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Chapter 0

Introduction

Let G ⊆ GLn(C) be a subgroup. In these notes, almost always we will
consider either the group of invertible complex n× n-matrices

G = GLn(C) = {A ∈Mn(C) | detA 6= 0} (1)

or the goup of unitary matrices

G = Un(C) = {A ∈Mn(C) | AᵀA = 1I}. (2)

The description in (1) implies that GLn(C) is an open and dense subset in
Mn(C). The condition A

ᵀ
A = 1I in (2) should be interpreted as a collection

of n2-equation which all have to be satisfied by the elements in Un(C). This
implies that Un(C) is a closed subset of Mn(C), and, since the equations
imply that A is invertible, it is indeed a closed subset of GLn(C). Further,
for A = (ai,j)i,j=1,...,n, the condition A

ᵀ
A = 1I implies for all j = 1, . . . , n:

n∑
i=1

|ai,j|2 = 1,

so Un(C) is a bounded and closed subset of Mn(C), i.e. Un(C) is a compact
set. Recall that a n × n-matrix A lies in GLn(C) if and only if the column
vectors form a basis of Cn, so we can identify GLn(C) with the set of ordered
bases of Cn. Let now

〈, 〉 : Cn × Cn → Cn, (

 a1
...
an

 ,

 b1
...
bn

) 7→
n∑

i=1

aibi (3)
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be the standard inner product on Cn. In terms of ordered bases Cn, Un(C)
can be identified with the set of ordered orthonormal bases (with respect to
〈, 〉, the fixed inner product) of Cn.

We will describe later in more detail the connection between the compact
group Un(C) and the group GLn(C).

Let now G = GLn(C) or G = Un(C). The loop group LG is, as a set,

LG := {φ : S1 → G}

just the set of all parameterized maps from the circle S1 ⊂ C to the group.
Pointwise multiplication of the maps endows the set LG with an associative
composition law:

LG× LG→ LG, (φ, ψ) 7→ φ · ψ :

{
S1 → G
z 7→ φ(z)ψ(z)

(4)

Denote by 1I ∈ GLn(C) the unit matrix. By abuse of notation, we identify
the matrix 1I with the constant map

1I(z) = 1I ∀ z ∈ S1. (5)

This is a neutral element for the composition law in (1.6), and Cramer’s rule
shows that for a given map φ ∈ LG, the map

φ−1 : S1 → G, z 7→ 1

detφ(z)
φ(z)†

is a well defined element in LG with the property φ−1 ·φ = φ ·φ−1 = 1I. Here
φ(z)† denotes the adjugate matrix associated to φ(z). In other words, (1.6)
defines a group law on LG.

Actually, one almost never considers the loop group in the generality as
defined above. Depending on the circumstances (for example the applications
one has in mind), one puts restrictions on the maps φ : S1 → G and considers
only those maps which are continuous, or which are smooth, or which have
an absolutely convergent Fourier expansion, or which are algebraic, or....

Accordingly, let L0G ⊂ LG be the subset of continuous maps, let L∞G ⊂
LG be the subset of smooth maps, let LFG ⊂ LG be the subset of maps
admitting an absolutely convergent Fourier series, let LalgG ⊂ LG be the
subset of algebraic maps, and so on (we define later more precisely what it
means for a map to be smooth ore algebraic or . . .). Roughly speaking, the
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map φ is given by functions φi,j, where φ(z) = (φi,j(z)), and the map φ is
continuous or smooth or . . . only if the functions φi,j are continuous or smooth
or . . .. So it is often (but not always) easy to check that the corresponding
subsets like L0G or L∞G are indeed subgroups. Correspondingly, L0G is
called the continuous loop group respectively L∞G is called the smooth loop
group.

It remains the question why does one want to study these groups. Here
some examples:

Example 0.0.1 Birkhoff was looking at a differential equation of the form

dv

dz
= A(z)v(z),

where v : C→ Cn is a vector valued function and A(z) is a n×n-matrix val-
ued function. If A is a constant matrix, then there exist standard algorithms
to simplify the equation. Birkhoff’s aim was to develop similar tools in this
more general case, for example to find sufficient conditions for the existence
of a coordinate transform T (z) such that for ṽ(z) = T (z)v(z) the equation
above reduces to dṽ

dz
= Ãṽ(z) such that Ã is a constant matrix.

Example 0.0.2 A more philosophical reason is that the loop group is an
object which is inherent to the group. So if one wants to study the group,
its properties, its representations and so on, then it is natural to study as
well objects inherent to the group. One of these ”natural” objects associ-
ated to the groups we are looking at will be the algebraic loop group, also
called affine Grassmannian, which can be used to construct finite dimensional
representations attached with a canonical basis.

Let us finish the introduction with more examples of loop groups and the
various ways one might look at them.

Example 0.0.3 A loop φ : S1 → G = GLn(C) is called an algebraic loop if
there exists Laurent polynomials φ̃i,j ∈ C[t, t−1] such that φ is the restriction
of the map

φ̃ : C∗ → GLn(C), z 7→ (φ̃i,j(z)),

i.e. φ = φ̃|S1 . Next suppose we are given two such algebraic lifts φ̃(t), ψ̃(t)
such that φ̃|S1 = ψ̃|S1 as maps. But then (φ̃ − ψ̃)|S1 = 0 is the zero map,
which implies that for all i, j the Laurent polynomials φ̃i,j(t) − ψ̃i,j(t) have
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an infinite zero set. This is only possible if φ̃i,j(t) = ψ̃i,j(t) for all i, j, and
hence we have φ̃ = ψ̃.

Now here is another way of looking at algebraic loops. For simplicity
set n = 2 and let R = C[t, t−1] be the ring of Laurent polynomials in one
variable, its quotient field is the field K of rational functions on C. The
group

GL2(K) = {A ∈M2(K) | detA 6= 0}

is well defined, and so is its subgroup

GL2(R) = {A ∈M2(R) | detA ∈ R∗},

where R∗ denotes the set of units in R. Indeed, the fact that the determinant
is a unit in R ensures by Cramer’s rule that the inverse of the matrix is again
an element in M2(R). For R = C[t, t−1] the set of units are just the nonzero
complex multiples of powers of t: one has R∗ = {atm | m ∈ Z, a ∈ C∗}. Now
an element of GL2(R) looks like

A = A(t) =

(
a1,1(t) a1,2(t)
a2,1(t) a2,2(t)

)
where the ai,j(t) ∈ C[t, t−1] are Laurent polynomials. Since the determinant
is of the form atm for some m ∈ Z and a ∈ C∗, for all z ∈ C∗ the matrix
A(z) has a nonzero determinant and is hence an element in GL2(C). So the
restriction of this map to S1 ⊂ C∗ provides an algebraic loop

A(t) : S1 → GL2(C), z 7→ A(z).

Vice versa, suppose φ : S1 → GL2(C) is an algebraic loop, i.e. we know there
exist φ̃i,j(t) ∈ C[t, t−1] such that φ is the restriction of the map

φ̃ : C∗ → GL2(C), z 7→ (φ̃i,j(z))

to the circle. Since φ(z) ∈ GL2(C) for all z ∈ C∗, it follows that detφ(z) 6= 0
for all z ∈ C∗, and hence detφ(t) is a Laurent polynomial having only 0 as
pole or as vanishing set. It follows that detφ(t) = atm for some m ∈ Z and
a ∈ C∗ and hence φ̃(t) ∈ GL2(C[t, t−1]).

It follows that this natural construction of matrix groups over Laurent
polynomials, like GL2(C[t, t−1]), provides a construction of the algebraic loop
group LalgGL2(C).
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Example 0.0.4 Let G = Un(C). Here is an attempt to try to understand
LG by using the exponential map. Let un(C) ⊂ Mn(C) be the real vec-
tor subspace of skew hermitian matrices, i.e. the transpose of the complex
conjugate matrix has the property A

ᵀ
= −A. It follows that

exp(A) =
∑
i≥0

1

i!
Ai

has the property that the transpose of the complex conjugate matrix satisfies:

exp(A)
ᵀ

=
∑
i≥0

1

i!
(A

i
)ᵀ = exp(−A) = (exp(A))−1,

so this is a unitary matrix. Note that unitary as well as skew hermitian ma-
trices are normal matrices, i.e., A

ᵀ
A = AA

ᵀ
. Recall (Linear algebra course)

that complex normal matrices are diagonalizable by conjugation with a uni-
tary matrix, in particular, the diagonal matrix is again unitary respectively
skew hermitian. Now a diagonal matrix is skew hermitian if and only if
all eigenvalues are purely imaginary, and a diagonal matrix is unitary if and
only if all eigenvalues have absolute value one. It follows that the exponential
maps sends the diagonal skew hermitian matrices onto the diagonal unitary
matrices, and, since g exp(A)g−1 = exp(gAg−1), it follows that the map

exp : un(C)→ Un(C)

is a surjective map from the space of skew hermitian matrices onto the unitary
group Un(C). Let Map(S1, un(C)) be the set of smooth maps from S1 to
un(C). By combining such a smooth map with the exponential map, one
gets a map

Map(S1, un(C))→ LG, φ 7→ exp(φ),

The questions to investigate is whether this is a local homeomorphism near
the identity. These kind of constructions show up in theoretical physics
(string theory, gauge groups).
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Chapter 1

Loop groups - some examples

Before we start with the formal part, let us look at more examples.

1.1 Algebraic version for the unitary group

Let G = Un(C) be the group of unitary n × n-matrices (see (2)). The set
LalgUn(C) of algebraic loops is the set of maps γ : S1 → Un(C) having a
Laurent expansion, i.e. there exists some non-negative integer m and n× n
matrices Ak ∈Mn(C), −m ≤ k ≤ m, such that

γ(t) =
m∑

k=−m

Akt
k.

