Übungen zu Affine Lie-Algebren

Aufgabe 1. Sei L eine Lie-Algebra, M, M_1, M_2 L-Moduln und N ein U(L)-Modul. Sei $i: L \to U(L)$ die kanonische Einbettung.

(i) Zeigen Sie, dass M ein U(L)-Modul wird durch die Vorschrift

$$(i(f_{i_1})\dots i(f_{i_k}))\cdot m := f_{i_1}\cdot (f_{i_2}\cdot (\dots (f_{i_k}\cdot m)\dots))$$

(ii) Zeigen Sie, dass N ein L-Modul wird mittels

$$l \cdot m := i(l) \cdot m$$

(iii) Zeigen Sie, dass $M_1 \otimes M_2$ ein L-Modul wird mittels

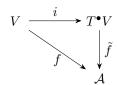
$$l \cdot m_1 \otimes m_2 := (l \cdot m_1) \otimes m_2 + m_1 \otimes (l \cdot m_2)$$

Aufgabe 2. (i) Sei $T^{\bullet}V$ die Tensoralgebra über V, und \mathcal{A} eine assoziative, unitäre Algebra. Zeigen Sie, dass für eine lineare Abbildung $f:V\to\mathcal{A}$ die Abbildung

$$\tilde{f}: T^{\bullet}V \to \mathcal{A}$$

$$\tilde{f}(v_1 \otimes \cdots \otimes v_k) := f(v_1) \dots f(v_k)$$

ein Algebrenhomomorphismus ist, so dass folgendes Diagramm kommutiert



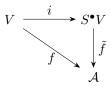
Wobei i die kanonische Einbettung bezeichnet.

(ii) Sei $S^{\bullet}V$ die symmetrische Algebra über V, und \mathcal{A} eine assoziative, unitäre, kommutative Algebra. Zeigen Sie, dass für eine lineare Abbildung $f:V\to\mathcal{A}$ die Abbildung

$$\tilde{f}: S^{\bullet}V \to \mathcal{A}$$

$$\tilde{f}(v_1 \otimes \cdots \otimes v_k) := f(v_1) \dots f(v_k)$$

ein Algebrenhomomorphismus ist, so dass folgendes Diagramm kommutiert



Wobei i die kanonische Einbettung bezeichnet.

Aufgabe 3. (i) Seien

$$f:=\begin{pmatrix}0&0\\1&0\end{pmatrix}, e:=\begin{pmatrix}0&1\\0&0\end{pmatrix}, h:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.$$

Diese bilden eine Basis der $\mathfrak{sl}_2(\mathbb{C})$, stellen Sie folgende Elemente der $U(\mathfrak{sl}_2(\mathbb{C}))$ als Linear-kombination der durch f, e, h induzierten Basis aus dem PBW-Theorem dar.

- (i) $e^i f$ für $i \in \mathbb{Z}_{\geq 0}$.
- (ii) hf^j für $i \in \mathbb{Z}_{>0}$.
- (iii) ef^i für $i \in \mathbb{Z}_{\geq 0}$.
- (ii) Gegeben sei der $\mathfrak{sl}_2(\mathbb{C})$ -Modul \mathbb{C}^2 . Sei $V=\mathbb{C}^2\otimes\mathbb{C}^2$. Berechnen Sie:

$$fe(e_i \otimes e_j), fh(e_i \otimes e_j), ef^k(e_i \otimes e_j), k \in \mathbb{Z}_{\geq 0},$$

wobei e_1, e_2 die Standardbasis des \mathbb{C}^2 bezeichnet.

Aufgabe 4. Zeigen Sie, dass die Elemente der Basis aus dem PBW-Theorem ein Erzeugendensystem bilden.