(4l + 3)− 4m2

is positive. It follows that k and l actually are positive. Now assume that det(A) =
det(K) = d2 is a square. We thus see that (4k+3)(4l+3)−4m2 = d2. Since 4k+3 > 0
we can find a prime p of the form 4r + 3 which divides 4k + 3. We are done once we
show that p also divides m.

Suppose that p does not divide m. Since p divides d2+4m2 we obtain the equation
d2 = −(2m)2 mod p, but since 2m is non–zero, and hence invertible modulo p we
obtain that −1 is a square modulo p. But it is well–known that −1 is not a square
modulo a prime of the form 4r + 3.

�

5. New obstructions from the Blanchfield pairing

5.1. Obstructions from the Blanchfield pairing to n(K) = 1. We have already
seen that the Nakanishi index, the signature and the Lickorish criterion give lower
bounds on n(K). The Lickorish obstruction can be summarized as replacing an
infinite problem (can the Blanchfield pairing be represented by a 1 × 1–matrix over
Z[t±1]) by a finite problem (can the linking pairing be represented by a 1× 1–matrix
over Z). This principle can easily be generalized.
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To formulate the generalizations we need two ‘reductions’ of the Blanchfield pairing.
First, let p be a prime. We denote by Qp the quotient field of Fp[t

±1]. Then we can
imitate the definition of the Blanchfield pairing over Z[t±1] to define a pairing

H1(X(K);Fp[t
±1])×H1(X(K);Fp[t

±1]) −→ Qp/Fp[t
±1].

Second, let k be an integer such that H1(Σk(K)) is finite, where Σk(K) denotes the
k–fold branched cover of K. Note that H1(Σk(K)) is a module over Z[Z/k], the group
ring of Z/k. We can then define a pairing

H1(Σk(K))×H1(Σk(K)) −→ S−1Z[Z/k] /Z[Z/k],

where

S := {f ∈ Z[Z/k] = Z[t±1]/(tk − 1) | f(1) = 1}.

The proof that the matrix AK(t) over Z[t±1] (see equation (2.3)) is a presentation
matrix of the Blanchfield pairing over Z[t±1] can also be modified easily to show that
AK(t) viewed as a matrix over Fp[t

±1] respectively over Z[Z/k] = Z[t±1]/(tk − 1)
is a presentation matrix for the two above pairings. (In particular this shows that
both pairings are classical invariants, see also [Go78] for more information.) We thus
obtain the following lemma:

Lemma 5.1. Let K be a knot with n(K) = n.

(1) Let p be a prime, then the Fp–Blanchfield pairing

H1(X(K);Fp[t
±1])×H1(X(K);Fp[t

±1]) −→ Qp/Fp[t
±1])

can be represented by an n× n–matrix over Fp[t
±1].

(2) Let k be an integer, then the Z[Z/k]–Blanchfield pairing

H1(Σk(K))×H1(Σk(K)) −→ S−1Z[Z/k] / Z[Z/k]

can be represented by an n× n–matrix over Z[Z/k].

If p is any prime, or if k is any integer such that H1(Σk(K);Z) is finite, then we are
dealing with finite objects. In particular in theses cases the obstructions provided by
the lemma are computable. We implemented both obstructions in the case n(K) = 1.
We applied it to all knots with up to 14 crossings with primes usually up to 11 and
k usually up to 6. (The size of H1(Σk(K)) typically grows very fast with k, putting
limitations on the range of k.) To our great surprise (and disappointment), among
all knots with up to 14 crossings we could not find a single example where these
obstructions to n(K) = 1 could see beyond the Nakanishi index, the Levine–Tristram
signatures and the Lickorish obstruction.

In Sections 5.2 and 5.3 we will on the other hand see that using the linking pairing
onH1(Σ(K)) we can give new obstructions to n(K) = 2 and n(K) = 3, which actually
do work in practice.
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5.2. Obstructions from the linking pairing to n(K) = 2. If K is a knot with
n(K) = 2, then it follows from Theorem 3.4 that the linking pairing l(K) can be
represented by a certain symmetric 2 × 2–matrix. The full classification of all sym-
metric 2×2 matrices up to a congruence was already known to Gauß, below we state
a slightly weaker result, referring to [CS99, Section 15.3] for an excellent exposition.