This looks slightly different from the definition in Example 0.0.3. Let us try
to understand why we can relax the definition in the case Un(C) and how to
reconcile the two definitions.

From the definition above it is clear that the pointwise multiplication as
in (1.6) defines an associative composition law

LalgUn(C)× LalgUn(C)→ LalgUn(C), (1.1)

having the constant map: 1I(z) = 1I for all z ∈ S1, as unit element (see (5)).
For γ(t) =

∑m
k=−mAkt

k ∈ LalgUn(C) set γᵀ(t) :=
∑m

k=−mA
ᵀ
kt
−k. This

defines again an algebraic loop

γᵀ : S1 → Un(C), z 7→ γᵀ(z) =
m∑

k=−m

A
ᵀ
kz
−k = (

m∑
k=−m

Akzk)

ᵀ

,

11
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so γᵀ is an element of LalgUn(C) too. Indeed, note that γᵀ(t) = (γ(t−1))ᵀ, so
for z ∈ S1 we have γᵀ(z) = (γ(z))ᵀ = γ(z)−1 ∈ Un(C).

Moreover, since γ(z) ∈ Un(C) for all z ∈ S1 we have γ(z) · γᵀ(z) =
γᵀ(z) · γ(z) = 1I for all z ∈ S1. The determinants det(γ(t)) and det(γᵀ(t))
are a Laurent polynomials. Since γᵀ(z) · γ(z) = γ(z) · γᵀ(z) = 1I for all
z ∈ S1, it follows that det(γ(z)) det(γᵀ(z)) = 1 for all z ∈ S1. Again, since
det(γ(t)) det(γᵀ(t)) − 1 is a Laurent polynomial with infinitely many zeros,
it follows det(γ(t)) det(γᵀ(t)) = 1. Hence det(γ(t)) is a unit in C[t, t−1], and
we have

LalgUn(C) ⊆ GLn(C[t, t−1]). (1.2)

More precisely:

Ψ = (ψi,j) : C∗ →Mn(C), z → γ(z) · γᵀ(z)− 1I

respectively

Ψ′ = (ψ′i,j) : C∗ →Mn(C), z → γᵀ(z) · γ(z)− 1I

are given by Laurent polynomials ψi,j, ψ
′
i,j ∈ C[t, t−1] such that

ψi,j|S1 ≡ 0, ψ′i,j|S1 ≡ 0 ∀ 1 ≤ i, j ≤ n.

Now nonzero Laurent polynomials have only a finite number of zeros and
hence ψi,j = ψ′i,j = 0 for all 1 ≤ i, j ≤ n. It follows that

γᵀ(t) · γ(t) = γ(t) · γᵀ(t) = 1I. (1.3)

Summarizing :

Proposition 1.1.1 i) LalgUn(C) is a subgroup of LUn(C).

ii) Every γ ∈ LalgUn(C) extends to an algebraic map γ : C∗ → GLn(C).

iii) LalgUn(C) = LUn(C) ∩ LalgGLn(C).

To get a better understanding of the connection between LalgG for G =
Un(C) the unitary group and LalgG for G = GLn(C[t, t−1]), we will discuss
later the complexification LalgGC of the loop group.
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1.2 Loops with convergent Fourier series

We fix a real valued submultiplicative norm ‖ ·‖ on the complex vector space
of n × n-matrices Mn(C). (Recall that the norm is called submultiplicative
if ‖AB‖ ≤ ‖A‖‖B‖.) Denote by F̂ the set of maps f : S1 → Mn(C) of the
form

f : z 7→ f(z) =
∞∑

i=−∞

Aiz
i

where the Ai ∈ Mn(C) are such that
∑∞

i=−∞ ||Ai|| < ∞. The set F̂ is

naturally endowed with the structure of a real vector space, elements of F̂
can be added and multiplied by real numbers in the usual way: for f(t) =∑∞

i=−∞Ait
i and g(t) =

∑∞
i=−∞Bit

i in F̂ and λ, µ ∈ R one has

λf(t) + µg(t) :=
∞∑

i=−∞

(λAi + µBi)t
i ∈ F̂

because
∑∞

i=−∞ ‖λAi + µBi‖ ≤ |λ|(
∑∞

i=−∞ ‖Ai‖) + |µ|(
∑∞

i=−∞ ‖Bi‖) < ∞.

If fact, F̂ endowed with the norm:

F̂ 3 f(t) =
∞∑

i=−∞

Ait
i : ||f || =

∞∑
i=−∞

||Ai|| <∞,

is a complete real vector space. The pointwise multiplication of the images:
(f · g)(z) := f(z)g(z) makes F̂ into an associative algebra:

(f · g)(t) :=
∞∑

i=−∞

(
∞∑

j=−∞

Ai−jBj)t
i.

Indeed, the condition
∑∞

i=−∞ ||Ai|| <∞ implies that

lim
`→∞

max{||Am|| | |m| ≥ `} = 0

and hence for all i ∈ Z the series limk→∞
∑k

j=−k Ai−jBj is a Cauchy series:
let ` ≥ k ≥ 0, then

||
∑̀
j=−`

Ai−jBj−
k∑

j=−k

Ai−jBj|| ≤ max{‖Bj‖, ‖B−j‖ | k+1 ≤ j ≤ `}(
∞∑

i=−∞

||Ai||),

(1.4)
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so by moving k to infinity, one can make (1.4) arbitrarily small. Further,

‖fg‖ =
∞∑

i=−∞

||(
∞∑

j=−∞

Ai−jBj)|| ≤
∞∑

i=−∞

(
∞∑

j=−∞

‖Ai−j‖‖Bj‖) = ‖f‖‖g‖

so the norm is submultiplicative, i.e. ‖fg‖ ≤ ‖f‖‖g‖. In other words, the
algebra F̂ is a Banach algebra.

We are interested in the loops with values in GLn(C), denote by

LFG := {f ∈ F̂|Im f ⊂ GLn(C)}.

this subset. To get a description of this set in terms of F̂ note that the con-
dition for f to be an element of LFG implies that det f(z) is a non-vanishing
continous function admitting an absolutely convergent Fourier series. By a
theorem of Wiener, this implies that (det f(z))−1 admits the same property
and hence

f−1 : S1 → GLn(C), z 7→ (f(z))−1

is again an element of F̂ . It follows that:

Proposition 1.2.1 LFG is the subgroup of units in F̂ . In particular, LFG
is a subgroup of LG.

1.3 The group Ω∞G of based smooth loops

Let G = Un(C) be the unitary group. The object we are mostly interested
in is the group Ω∞G of based smooth loops, i.e. we consider only the maps

Ω∞G := {φ : S1 → G, φ is smooth and φ(1) = 1I}.

Another way of looking at the group is the following. Given a loop γ ∈ L∞G,
then we think of γ(1) ∈ G as the starting and end point of the loop. We
have a natural map

ev : L∞G→ G, γ 7→ γ(1).

This map is a group homomorphism, by the definition of the multiplication
of elements in L∞G one has

ev(γ1 · γ2) = (γ1 · γ2)(1) = γ1(1)γ2(1) = ev(γ1)ev(γ2).
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The map is surjective: given g ∈ G, by abuse of notation identify g with the
constant loop gγ : S1 → G, z 7→ g for all g ∈ G. This map is smooth and,
of course, ev(gγ) = g. The kernel of the map is the subgroup of loops such
that γ(1) = 1I, so ker ev = Ω∞G. So we can identify Ω∞G with the quotient

Ω∞G = L∞G/G,

where we identify G with the subgroup of constant loops in L∞G. We will
see later, and, in fact, this will be one of the important points in the course,
that one has another way of looking at Ω∞G. We will show that

Ω∞G = Ω∞Un(C) = L∞GLn(C)/L∞,+GLn(C),

where L∞,+GLn(C) is the subgroup of smooth loops which are the boundary
value of a holomorphic map:

γ : {z ∈ C | |z| < 1} → GLn(C).

1.4 Loops in the Lie algebra

In Example 0.0.4 we have already seen that the groups GLn(C) and Un(C)
come associated with certain vector spaces of matrices. In the case G =
GLn(C), we have g = Mn(C), for the unitary group G = Un(C) it is g =
un(C), the space of skew hermitian matrices. These vector spaces come
endowed with the Lie bracket operation:

[A,B] = AB −BA. (1.5)

Note that for two skew hermitian matrices the standard matrix product AB
is in general not anymore skew hermitian, but the following holds:

([A,B])
ᵀ

= B
ᵀ
A
ᵀ − AᵀBᵀ = BA− AB = −([A,B]).

A complex (or real) vector space L together with a bilinear skew symmetric
operation L× L→ L, (A,B) 7→ [A,B] satisfying the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0

is called a complex (respectively real) Lie algebra. Now the bilinear skew
symmetric operation [, ] defined on n×n matrices in (1.5) satisfies the Jacobi
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identity, so (Mn(C), [, ]) and (un(C), [, ]) are examples for Lie algebras. Note
that (Mn(C), [, ]) is an example for a complex Lie algebra, whereas (un(C), [, ])
is only a Lie algebra over the real numbers (after all, despite the C in the
notation, un(C) is only a real vector space). We will see that the Lie algebra
serves as a linear model for group (see next chapter), and we will see that
loops in the Lie algebra will serve as a linear model for the loop group.

Exercise 1.4.1 Show that the operation defined on Mn(C) in (1.5) is bilin-
ear, skew symmetric and satisfies the Jacobi identity.

Now let g = Mn(C) or g = un(C). Denote by Lg the set

Lg := {φ : S1 → g}

of all parameterized maps from the circle S1 ⊂ C into the vector space g. Lg
has an obvious structure as a vector space (complex vector space in the case
Lg = Mn(C), a real vector space in the case Lg = un(C)). The pointwise
multiplication of the maps endows the set Lg with a Lie algebra structure:

Lg× Lg → Lg,

(φ, ψ) 7→ [φ, ψ] = φ · ψ − φ · ψ :

{
S1 → g
z 7→ φ(z)ψ(z)− ψ(z)φ(z)

(1.6)
As before, we consider special cases like polynomial loops Lpolg, continu-
ous loops L0g, smooth loops L∞g and so on by imposing the corresponding
condition of the map to be polynomial, or continuous, or smooth, or . . ..

The Lie algebra Lg is called the loop algebra of g.

1.5 A short outlook

We have now seen several examples of loop groups (and loop algebras). The
aim of the next chapters will be to endow this group with the structure of a
Lie group. Before doing so, we recall a few definitions and results from the
classical case. As in the classical case, where Lie algebras are local models
for Lie groups, loop algebras will be local models for loop groups.

Once we have endowed L∞G respectively Ω∞G with the structure of a Lie
group, we will construct realizations of the Lie groups, i.e. we will construct
them as special subset of known infinite dimensional manifolds like certain
Grassmann varieties.
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Suppose now G = Un(C). Once Ω∞G is endowed with the structure of a
Lie group, then we can start to study special functions (like Morse functions)
on this manifold and their critical values. These Morse functions are very
helpful to study decompositions of manifolds and their homology. One of
the functions we will look at will have as critical values very special loops.
Recall that we look at maps from S1 to our favorite group G = GLn(C) or
G = Un(C). But S1 = {z ∈ C | |z| = 1} is a Lie group itself, so we have
as special subset the Lie group homomorphisms Hom (S1, G) ⊂ Ω∞G, and it
turns out that the so called energy function

γ 7→ 1

4π

∫
S1

〈γ′(t)γ′(t)〉dµ(t)

on the loops is a Morse function having precisely Hom (S1, G) as critical val-
ues (here 〈·, ·〉 is a fixed metric on G invariant under left and right transla-
tions). This leads first of all to an interesting decomposition of Ω∞G (stable
and unstable manifolds), and secondly it turns out that that this decom-
position can be used to construct in a homological way finite dimensional
representations of G, one for each conjugacy class in Hom (S1, G). Here the
realization of ΩpolUn(C) as quotient space LpolGLn(C)/Lpol,+GLn(C) plays
an important role. This connection had first been noted in the 1990’s an has
since then lead to an exciting development in representation theory.

Another aspect is the fact that Ω∞G is a Kähler manifold and admits a
so called moment map, again a very exciting tool this time for differential
geometers to analyze the structure of a manifold. Only rather recently it has
been proved, for example, that the preimage of a point for the moment map
on based loop groups is always connected.

Of course, we will not be able to address all these points in the course.
The aim of the course is to give an introduction, and these short remarks
just mention some examples to ensure you that this is an introduction into
a relevant research area with many exciting branches.
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Chapter 2

The exponential map

2.1 Manifolds, Lie groups and examples

Just for the sake of completeness let us recall some definitions from the
calculus class. Though we will not use them in this generality, it is useful to
keep in mind the general background while looking at special cases.

Definition 2.1.1 Let U ⊂ Rd be an open subset. A function f : U → R is
called differentiable of class Ck on U if all partial derivatives ∂αf

∂αx
exist and

are continuous for all α ∈ Nd, α1 + . . .+ αd ≤ d. We say f is smooth and of
class C∞ on U if f is differentiable of class Ck on U for all k ≥ 0.

A map f : U → Rm is called differentiable of class Ck on U respectively
smooth if all coordinate functions fi = yi ◦ f are differentiable of class Ck on
U respectively smooth.

Definition 2.1.2 A locally Euclidean space M of dimension d is a Haus-
dorff topological space M for which each point p ∈ M has a neighborhood
homeomorphic to an open subset of some Rd.

A differentiable structure F of class Ck (1 ≤ k ≤ ∞) on a locally Eu-
clidean space M is a collection of coordinate systems {(Uβ, φβ) | β ∈ I}
(often called an atlas) satisfying the following properties:

• for all β ∈ I, Uβ is connected, and φβ : Uβ → Rd is a homeomorphism
of Uβ onto an open subset of Rd;

•
⋃
β∈I Uβ = M ;

19
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• φβ ◦ φ−1β′ is of class Ck for all β, β′ ∈ I

• the collection F is maximal with respect to the last point, i.e., if (U, φ)
is a coordinate system (meaning U is connected and φ : U → Rd is
a homeomorphism onto an open subset of Rd) such that φβ ◦ φ−1 and
φ ◦ φ−1β are of class Ck for all β ∈ I, then (U, φ) ∈ F .

Remark 2.1.1 Given a collection F0 = {(Uβ, φβ) | β ∈ I} of coordinate
systems satisfying the first three points, one can complete F0 to a collection
F satisfying all four points:

F = {(U, φ) | φ ◦ φ−1β and φβ ◦ φ−1are Ck for all (Uβ, φβ) ∈ I}

Definition 2.1.3 A (real) Ck-manifold M of dimension d is a locally Eu-
clidean space M of dimension d having a second countable topology, and
which is endowed with differentiable structure F of class Ck. A C∞-manifold
M is called a smooth manifold.

Definition 2.1.4 A complex manifold is a manifold with an atlas of coordi-
nate charts homeomorphic to subsets in Cn, such that the transition maps
are holomorphic.

Example 2.1.1 GLn(R) is an open subset of Rn2
and is hence naturally a

real manifold. Now GLn(C) is an open subset of Cn2
and is hence naturally

an example for a complex manifold.

Example 2.1.2 Another way to construct manifolds is the following, these
manifolds are called embedded manifolds. Suppose we are given a smooth
function f : Rn+m → Rm, and let

M = {x ∈ Rn+m | f(x) = 0}.

Assume further that 0 is a regular value, i.e. the Jacobi matrix Df(x) of f
is of maximal rank for all points in M . Then the Implicit Function Theorem
implies that for every point x = (x1, x2) ∈M (x1 ∈ Rn, x2 ∈ Rm) there exists
an open neighborhood Ux1 ⊂ Rn containing x1 and an open neighborhood
Ux2 ⊂ Rm containing x2, and a smooth map g : Ux1 → Ux2 such that for all
(y1, y2) ∈ Ux1 × Ux2 we have

f(y1, y2) = 0⇔ y2 = g(y1).
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Or, in other words: (Ux1 × Ux2) ∩M = {(y1, g(y1)) | y1 ∈ Ux1} is an open
neighborhood of x in M , and the projection π : (y, g(y)) 7→ y defines a coor-
dinate chart for this neighborhood of x in M . (For more details see Warner,
Foundations of Differentiable Manifolds and Lie Groups, Theorem 1.38).

Example 2.1.3 Recall the definition Un(C) = {A ∈ Mn(C) | AᵀA = 1I} of
the unitary group (see (2)). Let H ⊂Mn(C) be the real subspace of hermitian
matrices, i.e. A = A

ᵀ
. We can look at the definining equations of Un(C) also

as follows. Let f be the smooth map

f : Mn(C)→ H, X 7→ X
ᵀ
X − 1I, (2.1)

then Un(C) = {X ∈Mn(C) | f(X) = 0}.

Exercise 2.1.1 Verify that the Jacobi matrix Df(X) of f in (2.1) is of
maximal rank for all points in Un(C).

Example 2.1.4 It follows by Example 2.1.3 and Exercise 2.1.1 that Un(C)
is a smooth manifold.

Definition 2.1.5 A Lie group is a pair (G, µ) where G is a smooth manifold
and µ : G × G → G is a smooth mapping which gives G the structure of a
group.

In other words, G is at the same time a smooth manifold and a group, and
these two structures are compatible, i.e. the product map and the inversion
are smooth maps.

Example 2.1.5 We have already seen that G = GLn(C) is a complex mani-
fold. The determinant does not vanish and hence its inverse is a holomorphic
function on GLn(C). The product of two matrices is a polynomial map and
hence holomorphic. It follows that GLn(C) is a complex Lie group because
the matrix product and the inversion are given by holomorphic maps.

Example 2.1.6 We have already seen that G = Un(C) is a smooth manifold.
The product of two matrices is a polynomial map and hence analytic. The
inversion of a unitary matrix is given by X 7→ X

ᵀ
, which is again a smooth

map. It follows that Un(C) is a smooth Lie group.
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2.2 Tangent vectors

A point in a manifold comes always equipped with its associated tangent
space. The formal definition of a tangent vector is the following. LetM be (as
in our running example GLn(C) und Un(C)) a manifold and let m ∈M . Let
f and g be two C∞-functions defined on open neighborhoods Uf respectively
Ug of m in M . We say f and g have the same germ in m if there exists an
open neighborhood U ⊂ Uf ∩ Ug of m such that f |U = g|U . The property of
having the same germ defines an equivalence relation. Denote by Fm the set
of all equivalence classes. Note if f ∈ Fm, then the value f(m) is well defined.
The operations of addition and multiplication of functions naturally induces
operations of addition and multiplication of the corresponding germs. Let
Fm = {f ∈ Fm | f(m) = 0}. Then Fm ⊂ Fm is an ideal, and we get a
decreasing sequence of ideals

. . . ⊂ F 3
m ⊂ F 2

m ⊂ Fm ⊂ Fm.

Definition 2.2.1 A tangent vector v at a point m ∈M is a linear derivation
of Fm, i.e., it is a map v : Fm → R such that

• v(f + λg) = v(f) + λv(g);

• v(fg) = f(m)v(g) + v(f)g(m).