Lemma 5.2. Let A be a symmetric integral 2 × 2–matrix with d := det(A) 6= 0.
Then, either A is congruent to a matrix of the form

(
a c
c b

)

such that the following hold:

(1) 0 < |a| ≤ |b| ≤ |d|,

(2) c ∈ {0, . . . , ⌊ |a|
2
⌋},

or A is congruent to a matrix of the form
(
a c
c 0

)

with c2 = d, c ≥ 0 and a ∈ {−c, . . . , c}.

For the reader’s convenience we give a short proof of the lemma.

Proof. First assume that A is congruent to a matrix such that one of the diagonal
entries is zero. It is straightforward to see that in that case A is congruent to a matrix
of the latter type.

Now suppose that A is not congruent to matrix such that one of the diagonal
entries is zero. Among all matrices congruent to A we then pick a matrix such that
the absolute value of the (1,1) entry (i.e. the top left one) is minimal. We write this
matrix as

B :=

(
a c
c b

)
.

After adding a suitable multiple of the first row to the second row and the same

multiple of the first column to the second column we can assume that |c| ≤ |a|
2
. If

c < 0, then we multiply the first row and the first column by minus one, to arrange
that c ≥ 0. By the minimality of a, even after these operations, we still have that
|a| ≤ |b|.

Finally note that

|d| = |ab− c2| ≥ |a||b| − (⌊ |a|
2
⌋)2

≥ |a||b| − (|a| − 1)2

= |b|+ (|a| − 1)|b| − (|a| − 1)2 = |b|+ (|a| − 1)(|b| − |a|+ 1) ≥ |b|.

We thus see that |d| ≥ |b|. �
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We can now describe our obstruction to a knot having n(K) = 2. Let K be a
knot with determinant d = det(K). We denote by C1, . . . , Cl the matrices which
satisfy conditions (1) and (2) from the previous corollary applied to ±d, and which
are congruent to the identity modulo two. If σ(K) = 4 · ǫ for some ǫ ∈ {−1, 1},
then we furthermore demand that each Ci is ǫ–definite and that each Ci is congruent
modulo four to a matrix of the form(

−ǫ 2m
2m −ǫ

)
,

for some m ∈ Z. It is clear that this list of matrices C1, . . . , Cl can be explicitly
determined.

We can now formulate the following obstruction:

Proposition 5.3. If n(K) = 2, then there exists an integer k ∈ {1, . . . , l} and an
isometry l(Ck) ∼= 2l(K).

Note that it follows easily from the proof of Theorem 4.11 that this n(K) = 2
obstruction contains the Stoimenow obstruction.

Proof. It is obvious that congruent matrices define isometric linking pairings. The
proposition now follows from Theorem 3.4 and Lemma 5.2. �

The following lemma gives an elementary way to check whether 2l(K) is isometric
to l(C) for a given 2× 2–matrix C:

Lemma 5.4. Let C be a symmetric integral 2 × 2–matrix with det(C) = ± det(K).
Then there exists an isometry l(C) ∼= 2l(K) if and only if there exist v1, v2 ∈
H1(Σ(K)) which generate H1(Σ(K)), such that

2l(K)(vi, vj) = (i, j)–entry of C−1 modulo Z

for any i, j ∈ {1, 2}.

Proof. First let Φ: Z2/CZ2 → H1(Σ(K)) be an isomorphism which induces an isom-
etry l(C) ∼= 2l(K). We denote by v1, v2 the images of e1 = (1, 0) and e2 = (0, 1). It
follows immediately from the definitions that v1 and v2 have the desired properties.

Conversely, suppose we are given v1, v2 ∈ H1(Σ(K)) which generate H1(Σ(K)),
such that

(5.1) 2l(K)(vi, vj) = (i, j)–entry of C−1 modulo Z

for any i, j. We denote by Φ: Z2 → H1(Σ(K)) the map given by Φ(ei) = vi. This
map is evidently surjective.

We claim that this map descends to a map Z2/CZ2 → H1(Σ(K)). Let v ∈ CZ2.
Note that vtC−1w ∈ Z for all w ∈ Z2. It now follows that l(K)(Φ(v),Φ(w)) = 0 ∈
Q/Z for all w ∈ Z2. But since Φ is surjective and since l(K) is non–degenerate
this implies that Φ(v) = 0 ∈ H1(Σ(K)). This shows that Φ descends to a map
Z2/CZ2 → H1(Σ(K)).
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Since the map Φ is an epimorphism between finite groups of the same size it follows
that this map is an isomorphism, and condition (5.1) implies that Φ is in fact an
isometry. �

In Section 6.2 we will give several examples of knots where this obstruction applies.