Example 2.2.1 Let M = Rn and m = 0. Let v = (a1, . . . , an) ∈ Rn.
Consider the directional derivative evaluated in 0:

∂v|x=0 : F0 → R, f 7→
n∑
i=1

ai
∂f

∂xi
(0).

This map is obviously linear and satisfies the Leibniz rule, so ∂v|x=0 is an
example for a tangent vector.

Now if we define for tangent vectors (v+w)(f) = v(f)+w(f) and (λv)(f) =
λv(f), then it is easy to verify that this defines on the set TmM of all tangent
vectors the structure of a real vector space.

Lemma 2.2.1 TmM is naturally isomorphic to (Fm/F
2
m)∗.
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Proof. We have a natural map from TmM to (Fm/F
2
m)∗ as follows: v is a

linear function on Fm, so its restriction to Fm remains linear. Further, since it
is a derivation, it vanishes on products fg of elements in Fm because v(fg) =
f(m)v(g) + v(f)g(m) = 0. Now an element of F 2

m is a linear combination of
products fg of elements in Fm, so v|F 2

m
≡ 0 and hence v|Fm ∈ (Fm/F

2
m)∗.

Conversely, let ` ∈ (Fm/F
2
m)∗ and define v` : Fm → R by

v`(f) := `(f − f(m)).

(To be more precise, one should take the class of the function f−f(m), . . ..)
It is clear that the map is linear, to prove that it is a derivation one has to
verify the Leibniz rule:

v`(fg) = `(fg − f(m)g(m))
= `((f − f(m))(g − g(m)) + f(m)(g − g(m))

+(f − f(m)g(m))
= `((f − f(m))(g − g(m))) + `(f(m)(g − g(m)))

+`((f − f(m)g(m))
= f(m)v`(g) + g(m)v`(f)

•

Example 2.2.2 Let M = Rn and m = 0.
Claim: T0M ' Rn by identifying a vector u = (a1, . . . , an) ∈ Rn with

the directional derivative evaluated in 0: f 7→ ∂u|x=0f .
To prove that this is an isomorphism, note that for all u ∈ Rn, the map

f 7→ ∂u|x=0f defines a linear derivation on F0 by Example 2.2.1, and the
map is linear. For u =

∑n
i=1 aiei let us look at the image of the coordinate

function xi: we have ∂u|x=0xi = ai, so the map u 7→ ∂
∂u
|x=0 is injective.

Now given a tangent vector v ∈ T0M , let v(xi) = ai and set u :=∑n
i=1 aiei, then v(xi) = ai = ∂u|x=0xi for all i = 1, . . . , n. If f ∈ F0 is

any function, then we can develop f into a partial Taylor series: f(x) =
f(0) + `(x) +h(x), where h ∈ F 2

0 . So v is completly determined by its values
on linear functions and hence v = ∂u|x=0. It follows that the map Rn → T0M ,
u 7→ ∂u|x=0, is an isomorphism of vector spaces.

Example 2.2.3 The same arguments prove: for M = Rn and m ∈ M one
has TmM ' Rn by identifying a vector u ∈ Rn with the directional derivative
evaluated in m: f 7→ ∂u|x=m.
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Example 2.2.4 T1I(GLn(C)) = Mn(C).

Example 2.2.5 Let M be an embedded manifold as in Example 2.1.2, given
as a set as f−1(0) for a smooth map f : Rn+m → Rm. For p ∈ M let
Df |p : TpRn+m → T0Rm be the total differential of the map f in the point p,
then

TpM = kerDf |p.

Indeed, by Example 2.1.2, we can choose locally coordinates around p such
that p = (0, . . . , 0, 0, . . . , 0), and a neighborhood Up ⊂ M of p such that
Up ⊂ Rn is an open subset and Up × Rm ⊂ Rn+m is a neighborhood of p
in Rn+m, and f is locally in these coordinates just the projection onto the
last m coordinates, so the kernel kerDf |p is just Rn× (0, . . . , 0), the tangent
space TpUp.

Exercise 2.2.1 Show that T1I(Un(C)) = un(C)

2.3 The exponential map in the classical case

A special feature of Lie groups is the exponential map, which provides a
diffeomorphism between a neighborhood of 0 in the tangent space and a
neighborhood of the identity in the group. In the cases we are interested
in, the exponential map is the ordinary exponential map for matrices (see
Example 0.0.4) known from a linear algebra course or a course on differential
equations.

The purpose of this section is to recall some basic facts about the ex-
ponential map in the classical case. We will extend this later to the loop
case.

Example 2.3.1 The exponential map exp : C→ C∗ is analytic, it is surjec-
tive, and the logarithm

log z :=
∞∑
m=1

(−1)m+1 (z − 1)m

m

is an inverse function which is analytic inside a circle of radius 1 around 1.
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Definition 2.3.1 Let A ∈Mn(C) be a complex matrix. Define logA by

logA :=
∞∑
m=1

(−1)m+1 (A− 1I)m

m

whenever the series converges.

Remark 2.3.1 The classical logarithm converges for all z ∈ C such that
|z − 1| < 1. Since ‖(A − 1I)m‖ ≤ ‖A − 1I‖m, it follows that logA converges
for all A ∈ Mn(C) such that ‖A − 1I‖ < 1. But this just a sufficient, not a
necessary condition. Recall that a matrix is called unipotent if 1 is the only
eigenvalue. So if A is unipotent, then (A − 1I) is a matrix having only zero
as eigenvalue, i.e. (A − 1I) is nilpotent. It follows that logA is just a finite
sum and the series is hence convergent, independent of ‖A − 1I‖. It is easy
to see that if A is unipotent, then logA is nilpotent, and if A is nilpotent,
then expA is unipotent.

Theorem 2.3.1 The exponential map

exp : Mn(C)→ GLn(C), A 7→ exp(A) =
∑
i≥0

1

i!
Ai

is a surjective, continuously differentiable map, and it is a diffeomorphism
in a neighborhood of 0 with log as inverse map in a neighborhood of 1I.

Proof. Let Υ ⊂ Mn(C) be a bounded region, so there exists µ ∈ R such
that |xi,j(A)| ≤ µ for all 1 ≤ i, j ≤ n and all A ∈ Υ. By induction one shows
that hence |xi,j(Ak)| ≤ nk−1µk. It follows by Weierstrass M -test that for all
1 ≤ i, j ≤ n the series

∞∑
k=0

xi,j(A
k)

k!

converges absolutely and uniformly for all A ∈ Υ, and hence the series

exp(A) =
∑
i≥0

1

i!
Ai

converges uniformly for A in Υ. It follows that the map A → exp(A) is
continous.
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Let Sj(A) be the partial sum
∑j

k=0
Ak

k!
. The multiplication by a matrix

is a continuous map, so limj→∞(BSj(A)) = B(limj→∞ Sj(A)), which in turn
implies for B ∈ GLn(C):

B(expA)B−1 = exp(BAB−1). (2.2)

So to calculate det exp(A), we can, if necessary, replace A by a conjugate
matrix which is upper triangular. It follows that if λ1, . . . , λn are the entries
on the diagonal of A, then the diagonal entries in expA are eλ1 , . . . , eλn , and
expA is upper triangular too. Hence det exp(A) = exp(tr(A)). In particular,
det exp(A) 6= 0 and hence exp(A) ∈ GLn(C).

Next consider ‖ d
dt

(X + tY )m|t=0‖, where X and Y are arbitrary complex
n× n matrices. Now the two do not necessarily commute, but still we get

‖ d
dt

(X + tY )m|t=0‖ = ‖
m∑
`=1

X`−1Y Xm−`‖ ≤ m‖X‖m−1‖Y ‖.

This implies for the series

exp(X + tY ) =
∑
i≥0

1

i!
(X + tY )i

and the norm of the series of term-by-term directional derivatives:

‖
∑
i≥0

d

dt
(
1

i!
(X+ tY )i)|t=0‖ =

∑
i≥0

‖( 1

i!
(X+ tY )i)|t=0‖ ≤ ‖Y ‖

∑
i≥1

‖X‖i−1

i− 1!
<∞

so the latter is absolutely convergent for all X (and Y ) which are elements of a
bounded subset of the form {A ∈Mn(C) | ‖A‖ < r} for some r > 0. Now this
implies that exp : Mn(C)→ GLn(C) is continuously differentiable. (See, for
example, Rudin, Principles of Mathematical Analysis, Theorem 7.17. Here
is the version for functions: if (fn) is a sequences of differentiable functions
on an interval [a, b] and limn7→∞ fn(x0) exists for some x0 ∈ [a, b] and the
sequence (f ′n) converges uniformely on [a, b], then (fn) converges uniformely
on [a, b] to a function f and f ′(x) = limn7→∞ f

′
n(x) for x ∈ [a, b].)

Now let us look at the differential in 0. ForX = 0 we get by the above that
the differential of the exponential map at this point is the identity map: Y 7→
Y . In particular, it follows that the exponential map is a diffeomorphism of
a neighborhood of 0 in Mn(C) onto a neighborhood around 1I in GLn(C).
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It remains to prove that the map is surjective. By Example 2.3.1, the map
is a surjective map from the set of diagonal matrices in Mn(C) onto the diag-
onal matrices in GLn(C). By (2.2), It follows that the map is surjective from
the set of diagonalizable matrices in Mn(C) onto the set of diagonalizable
matrices in GLn(C).

If A is not diagonalizable, then we know that A is conjugate to a block
matrix such that each block is of the form λ1I + Nλ, where λ ∈ C∗ and Nλ

is a strictly upper triangular nilpotent matrix (Jordan decomposition). We
can hence reduce the calculation to the case where A has just one Jordan
block, so A is of the form λ1I + Nλ. Since λ 6= 0, one can rewrite the sum
into a product: (λ1I)(1I + 1

λ
Nλ), where the first is a diagonal matrix and the

second is a unipotent matrix. Hence, by Exercicse 2.3.1 below, we can find
a nilpotent matrix N ′ such that exp(N ′) = 1I + 1

λ
Nλ, and we can find µ ∈ C

such that expµ = λ. Since N ′ and µ1I commute, we get

A = (λ1I)(1I +
1

λ
Nλ) = exp(µ1I) expN ′ = exp(µ1I +N ′).

It follows that exp : Mn(C)→ GLn(C) is a surjective map. •

Exercise 2.3.1 Show that exp(log(A)) = A for unipotent matrices, and
log(exp(A)) = A for nilpotent matrices.

Exercise 2.3.2 i) Show that exp(A+B) = exp(A) exp(B) if AB = BA.

ii) Show that (exp(A))−1 = exp(−A).

Now keep in mind that one has an inverse map for the exponential map: the
logarithm, for a neighborhood around 1I (see Remark 2.3.1). We have already
seen (see Example 0.0.4) that exp(A) ∈ Un(C) if A ∈ un(C), the real space
of skew hermitian matrices, i.e. the transpose of the complex conjugate
matrix has the property A

ᵀ
= −A. Recall that all elements of Un(C) are

diagonalizable and the eigenvalues have modulus 1. Now let TR ⊂ Mn(R)
be the space of diagonal real matrices, then iTR ⊂ un(C) and exp : iTR →
Un(C) is surjective onto the subgroup of diagonal matrices in Un(C). By
conjugation, it follows that exp : un(C)→ Un(C) is surjective. One shows as
above:
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Theorem 2.3.2 The exponential map

exp : un(C)→ Un(C), A 7→ exp(A) =
∑
i≥0

1

i!
Ai

is a surjective, continuously differentiable map, and it is a diffeomorphism
in a neighborhood of 0, with log as inverse map around 1I.



Chapter 3

Lie groups and Loop groups

3.1 Lie groups: basics and examples

Recall that a Lie group is a pair (G, µ) where G is a smooth (complex or
real) manifold and µ : G × G → G is a smooth mapping which gives G
the structure of a group (see Definition 2.1.5). The tangent space T1IG is
referred to as the Lie algebra of G. In other words, G is at the same time a
smooth manifold and a group, and these two structures are compatible, i.e.
the product map and the inversion are smooth maps.

Example 3.1.1 The first example we have in mind is GLn(C), which, as
an open subset of a complex vector space is a smooth complex manifold.
The multiplication is a polynomial map and hence smooth. The determi-
nant is (on GLn(C)) a nowhere vanishing holomorphic function and hence
so is 1

det
, which implies that the inversion g 7→ g−1 is a holomorphic map of

GLn(C) into itself. The Lie algebra of GLn(C) is Mn(C). Note that this is
a complex vector space, and, in particular, we see directly that this space is
a complex Lie algebra in the sense of section 1.4. (See Example 2.1.1 and
Example 2.2.4.)

Example 3.1.2 The second example we have in mind is the unitary group
Un(C). The multiplication is a polynomial map and hence smooth. The
inverse map is the map g 7→ gᵀ which is obviously a smooth map. The Lie
algebra is un(C), the space of skew hermitian matrices, i.e. the transpose of
the complex conjugate matrix has the property A

ᵀ
= −A, and, in particular,

we see directly that this space is a real Lie algebra in the sense of section 1.4.
(See Example 2.1.4 and Exercise 2.2.1.)

29
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Complexification: The group GLn(C) is often referred to as a complexi-
fication of the compact group Un(C). The background is the following: the
group Un(C) is a smooth (real) manifold with Lie algebra un(C), which is a
real vector space. Note that un(C) ⊂Mn(C) is just a real subspace. Indeed,
it is a subspace with quite a special property:

Mn(C) = un(C)⊕ i(un(C)),

or, to state it in a more fancy way: the inclusion un(C) ⊂Mn(C) induces an
isomorphism

un(C)⊗R C→Mn(C).

In general (this is a simplified description), having a connected complex Lie
group G with complex Lie algebra g and a real connected Lie group H ⊂ G
with Lie algebra h, one says that G is a complexification of H if the inclusion
h ⊂ g of h as a real subspace of g provides a decomposition g = h ⊕ ih (or,
in terms of field extensions, an isomorphism h ⊗R C → g). The inclusions
Un(C) ⊂ GLn(C) on the level of groups and un(C) ⊂ Mn(C) on the level of
Lie algebras is an example of such an instance.

3.2 Loop groups

3.2.1 Introduction

We would like to make the groups L∞G and Ω∞G into “infinite dimensional”
Lie groups in a similar way, and to get the loop groups L∞GLn(C) and
L∞Un(C) connected in a similar way, meaning one is the complexification of
the other. To do so, we have to make a short excursion into the theory of
infinite dimensional manifolds.

In the finite dimensional case, the role model for a manifold is an open
subset in some finite dimensional complex respectively real vector space.
The finite dimensional vector space will be replaced by a complete separable
metrizable topological vector space E. Here metrizable means the topology is
induced by a metric, complete means that every Cauchy sequence converges
to an element in E, separable means that E contains a countable, dense
subset.
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3.2.2 The role model

In our case, E is the vector space L∞g, where g = Mn(C) or g = un(C). We
think of the circle S1 as consisting interchangeably of real numbers θ modulo
2π or as complex numbers z = exp iθ ∈ S1 of modulus one.

If φ ∈ E is a loop with matrix entries (φi,j)i,j, then its derivative ∂φ
∂θ

is

again a matrix, the entries being (
∂φi,j
∂θ

)i,j. The same holds for the higher
derivatives. So for φ ∈ E, φ : S1 → Mn(C), all its derivatives of all orders
(recall that φ is smooth) provide again maps ∂nφ

∂θn
: S1 →Mn(C).

We endow E with the topology of uniform convergence, meaning that
a sequence {φi}i∈N ⊂ E is a Cauchy sequence if the maps φi as well as

all their derivatives {φ(n)
i = ∂nφi

∂θ
}i∈N of all orders n are uniformly conver-

gent sequences of maps on the circle. The condition on the φi implies that
φ := limi 7→∞ φi is a continuous loop (because the φi converge uniformly).
The condition on the derivations ∂nφi

∂θ
implies that they converge uniformly

towards ∂nφ
∂θ

. In particular, it turns out that φ ∈ E, implying that E is
complete with respect to this topology.

To translate these ideas a bit more precisely into a metric on E, we fix
on Mn(C) as norm the Frobenius norm: for A = (ai,j)1≤i,j≤n we set

‖A‖F =

√
(tr(A

ᵀ
A)) =

√ ∑
1≤i,j≤n

|ai,j|2 (3.1)

Given a smooth loop γ ∈ E, set

‖γ‖∞ := sup
z∈S1

‖γ(z)‖F . (3.2)

Now uniform convergence for a sequence {φi}i∈N of loops means that for all
ε > 0 there exists an N ∈ N such that ‖φi − φj‖∞ < ε for all i, j > N . To
ensure that all the derivations converge uniformly too, we need an additional
function f(s) := s

s+1
for s ∈ R≥0. We define a metric on E as follows: given

two loops γ and φ, we define as the distance between the two loops

d(γ, φ) := ‖γ − φ‖∞ +
∑
k≥1

1

2k
f(‖γ(k) − φ(k)‖∞)

This defines a metric on L∞g: since 0 ≤ f(‖γ(k) − φ(k)‖∞) < 1 for all k and
all γ, φ ∈ E, d(γ, φ) is a non-negative real number by definition. Further,
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d(γ, φ) is obviously definite and symmetric, and the triangle inequality holds.
Indeed, suppose we have three loops γ, φ, δ. Since f is increasing on R≥0, we
get

d(γ, φ) = ‖γ − φ‖∞ +
∑

k≥1
1
2k
f(‖γ(k) − φ(k)‖∞)

≤ ‖γ − δ‖∞ + ‖δ − φ‖∞
+
∑

k≥1
1
2k

(f(‖γ(k) − δ(k)‖∞ + ‖δ(k) − φ(k)‖∞))
≤ ‖γ − δ‖∞ + ‖δ − φ‖∞

+
∑

k≥1
1
2k

(f(‖γ(k) − δ(k)‖∞) + f(‖δ(k) − φ(k)‖∞))
= d(γ, δ) + d(δ, φ).

To justify the last inequality, recall that f is increasing, so for a, b ∈ R≥0 we
have

f(a+ b) ≤ f(ab+ a+ b) = ab+a+b
ab+a+b+1

≤ 2ab+a+b
ab+a+b+1

= a
a+1

+ b
b+1

= f(a) + f(b).

Now suppose {φi}i∈N is a sequence of loops such that the maps φi as well
as all their derivatives {∂nφi

∂θ
}i∈N of all orders n are uniformly convergent

sequences. Given ε > 0, fix N such that
∑

`>N
1
2`
< ε

2
, and let N ′ ≥ N be

such that for all i, j > N ′ and all 0 ≤ k ≤ N ′ we have ‖∂kφi
∂θk
− ∂kφj

∂θk
‖∞ < ε

4
.

It follows that for all i, j > N ′ one has

d(φi, φj) = ‖φi − φj‖∞ +
∑

k≥1
1
2k
f(‖∂kφi

∂θk
− ∂kφj

∂θk
‖∞)

≤ 1
2
ε(
∑N ′

k≥1
1
2k

) +
∑

k>N ′
1
2k
< ε.