5.3. Obstructions from the linking pairing to n(K) = m for m ≥ 3. The
approach in the previous section can also be extended to give an obstruction to
n(K) = m for arbitrary m. We focus on the definite case (i.e. when the absolute
value of the signature is equal to 2m), and we plan to deal with the general case in a
future paper. The key ingredient to getting obstructions is Lemma 5.5 below.

Lemma 5.5. Let A be a positive definite symmetric m × m–matrix. Then A is
congruent to a matrix of the form




f11 f12 . . . f1m
f21 f22 . . . f2m
...

...
. . .

...
fm1 fm2 . . . fmm




such that

(1) 0 < f11 ≤ f22 ≤ · · · ≤ fmm,
(2) for any 1 ≤ i < j ≤ m we have |2fij| ≤ fii,
(3) fmm ≤ Bm detA for a constant Bm depending only on m,
(4) furthermore we can take B1 = B2 = B3 = B4 = 1.

Proof. By [Ca78, Theorem 12.1.1] the matrix A can be put into a so-called reduced
form (in the sense of Minkowski). Then [Ca78, Lemma 12.1.1] shows parts (1) and
(2) of Lemma 5.5.

To show (3), observe that for a matrix in a reduced form we have

(5.2) f11 · f22 · . . . · fmm ≤ µm detA,

where µ2 =
4
3
, µ3 = 2, µ4 = 4 and for m > 4,

µm =

(
2

π

)m {
Γ
(
2 +

n

2

)}2
(
5

4

) 1

2
(n−3)(n−4)

,

where Γ is the Euler Gamma function (see an excellent survey [Wa56] for proofs and
details.) As fii ≥ 1, we immediately obtain that fmm ≤ Bm detA for Bm = µm.

To show that for m = 2, 3, 4 we have fmm ≤ detA we again use (5.2). Let us begin
with the case m = 2. If f11 ≥ 2, by (5.2) we get f22 ≤

2
3
detA. So assume that

f11 = 1. Then f12 = f21 = 0 because the matrix is in the reduced form (see point (2)
in the statement of the lemma). But then detA = f22.

For m = 3, if f11 > 1 then f11f22 ≥ 4, so f33 ≤
1
2
detA. If f11 = 1, we have

f12 = f13 = f21 = f31 = 0, so the form is a block sum of (1) and a two dimensional
form and we use the case m = 2. The argument with m = 4 is identical. �
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If we assume that fii ∼= 3 mod 4 (cf. Theorem 3.4), we can show that Bm can be
chosen to be 1 for some higher m as well.

Lemma 5.6. If f11, . . . , fmm are congruent to −1 modulo 4, then fmm ≤ detA for
m ≤ 7.

Proof. From the assumptions fii ≥ 3, hence by (5.2) we have fmm ≤ 31−mµm detA.
Now an explicit computation shows that 31−mµm ≤ 1 for m = 5, 6, 7. �

We can now describe our obstruction to a knot with |σ(K)| = 2m having n(K) = m.
Let K be a knot. We write d = | det(K)| and |σ(K)| = 2m. Without loss of generality
we can assume that σ(K) = 2m. We denote by C1, . . . , Cr the positive definitem×m–
matrices with determinant d which satisfy conditions (1), (2), (3) and (4) from Lemma
5.5, and which are congruent to the identity modulo two. We furthermore restrict
ourselves to matrices which are congruent to −1 modulo 4. It is clear that this list
of matrices C1, . . . , Cr can be explicitly determined, even though for large m or detA
this list may be very long.

We can now formulate the following obstruction, which is an immediate conse-
quence of Theorem 3.4 and Lemma 5.5.

Proposition 5.7. If n(K) = m, then there exists an integer s ∈ {1, . . . , r} and an
isometry l(Cs)→ 2l(K).

The following lemma gives an elementary way to check whether 2l(K) is isometric
to l(C) for a given m×m–matrix C:

Lemma 5.8. Let C be a symmetric m ×m–matrix with det(C) = ± det(K). Then
there exists an isometry l(C) ∼= 2l(K) if and only if there exist v1, v2, . . . , vm ∈
H1(Σ(K)) which generate H1(Σ(K)), such that

2l(K)(vi, vj) = (i, j)–entry of C−1 modulo Z

for any i, j ∈ {1, . . . , m}.

The proof is of course almost identical to the proof of Lemma 5.4. Examples of
application of this criterion are given in Section 6.3.

5.4. Comparison with Owens’ obstruction. We now give a comparison of our
obstruction with the Owens obstruction [Ow08, Theorems 1 and 5]. We summarize
the key facts:

(1) Owens shows that if a knot satisfies u(K) = m and |σ(K)| = 2m, then the
Heegaard–Floer correction terms (see [OS03a]) of the 2–fold branched cover
of K satisfy
(a) a certain inequality,
(b) and a certain equality modulo 2.
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(2) By work of Ozsváth–Szabó [OS03a, Theorem 1.2] and Taylor [Ta84] (see also
[OwS05]) a knot which satisfies the ‘mod 2 equality’ of Owens also satisfies
the conclusion of Theorem 3.4.

In practice the fact that one needs to be able to calculate the Heegaard–Floer cor-
rection terms of the 2–fold branched cover means that the Owens obstruction can be
calculated in a straightforward way for alternating knots, but it is rather difficult to
calculate for most other knots. (Note though that calculations can be made if the
2–fold branched cover is a Seifert fibered space, this is the case for Montesinos knots
and torus knots.) We conclude with the discussion of some examples:

(1) Owens [Ow08] shows that the u(K) = 2 obstruction applies to the alternating
knots 910, 913, 938, 1053, 10101, 10120 which have signature equal to four. On the
other hand the algebraic unknotting number equals 2 (using the computer
program ‘knotorious’ we can find explicit algebraic unknotting operations in
the sense of [Muk90]).

(2) Owens furthermore uses Heegaard–Floer homology and a result of Traczyk
to show that the unknotting number of the alternating knot 935 equals three,
even though the signature equals two. Again, the algebraic unknotting number
equals 2.

(3) Using the obstruction of Section 5.2 we can show that the algebraic unknotting
number of the non–alternating knot 11n148 equals three, even though the
signature equals two. Since the knot is non–alternating and since the signature
does not equal four it seems difficult to use the Owens approach to show that
the unknotting number equals three.

(4) Owens [Ow08, Corollary 6] also used the u(K) = 3 obstruction to show that
the unknotting number of the two-bridge knot K = S(51, 35) equals four.
This knot passes our ua(K) = 3 obstruction, and in fact we can show that the
algebraic unknotting number of K equals three.

6. Examples

6.1. Knotorious. In the following we write

Z := {z ∈ S1 | z1296 = 1}.

We have written a computer program ‘knotorious’ (which is available from the au-
thors’ webpages, see [BF12a]) which given a Seifert matrix calculates the following
invariants:

(1) the signature,
(2) the Levine–Tristram signatures σz(K) with z ∈ Z,
(3) the lower bounds on the Nakanishi index coming from H1(Σ(K)) and the

Alexander module over the finite fields F2,F3,F5 and F7,
(4) the Lickorish obstruction,
(5) the Stoimenow obstruction,
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(6) the u(K) = 2 obstruction coming from the linking pairing on H1(Σ(K)) (see
Section 5.2),

(7) the u(K) = 3 obstruction coming from the linking pairing on H1(Σ(K)) (see
Section 5.3).

The program also attempts to compute, in a non–rigorous way, the invariant µ(K).
Furthermore, the program also finds upper bounds on the algebraic unknotting num-
ber by finding explicit algebraic unknotting moves (we refer to [Muk90] and [Sae99,
Section 2] for details on algebraic unknotting moves). We calculated the above in-
variants for all knots with up to 12 crossings, the details can be found on the authors’
webpages [BF12a]. All the examples in the subsequent sections are based on the
calculations with ‘knotorious’.

6.2. Examples for the new n(K) = 2 obstruction coming from l(K). Let K
be a knot. In Section 5.2 we showed that the linking from l(K) on the homology of
the 2–fold branched cover of K gives an obstruction to u(K) ≤ 2. We applied this
obstruction to all knots with up to 12 crossings. We found that the following knots
with |σ(K)| = 4 (in fact with µ(K) = 4) and m(K) ≤ 2 have n(K) > 2:

949, 11a123, 11n133, 12a311, 12a386, 12a433, 12a561,
12a563, 12a569, 12a664, 12a683, 12a725, 12a780, 12a907
12n276, 12n494, 12n496, 12n626, 12n654.