So this gives a reformulation of the uniform convergence of the loops and
their derivatives in terms of the metric. Vice versa, suppose {φi}i∈N is a
Cauchy sequence with respect to d(·, ·). Fix k ∈ N, then for all 1 > ε > 0
there exists an N ∈ N such that d(φi, φj) <

ε
2k+1 for all i, j > N and hence

d(φi, φj) = ‖φi − φj‖∞ +
∑
`≥1

1

2`
f(‖φ(`)

i − φ
(`)
j ‖∞) <

ε

2k+1
.

Since all summands are non-negative, it follows that 1
2k
f(‖φ(k)

i − φ
(k)
j ‖∞) <

ε
2k+1 and hence f(‖φ(k)

i − φ
(k)
j ‖∞) < ε

2
. Since 1 > ε > 0, one gets ∀i, j > N :

‖φ(k)
i − φ

(k)
j ‖∞

‖φ(k)
i − φ

(k)
j ‖∞ + 1

<
ε

2
⇔ ‖φ(k)

i − φ
(k)
j ‖∞ <

ε

2− ε
< ε.
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So the convergence with respect to d(·, ·) implies uniform convergence for the
loops and all their derivatives. So the topology is the one induced by the
metric.

It remains to comment on the fact that E is separable, but this is an
immediate consequence of the Stone-Weierstraß approximation theorem (ap-
proximation by Fourier series with rational coefficients).

Remark 3.2.1 One could try to make E into a Banach space. To do so,
we need to define a norm on E. Given a metric on a vector space, the usual
trick to define a norm ‖φ‖d of an element as the distance of the element from
the origin of the ambient vector space:

‖φ‖d := d(φ, 0).

But if α is a real number, then, in general, for the metric we have choosen
one gets ‖αφ‖d 6= |α|‖φ‖d because f is not homogeneous. In fact, one can
show that it is impossible to make the space E of smooth loops into a Banach
space.

Before we come to the loop group:

3.2.3 First some generalities

A possibly infinite dimensional manifold X is a paracompact (which means
any cover admits a locally finite refinement) topological space modelled on
some topological vector space. More precisely, this means that X admits an
atlas of open set {Uα}, and each Uα is homeomorphic φα : Uα → Eα to some
open subset Eα ⊂ E, E a topological vector space. In the following we will
always assume that E is separable, metrizable and complete. The transition
functions

φα(Uα ∩ Uβ)→φ−1
α Uα ∩ Uβ →φβ φβ(Uα ∩ Uβ)

are supposed to be smooth, i.e. infinitely differentiable. Here we use the
following convention: Let U ⊂ E be an open subset and let f : U → E be a
map. Then φ is called continuously differentiable on U if the limit

DF (u; v) := lim
t→0

f(u+ tv)− f(u)

t

exists for all u ∈ U and v ∈ E and is continuous as a map

Df : U × E → E.



34

The second derivative is the map

D2f : U × E × E → E

defined by D2f(u; v, w) := lim Df(u+tw;v)−Df(u;v)
t

(if this limit exists), and so
on.

If E is a complex vector space and the transition functions are holomor-
phic (i.e. smooth and Df : U × E → E is complex linear in the second
variable), then X is called a complex manifold.

As in the classical finite dimensional case, a possibly infinite dimensional
Lie group Γ is a smooth manifold such that the group law Γ × Γ → Γ and
the inversion Γ→ Γ are given by smooth maps.

3.2.4 L∞G as a topological group

We make L∞G first into a topological space by endowing it with the topology
of uniform convergence. Another way of viewing the topology is by using the
embedding of G ⊂ Mn(C). In this way we may view L∞G as a subset of
L∞Mn(C). Now the latter is a metrizable space, the topology induced by the
metric is the topology of uniform convergence on L∞Mn(C), and we take the
induced topology on L∞G. Recall that we have a metric on L∞Mn(C), so
L∞Mn(C) is a Hausdorff space, and hence, as a subspace, L∞G is Hausdorff
too, and so is L∞G × L∞G. So to prove that that L∞G × L∞G → L∞G
is continuous at (φ, ψ), it is sufficient to show that for all sequences (φi)i∈N
and (ψi)i∈N such that limt→∞ φi = φ respectively limt→∞ ψi = ψ we have
limt→∞ φiψi = φψ in the topology of uniform convergence on L∞G defined
above. We get for the `-th derivative:

‖ (φiψi)
(`) − (φψ)(`)‖∞

= ‖(
∑`

j=0

(
`
j

)
φ
(j)
i ψ

(n−j)
i )− (

∑`
j=0

(
`
j

)
φ(j)ψ(n−j))‖∞

= ‖(
∑`

j=0

(
`
j

)
(φ

(j)
i ψ

(n−j)
i − φ(j)

i ψ(n−j) + φ
(j)
i ψ(n−j) − φ(j)ψ(n−j))‖∞

≤
∑`

j=0

(
`
j

)(
‖φ(j)

i ‖∞‖ψ
(n−j)
i − ψ(n−j)‖∞ + ‖φ(j)

i − φ(j)‖∞‖ψ(n−j)‖∞.
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Now

(
`
j

)
, ‖φ(j)

i ‖∞ and ‖ψ(n−j)‖∞ are fixed constants, so for every ε > 0

and 0 ≤ j ≤ ` we can find an integer M(`, j) such that for all i > M(`, j):

‖φ(j)
i − φ(j)‖∞ <

ε(
`
j

)
‖ψ(n−j)‖∞(2`+ 1)

and
‖ψ(n−j)

i − ψ(n−j)‖∞ <
ε(

`
j

)
‖φ(j)‖∞(2`+ 1)

.

Now set M(`) = max{M(`, j) | 0 ≤ j ≤ `}, then

‖(φiψi)(`) − (φψ)(`)‖∞ < ε

for all i > M(`). This implies the desired property of uniform convergence
for the sequence (φiψi)i∈N and all its derivatives. We leave the proof that the
inversion is a homeomorphism to the reader.

3.2.5 L∞G as a Lie group

Let us first look at the classical case. We know G is a Lie group and hence has
an atlas, i.e. there exists a collection of open subsets {(Uα, φα)} covering G,
together with maps φα : Uα → Rd which are homeomorphisms onto an open
subset, and which satisfy the transition condition that φβ ◦ φ−1α is smooth
(wherever it is defined). Let us try to construct an such an atlas in an explicit
way, and then to copy the construction to the loop group.

We have seen that there exist open neighborhoods U0 ⊂ g (of the origin)
and U1I ⊂ G (of the identity) such that the exponential map exp : U0 → U1I

is a homeomorphism (in fact, it is a diffeomorphism), having the logarithm
log : U1I → U0 as inverse map.

So the first open subset of our atlas is U1I with φ1I = log as homeomor-
phism. G is a Lie group, so multiplication by an element from the right or
the left induces a homeomorphism from G into itself. It follows that for every
g, the set Ug := {ug | u ∈ U1I}, is an open subset of G, it is in fact an open
neighborhood of the element g in G, and we have a homeomorphism

φg : Ug → U0 ⊂ g, v 7→ log(vg−1).
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So it follows that the collection {(Ug, φg) | g ∈ G} is a good candidate for
an atlas. It remains to check that the transition maps φg ◦ φ−1h are smooth
maps from φg(Ug∩Uh) to φh(Ug∩Uh). But we have for φg ◦φ−1h the following
explicit description:

U0 U0

∪ ∪
log(U1I ∩ Uhg−1) →expU1I ∩ Uhg−1→·g Ug ∩ Uh→·h

−1

U1I ∩ Ugh−1→log log(U1I ∩ Ugh−1)
|| ||

φg(Ug ∩ Uh) φh(Ug ∩ Uh)

We see that the transition map is a combination of diffeomorphisms: exp, log
and linear maps like multiplying with an invertible matrix.

To copy this approach, the first object we need is a replacement of the
open neighborhood U0 ⊂ g by an open neighborhood U0 ⊂ L∞g.

Our candidate is to replace U0 in this setting by U0 = L∞(S1, U0) ⊂ L∞g,
the set of smooth maps from S1 into U0. We want to show that U0 is an open
neighborhood of 0 (= the constant zero map) in L∞g.

Indeed, 0 ∈ U0, and let φ ∈ U0, so Imφ ⊂ U0. We claim there exists an
ε > 0 such that

Up,ε = {g ∈ g | ‖g − p‖F < ε} ⊂ U0 ∀p ∈ Imφ ⊂ U0.

Suppose such an ε does not exist, then one could define a sequence of points
in the image {pn | n ∈ N} ⊂ Imφ such that Upn, 1n

6⊂ U0 for all n � 0.
By replacing the sequence by a convergent subsequence if necessary, we may
assume that limn→∞ pn = p exists. But this would imply that p ∈ Imφ but p
has no open neighborhood contained in U0, which is not possible. It follows
there exists an ε > 0 such that Up,ε ⊂ U0 for all p ∈ Imφ, and hence the open
subset

Uφ,ε := {Ψ ∈ L∞(S1, g) | d(Ψ, φ) < ε} ⊂ U0,

is contained in U0 and is an open neighborhood for φ, and thus U0 is open.
By Theorem 2.3.1 respectively Theorem 2.3.2, there exists an open neigh-

borhood U1I of 1I in G which is diffeomorphic to an open neighborhood U0 of
0 in g. Then U0 = L∞(S1, U0) is an open neighbourhood of 0 in L∞g, and
the exponential map gives a map

exp : U0 = L∞(S1, U0)→ U1I = L∞(S1, U1I), (3.3)
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with log as inverse map. Since exp : g → G is a diffeomorphism around 0
respectively 1I, a sequence of maps {φj}j∈N contained in U0 is uniform con-
vergent if and only if the sequence {expφj}j∈N ⊂ U1I is uniform convergent.
It follows that (3.3) is a homeomorphism.

We use these open sets to define an atlas: given φ ∈ L∞G and U1I a
neighborhood of 1I as above, define Uφ = U1I · φ, this is again a subset home-
omorphic U1I. The collection {Uφ}φ∈L∞G defines a covering of L∞G of open
neighborhoods, each of them homeomorphic to U1I. We leave it as an exercise
to show that the transfer maps are smooth respectively holomorphic.

Exercise 3.2.1 Show that the atlas {Uφ}φ∈L∞G makes L∞G into a Lie group.

We have seen that the exponential map exp : g→ G is surjective for G =
GLn(C) and G = Un(C). This does not hold necessarily for the corresponding
loop groups.

Example 3.2.1 Consider the map

φ : S1 → U2(C), z 7→
(
z 0
0 z−1

)
Suppose φ = exp Ψ for some Ψ ∈ L∞(S1, u2(C)), so

Ψ(z)φ(z) = Ψ(z)(exp Ψ(z)) = (exp Ψ(z))Ψ(z) = φ(z)Ψ(z),

and hence φ(z) and Ψ(z) commute for all z. But this implies that Ψ(z) is
a diagonal matrix for all z ∈ S1. Now there exist no smooth real valued
function f on the circle such that exp(if(z)) = z for all all z ∈ S1.

Tangent vectors and vector fields can be defined as in the finite dimensional
case, correspondingly the Lie algebra of a Lie group will be, as in the finite
dimensional case, defined as the tangent space at 1I. So in our case, not
surprisingly, we refer to L∞(S1, g) as the Lie algebra of L∞G. Note that, as
in the finite dimensional case, a neighborhood of 0 in the Lie algebra serves
as the model for a neighborhood in the Lie group.



38



Chapter 4

The algebraic case

4.1 Affine varieties

We recall some basic notions from algebraic geometry over the complex
numbers. In the following V is always the complex vector space Cn, and
C[V ] = C[x1, . . . , xn] is the algebra of polynomial functions on V .

The main object of affine algebraic geometry is the common set of zeros
of some subset S ⊂ C[V ], we denote this set by V(S):

V(S) := {v ∈ V | f(v) = 0 ∀ f ∈ S}.

One can reduce the description of such a set always to a finite set as follows.
First, given a subset S ⊂ C[V ], let I(S) ⊂ C[V ] be the ideal generated by S:

I(S) = {f ∈ C[V ] | ∃f1, . . . , fr ∈ S, q1, . . . , qr ∈ C[V ] : f =
r∑
i=1

qifi}.

Then we have obviously: V(S) = V(I(S)). The algebra C[V ] is noetherian,
so every ideal is finitely generated, and we can find a finite set of polynomials
{h1, . . . , ht} ⊂ S (exercise!) such that

V(S) = V({h1, . . . , ht}).

In the following, most of the time we will start with an ideal I and look at
its common set of zeros X = V(I). The reason why this seems to be the
right language (compared to starting with a finite set of polynomials) is the
following. Let now Z ⊆ V be a subset and set

I(X) := {f ∈ C[V ] | f(z) = 0 ∀ z ∈ Z},

39
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then I(X) is an ideal in C[V ]. Now starting with an ideal I and looking at
its common zero set Z = V(I), it is natural to ask how I and I(Z) = I(V(I))
are connected. Recall that the radical of an ideal I ⊂ C[V ] is the ideal

√
I = {f ∈ C[V ] | ∃m ≥ 1 : fm ∈ I}.

We have obviously I ⊆
√
I ⊆ I(V(I)), and I is called a radical ideal if

I ⊆
√
I. We present the following without proof:

Theorem 4.1.1 (Hilbert’s Nullstellensatz)
√
I = I(V(I))

This tells us also something about the existence of a common set of zeros,
the following is an immediate consequence of Hilbert’s theorem.

Corollary 4.1.1 V(I) = ∅ ⇔
√
I = C[V ].

A map Ψ : Cn → Cm is called a polynomial map if there exist polynomials
p1, . . . , pm ∈ C[x1, . . . , xn] such that ψ(v) = (p1(v), . . . , pm(v)).

The descriptive version of a definition of affine varieties and morphisms
between them is the following:

Definition 4.1.1 A subset X ⊆ Cn is called an affine variety if there exists
an ideal I ⊂ C[V ] such that X = V(I). The coordinte ring of X is the
algebra C[X] := C[V ]/

√
I = C[V ]/I(X).

Example 4.1.1 The group SLn(C) of complex n × n matrices with deter-
minant one is an example for an affine variety:

SLn(C) = {A ∈Mn(C) | detA− 1 = 0}.

Definition 4.1.2 A morphism between two affine varieties X ⊆ Cn and
Y ⊆ Cm is a map φ : X → Y which can be extended to a polynomial map
φ̃ : Cn → Cm such that φ̃|X = φ.

Proposition 4.1.1 A morphism φ : X → Y between two affine varieties
X ⊆ Cn and Y ⊆ Cm induces an algebra homomorphism φ∗ : C[Y ] → C[X]
defined by f 7→ f ◦ φ.
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Proof. The poynomial map φ̃ : Cn → Cm induces via f 7→ f ◦ φ̃ an algebra
homomorphism C[y1, . . . , ym] → C[x1, . . . , xn]. Indeed, if φ̃ is given by v 7→
(f1(v), . . . , fm(v)), then the map φ̃∗ is the unique algebra homomorphism
that sends yi to fi. By combining the latter map with the quotient map
C[x1, . . . , xn] → C[X], which means nothing but restricting the function to
X, we get an algebra homomorphism

φ̃∗|X : C[y1, . . . , ym]→ C[X].

Now if f ∈ I(Y ), then (φ̃∗|X(f))(u) = f(φ̃(u)) = 0 for all u ∈ X because
φ̃(u) = φ(u) ∈ Y . Hence I(Y ) ⊆ ker φ̃∗|X , and we get an induced algebra
homomorphism

φ∗ : C[Y ]→ C[X], f 7→ f ◦ φ.

•

Definition 4.1.3 An affine algebraic group G is an affine variety, which at
the same time is a group and the maps

G×G→ G and G→ G
(g, h) 7→ gh g 7→ g−1

are morphisms of affine varieties.

Example 4.1.2 The group SLn(C) of complex n × n matrices with deter-
minant one is an example for an affine algebraic group:

The group multiplication is induced by the matrix product:

Mn(C) × Mn(C) → Mn(C)
∪ ∪ ∪

SLn(C) × SLn(C) → SLn(C),

and the matrix multiplication is a polynomial map:(
(xi,j)1≤i,j≤n, (yk,`)1≤k,`≤n

)
7→
(

(
n∑
j=1

xi,jyj,`)

)
1≤i,`≤n

For the calculation of the inverse recall the definition of the adjugate matrix.
Given a matrix A ∈Mn(C), let Ai,j be the (n− 1)× (n− 1) matrix obtained
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from A by deleting the i-th row and j-th column, and let mi,j = detAi,j.
The cofactor matrix is the matrix

C = (ci,j)1≤i,j≤n where ci,j = (−1)i+jmi,j

and the adjugate matrix A† is the transpose of C: A† := Cᵀ. Recall that
A ·A† = (detA)1I, so for A ∈ SLn(C) we have A−1 = A†. It follows that the
map sending a matrix to its adjugate matrix

Mn(C) → Mn(C) A 7→ A†

∪ ∪
SLn(C) → SLn(C) g 7→ g−1

is a polynomial map which is a lift to Mn(C) of the inverse map on SLn(C).

The example shows that in general it seems rather awkward to work with
this definition of an affine variety because everything seems to depend on the
embedding X ⊆ Cn and the lucky choice of a lift φ̃ : Cn → Cm for a map
φ : X → Y . A first hint that this is not the case is given by the fact that the
reverse direction of Proposition 4.1.1 holds too:

Proposition 4.1.2 Let X ⊆ Cn and Y ⊆ Cm be two affine varieties. If
Ψ : C[Y ] → C[X] is an algebra homomorphism, then there exists a unique
morphism φ : X → Y such that φ∗ = Ψ.

Proof. Let Ψ : C[Y ] → C[X] be an algebra homomorphism and de-
note by Ψ′ : C[y1, . . . , ym] → C[X] the composition of the quotient map
C[y1, . . . , ym] → C[Y ] with Ψ. Fix polynomials f1, . . . , fm ∈ C[x1, . . . , xn]
such that f̄j = Ψ′(yj) mod I(X). We get an induced algebra homomor-
phism

Ψ̃ : C[y1, . . . , ym]→ C[x1, . . . , xn] defined by Ψ̃(yj) = fj.

We can use these polynomials also to define a morphism

φ̃ : Cn → Cm, v 7→ (f1(v), . . . , fm(v)).

We have obviously φ̃∗(yj) = fj = Ψ̃(yj) and hence φ̃∗ = Ψ̃. Suppose now
h ∈ I(Y ) and v ∈ Cn, then

h(φ̃(v)) = (h ◦ φ̃)(v) = (φ̃∗(h))(v) = (Ψ̃(h))(v).
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In particular, if v ∈ X, then

h(φ̃(v)) = (Ψ̃(h))(v) = (Ψ′(h))(v) = 0

because Ψ′(h) = 0 (recall, Ψ′ : C[y1, . . . , ym] → C[X] is the composition of
the quotient map C[y1, . . . , ym] → C[Y ] with Ψ). It follows that φ̃(X) ⊆ Y
and hence we get an induced map φ = φ̃|X :

φ : X → Y such that φ∗ = Ψ.

Comparing the proof above with the one of Proposition 4.1.1, we see that
the two are inverse to each other. •

Corollary 4.1.2 Two affine varieties X and Y are isomorphic to each other
if and only if C[X] and C[Y ] are isomorphic to each other as algebras.