Furthermore the following knots have |σ(K)| ≤ 2 (in fact µ(K) ≤ 2) and m(K) ≤ 2
but n(K) > 2:

10103, 11n148, 12a327, 12a921, 12a1194, 12n147.

We now discuss to what degree previous invariants detect the unknotting numbers of
the above examples:

(1) The Stoimenow obstruction applies to 949, 11n133, 12a664 and 12n276, but does
not apply to any of the other knots. To the best of our knowledge none of the
other previous classical invariants detect that n(K) > 1.

(2) Stoimenow [St04] also used the Brandt-Lickorish-Millett-Ho polynomial (see
[Ho85, BLM86]) to give an obstruction to u(K) = 2. Stoimenow shows that
this criterion implies that u(10103) > 2. We did not check this criterion for
the above 12 crossing knots.

(3) Note that most of the above knots (including 10103 but not 949) are alternating,
in that case the Rasmussen s–invariant and the Ozsváth–Szabó τ–invariant
agree (up to a scaling factor) with the signature, in particular they do not
determine the unknotting number of the above 12 alternating knots.

(4) The s–invariant has been computed for all knots with up to 12 crossings (see
[CL11]), it detects the unknotting number for only one of the above non–
alternating knots, namely 12n276.
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(5) The τ–invariant has been calculated for all knots with up to 11 crossings by
Baldwin and Gillam (see [BG06]), it does not detect the unknotting number
for any of the above non–alternating knots with up to 11 crossings.

(6) Arguably 11n148 is the most interesting example. Many invariants for non–
alternating knots are very difficult to calculate (e.g. the Heegaard–Floer cor-
rection terms of the 2–fold branched cover, as in [OS05] and [Ow08]). The
aforementioned calculations show that the τ–invariant and the s–invariant do
not detect the unknotting number of 11n148. Furthermore, several obstruc-
tions to u(K) = 2 (e.g. [Ow08] and [St04]) can be applied only if |σ(K)| = 4,
whereas we have σ(11n148) = 2.

The webpage knotinfo [CL11] maintained by Cha and Livingston collects the unknot-
ting information on knots up to eleven crossings. According to this information it
was not known before these calculations that u(11a123) = 3 and u(11n148) = 3.

6.3. Examples for the n(K) = 3 obstruction coming from l(K). Let K be a
knot. In Section 5.3 we showed that the linking from l(K) gives rise to an obstruction
to u(K) ≤ 3. We applied this obstruction to all knots with up to 14 crossings with
|σ(K)| = 6 and found that it applies to precisely two knots, namely 14n12777 and
14a4637.

We expect that given any m ∈ N there exist examples of knots such that the
obstruction introduced in Section 5.3 detects that ua(K) = m, but such that all
previous classical lower bounds do not detect that ua(K) = m. Finding such examples
will obviously require a different method than the ‘brute force’ search we have done
with ‘knotorious’.

6.4. Knots with up to 11 crossings. Our calculations with ‘knotorious’ show that
the Nakanishi index, the signature, the Lickorish obstruction and the n(K) = 2
obstruction of Section 5.2 completely determine the algebraic unknotting number for
all knots with up to 11 crossings.

The full details are available on [BF12a]. For the reader’s convenience we provide
in Table 1 the algebraic unknotting number for all knots with up to 10 crossings. The
subscripts denote the way of obtaining the result:

• 1u means that there exists a single algebraic unknotting move which changes
the knot into a knot with trivial Alexander polynomial.
• 2L means that we use the Lickorish obstruction.
• kσ for k = 2, 3, 4 means that the signature detects the algebraic unknotting
number and it is greater than one.
• 2w stands for the Wendt criterion, in particular the Nakanishi index is equal
to two.
• 2A means that the minimal number of generators of the Alexander module
over F2[t

±] is two.
• 3S means that the Stoimenow obstruction (see Section 4.7) applies.
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• 3
n
denotes our new obstruction as discussed in Section 5.2.

(Note that in some cases two or more obstructions will detect that ua(K), but we will
only indicate one obstruction.)

The star indicates that the unknotting number is actually known (according to
[CL11]) to be larger than ua(K). We remark that for knots 1061, 1076 and 10100, we
computed that ua(K) = 2, but it is not known, whether u(K) = 2 or 3. These knots
are not marked by a star.

6.5. Knots with 12 crossings. Among the 12 crossing knots we found the following
examples:

(1) there exists precisely one knot, namely 12n749 with |σ(K)| ≤ 2 and such that
|σz(K)| ≥ 4 for some z ∈ Z,

(2) there exists precisely one knot, namely 12a896 with |σz(K)| ≤ 2 for all z ∈ Z
and such that there exist z1, z2 ∈ Z with |σz1(K)− σz2(K)| ≥ 4.

Our calculations show that the aforementioned seven lower bounds determine the
algebraic unknotting number for all knots with up to 12 crossings, except possibly
for the following:

12a0050 12a0141 12a0364 12a0649 12a0728 12a0791 12a0901
12a1049 12a1054 12a1064 12a1138 12a1141 12a1234 12a1236
12a1264 12n0200 12n0260 12n0657 12n0864.

The algebraic unknotting number of all the above knots is either 1 or 2.
The knots 12a0050, 12a0141, 12a0364, 12a0649, 12a0728, 12a0791, 12a0901, 12a1054, 12a1064,

12a1138, 12a1234, 12a1236, 12n0200 and 12n0864 all have Nakanishi index 1. In fact, we
were able to find an explicit generator of the Alexander module. This allows us to
compute the Blanchfield pairing for all those knots. Since m(K) = 1 it is necessarily
of the form

Λ/pΛ× Λ/pΛ
(v,w)7→v·q·w/p

// Ω/Λ,

where p is the Alexander polynomial and q ∈ Λ. For example, for K = 12a0050 we
have

p = ∆K(t) = t−4 − 8t−3 + 20t−2 − 30t−1 + 33t− 30t+ 20t2 − 8t3 + t4,
q = −t3 + 7t2 − 13t+ 17− 13t−1 + 7t−2 − t−3

(we refer to [BF12a] for the other knots). Thus 12a0050 has algebraic unknotting
number 1 if and only if there exists an automorphism of Λ/p (as a Λ-module), which
transforms this pairing into (v, w) 7→ ±vw/p. This is equivalent to the existence of
an f ∈ Λ such that qff = ±1 (mod p). The problem of finding such f or showing
that it does not exist, in general, is very hard.

The knots 12a1054, 12a1141, 12a1264, 12n657 and 12n0260 have Nakanishi index 1 or
2. We were able to find a 2 × 2 presentation matrix in each case. For example, for
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Table 1. Algebraic unknotting number for knots with up to 10 cross-
ings. See Section 6.4 for an explanation of symbols.

knot n knot n knot n knot n knot n knot n knot n
31 1u 92 1u 938 2∗σ 1025 2σ 1061 2σ 1097 2L 10133 1u
41 1u 93 3σ 939 1u 1026 1u 1062 2σ 1098 2w 10134 3σ
51 2σ 94 2σ 940 2w 1027 1u 1063 2σ 1099 2w 10135 1∗u
52 1u 95 1∗u 941 2w 1028 1∗u 1064 1∗u 10100 2σ 10136 1u
61 1u 96 3σ 942 1u 1029 2L 1065 2L 10101 2∗σ 10137 1u
62 1u 97 2σ 943 2σ 1030 1u 1066 3σ 10102 1u 10138 1∗u
63 1u 98 1∗u 944 1u 1031 1u 1067 2L 10103 3

n
10139 3∗σ

71 3σ 99 3σ 945 1u 1032 1u 1068 1∗u 10104 1u 10140 2A
72 1u 910 2∗σ 946 2w 1033 1u 1069 2L 10105 2L 10141 1u
73 2σ 911 2σ 947 2w 1034 1∗u 1070 1∗u 10106 2L 10142 3σ
74 2L 912 1u 948 2w 1035 1∗u 1071 1u 10107 1u 10143 1u
75 2σ 913 2∗σ 949 3S 1036 2L 1072 2σ 10108 2L 10144 2L
76 1u 914 1u 101 1u 1037 1∗u 1073 1u 10109 2L 10145 1∗u
77 1u 915 2L 102 3σ 1038 1∗u 1074 2w 10110 1∗u 10146 1u
81 1u 916 3σ 103 2L 1039 2σ 1075 2w 10111 2σ 10147 1u
82 2σ 917 2L 104 1∗u 1040 2L 1076 2σ 10112 1∗u 10148 1∗u
83 1∗u 918 2σ 105 2σ 1041 1∗u 1077 1∗u 10113 1u 10149 2σ
84 1∗u 919 1u 106 2∗σ 1042 1u 1078 2σ 10114 1u 10150 2σ
85 2σ 920 2σ 107 1u 1043 1∗u 1079 1∗u 10115 2A 10151 1∗u
86 1∗u 921 1u 108 2σ 1044 1u 1080 3σ 10116 2L 10152 3∗σ
87 1u 922 1u 109 1u 1045 1∗u 1081 1∗u 10117 1∗u 10153 1∗u
88 2L 923 2σ 1010 1u 1046 3σ 1082 1u 10118 1u 10154 2∗σ
89 1u 924 1u 1011 1∗u 1047 2σ 1083 1∗u 10119 1u 10155 2w
810 1∗u 925 1∗u 1012 1∗u 1048 1∗u 1084 1u 10120 2∗σ 10156 1u
811 1u 926 1u 1013 1∗u 1049 3σ 1085 2σ 10121 2L 10157 2w
812 1∗u 927 1u 1014 2σ 1050 2σ 1086 2L 10122 2L 10158 1∗u
813 1u 928 1u 1015 1∗u 1051 1∗u 1087 1∗u 10123 2w 10159 1u
814 1u 929 1∗u 1016 1∗u 1052 1∗u 1088 1u 10124 4σ 10160 2σ
815 2σ 930 1u 1017 1u 1053 2∗σ 1089 2L 10125 1∗u 10161 2∗σ
816 2L 931 2L 1018 1u 1054 1∗u 1090 1∗u 10126 1∗u 10162 1∗u
817 1u 932 1∗u 1019 2L 1055 2σ 1091 1u 10127 2σ 10163 2L
818 2w 933 1u 1020 2L 1056 2σ 1092 2σ 10128 3σ 10164 1u
819 3σ 934 1u 1021 2σ 1057 1∗u 1093 1∗u 10129 1u 10165 2L
820 1u 935 2∗w 1022 1∗u 1058 1∗u 1094 1∗u 10130 1∗u
821 1u 936 2σ 1023 1u 1059 1u 1095 1u 10131 1u
91 4σ 937 2w 1024 2L 1060 1u 1096 1∗u 10132 1u
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12a1054 we have
(

2t3 −1 + 4t− 7t2 + 4t3 − t4

1− 5t+ t2 − 5t3 + t4 3t

)
.

However, we could not show that the Alexander module is cyclic. If it is not, then
the algebraic unknotting number is 2.

7. Open questions

Apart from Conjecture 1.4, we can state a few more questions and problems related
to n(K).

Question 1. Given any knot K, do we have the following equality

n(K) =
minimal size of a hermitian

matrix A over Z[t±1] with λ(A) ∼= λ(K)
?

Put differently, is the condition in the definition of n(K) that A(1) be diagonal over
Z necessary? Note that an affirmative answer would imply that n(K) ≤ deg∆K(t)
for any knot K.

Question 2. Let K be a knot with m(K) = 1, |σ(K)| ≤ 2 and which satisfies the
Lickorish obstruction. Does it follow that the n(K) = 1 obstructions of Lemma 5.1
are necessarily satisfied? The discussion following Lemma 5.1 is evidence that the
answer is yes.

Question 3. Is n(K) invariant under mutation? It is an open question whether the
unknotting number is preserved under mutation (see [Kir97, Problem 1.69(c)]). The
S–equivalence class of a Seifert matrix (and thus the isometry type of the Blanchfield
pairing) is preserved under positive mutation (see [KL01, Theorem 2.1]). On the
other hand the S–equivalence class (in fact the isomorphism class of the Alexander
module) is in general not preserved under negative mutation (see [Ke89] and [Ke04,
Section 3]). We do not know whether n(K) is preserved under mutation. Note though
that the Levine–Tristram signatures are preserved under any mutation (see [CL99])
and note that homeomorphism type of the 2–fold branched cover is preserved under
mutation (see e.g. [Ka96, Proposition 3.8.2]).

Question 4. In Section 4.3 we introduce a new classical invariant ρZ[t±1](K) and
we show in Proposition 4.2 that it gives a lower bound on the topological 4–genus.
Can this invariant be used to give new computable lower bounds on the topological
4–genus?

Question 5. What are the algebraic unknotting numbers of the remaining 12 crossing
knots? (See Section 6.5 for details.) It might be possible to possible to use the
methods of [KW03] to show that the Nakanishi index of the five 12 crossing knots
mentioned in Section 6.5 is 2.
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