This suggests that all informations about an affine variety can be recovered
from the coordinate ring C[X]. Before we start to explore this further, note
the following consequence of Hilbert’s Theorem:

Proposition 4.1.3 Every maximal ideal J in C[x1, . . . , xn] is of the form
Ju = 〈x1 − u1, x2 − u2, . . . , xn − un〉 for a unique u = (u1, . . . , un) ∈ Cn.
In addition, Ju can be described as Ju = I(u), the ideal of all polynomials
vanishing in u.

Proof. Given a point u ∈ Cn, let u = (u1, . . . , un) be its coordinates and
let Ju ⊆ C[x1, . . . , xn] be the ideal generated by the set of functions xi − ui,
i = 1, . . . , n:

Ju = 〈x1 − u1, x2 − u2, . . . , xn − un〉.

We have V(Ju) = u, and, in addition, Ju is a maximal ideal. Indeed, since
V(Ju) 6= ∅, we know that Ju is a proper ideal. Clearly, the direct sum of
subspaces W := C · 1 ⊕ Ju ⊆ C[x1, . . . , xn] contains for all i the constant
function ui and the linear function xi − ui, and hence x1, . . . , xn ∈ W , and
hence for all i, j we have uiuj, uixj, ujxi and (xi − ui)(xj − uj) are elements
of W , which implies that xixj ∈ W for all i, j, and so on. By induction we
see W := C · 1 ⊕ Ju = C[x1, . . . , xn] and hence C[x1, . . . , xn]/Ju ' C, which
implies the ideal is maximal. It follows by Hilbert’s Nullstellensatz and the
maximality of the ideal:

Ju =
√
Ju = I(V(Ju)) = I(u)
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Now, vice versa, let J ⊆ C[x1, . . . , xn] be a maximal ideal and set X = V(J).
Now J is maximal and hence proper and radical, so by Corollary 4.1.1 we
have X 6= ∅. Let u ∈ X, then (recall that J is maximal and hence a radical
ideal)

Ju = I(u) ⊇ I(X) = I(V(J)) =
√
J = J

which, by the maximality of J implies J = Ju. •

We reformulate the result as follows:

Corollary 4.1.3 Let Mspec (C[x1, . . . , xn]) be the set of all maximal ideals
in C[x1, . . . , xn]. The maps

Cn ←→ Mspec (C[x1, . . . , xn])
u 7→ I(u)

V(J) ←[ J

induce bijections between points in Cn and elements of Mspec (C[x1, . . . , xn]).

So instead of talking of points in Cn we can also talk about maximal ideals
in C[x1, . . . , xn]. This correspondence points versus maximal ideals extends
to the case of affine varieties.

Definition 4.1.4 Let X ⊆ Cn be an affine variety with coordinate ring
C[X]. For a subset Y ⊂ X let IX(Y ) be the ideal

{f ∈ C[X] | f(y) = 0 ∀y ∈ Y },

and for an ideal J ⊆ C[X] let VX(J) = {u ∈ X | f(u) = 0 ∀f ∈ J}.

Proposition 4.1.4 Let X ⊆ Cn be an affine variety. Denote by Mspec (C[X])
the set of all maximal ideals in the algebra C[X]. The maps

X ←→ Mspec (C[X])
u 7→ IX(u)

VX(J) ←[ J

induce bijections between points in Cn and elements of Mspec (C[x1, . . . , xn]).

Proof. Given a point u ∈ X ⊆ Cn, let u = (u1, . . . , un) be its coordinates
and let J̃u ⊆ C[x1, . . . , xn] be the maximal ideal (see Proposition 4.1.3)

J̃u = 〈x1 − u1, x2 − u2, . . . , xn − un〉.
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Let I = I(X) ⊆ C[x1, . . . , xn] be the vanishing ideal for X. Since u ∈ X, we
have I ⊆ J̃u, let

Ju = J̃/I ⊂ C[X] = C[x1, . . . , xn]/I

be the corresponding ideal (for surjective ring homomorphisms the image of
an ideal is an ideal), which is a maximal ideal because

C[X]/Ju ' (C[x1, . . . , xn]/I)/(J̃u/I) ' C[x1, . . . , xn]/J̃u ' C.

By construction, Ju := {f ∈ C[X] | f(u) = 0} = IX(u).
Vice versa, let J ∈ Mspec (C[X]) and denote by J̃ ⊂ C[x1, . . . , xn]

the ideal obtained as preimage with respect to the surjective natural map
C[x1, . . . , xn]→ C[x1, . . . , xn]/I. Then J̃ is a maximal ideal in C[x1, . . . , xn]
(same argument as above), and, by Proposition 4.1.3, V(J̃) = u is just a
point. Since I ⊂ J̃ we have in addition u ∈ X, and hence

u = {v ∈ Cn | f(v) = 0 ∀f ∈ J̃} = {v ∈ X | f(v) = 0 ∀f ∈ J} = VX(J).

Now as in the Cn case, the two constructions are inverse to each other. •

Remark 4.1.1 Bijective morphisms are in general not isomorphisms. As an
example consider X = C with coordinate ring C[x] and

Y := {(u, v) ∈ C2 | u2 − v3 = 0}.

with coordinate ring C[u, v]/〈u2 − v3〉 (Exercise: prove that the ideal is a
radical ideal!) The map

X → C2, a 7→
(
a3

a2

)
is polynomial and hence a morphism, and since (a3)2−(a2)3 = 0 for all a ∈ C
we get in fact a morphism

φ : X → Y a 7→
(
a3

a2

)
.

The map is injective since we can recover a from φ(a): a = a3

a2
. To show that

it is surjective fix an element (r, t) ∈ Y and set a = r
t

for t 6= 0 and set a = 0
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for t = 0. Now (r, t) ∈ Y , so we know r2 − t3 = 0 and hence r2 = t3. It
follows for t 6= 0:

a3 =
r3

t3
= r and a2 =

r2

t2
= t

r2

t3
= t,

and for t = 0 we have of course r = 0 and a = 0, so the equalities r = a3 and
t = a2 hold for all (r, t) ∈ Y . Hence the map is surjective too.

So φ is a bijective morphism. But φ is not an isomorphism. To prove
this, consider the subalgebra C[q2, q3] ⊆ C[q]. We have a natural map Ψ :
C[u, v] → C[q2, q3] defined by sending u to q3 and v 7→ q2. It follows that
Ψ(u2 − v3) = q6 − q6 = 0, and hence we get an induced surjective morphism
(Exercise: show that this is an isomorphism):

Ψ̄ : C[Y ]→ C[q2, q3]

Now the algebra C[q2, q3] needs obviously at least two generators, and so
does the algebra C[Y ]. It follows that the latter can not be isomorphic to
C[x], and hence X and Y can not be isomorphic.

This bijection in Proposition 4.1.4 between points and maximal ideals leads
to the following approach:

Definition 4.1.5 An affine varietyX is the set MspecR of maximal ideals in
a finitely generated algebra R over C, which contains no non-trivial nilpotent
elements (i.e. if f ∈ R and fk = 0 for some k, then f = 0). We write
X = MspecR. The coordinate ring of X is the algebra R.

Definition 4.1.6 Let X and Y be two affine varieties in the sense of Defi-
nition 4.1.5. A morphism between X and Y is a map

φ : X = MspecR→ Y = MspecQ

induced by an algebra homomorphism φ∗ : Q → R. The map φ sends a
maximal ideal J ∈ X = MspecR to the maximal ideal J ′ = (φ∗)−1(J) ∈
Y = MspecQ.

Remark 4.1.2 Let R and Q be finitely generated algebras over C and let
φ∗ : Q → R be an algebra homomorphism (sending 1 to 1). If I ⊂ R is an
ideal, then (φ∗)−1(I) = {f ∈ Q | φ∗(f) ∈ I} is an ideal: as the preimage
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of a subgroup, (φ∗)−1(I) is a subgroup of Q. Further, if q ∈ (φ∗)−1(I) and
q′ ∈ Q, then φ∗(qq′) = φ∗(q)φ∗(q′) ∈ I because I is an ideal and φ∗(q) ∈ I
by assumption. So qq′ ∈ (φ∗)−1(I), which implies (φ∗)−1(I) is an ideal. Note
that 1 ∈ (φ∗)−1(I) implies 1 ∈ I and vice versa, so I is a proper ideal if and
only if (φ∗)−1(I) is a proper ideal.

Suppose I ⊂ R is a maximal ideal, which is equivalent to say R/I ' C.
The map φ∗ : Q → R induces a map φ̄∗ : Q → R/I. Since φ(1) = 1 and
1 6∈ I, the map φ̄∗ is surjective, with kernel (φ∗)−1(I), so Q/(φ∗)−1(I) ' C
and hence (φ∗)−1(I) is a maximal ideal.

To reconcile the intuition provided by the Definitions 4.1.1/4.1.2 with
the Definitions 4.1.5/4.1.6 let us try to explain how to translate one into the
other.

(I) Definition 4.1.1 7→Definition 4.1.5. Given an affine variety X ⊆ Cn

according to Definition 4.1.1, its coordinate ring R = C[x1, . . . , xn]/I(X) is
finitely generated (indeed, it is generated by the images of x1, . . . , xn in R).
Now I(X) is a radical ideal (Hilbert Nullstellensatz) and hence R has no
non-trivial nilpotent elements: indeed, let f̄ ∈ R and let f ∈ C[x1, . . . , xn]
be a representative. Then (f̄)k = 0 in R means fk ∈ I(X), but this implies
already f ∈ I(X) and hence f̄ = 0 in R. So an affine variety in the sense
of Definition 4.1.1 provides an algebra R satisfying the conditions in Defini-
tion 4.1.5, and thanks to Proposition 4.1.4 we can identify the points in X
with the points in MspecC[X].

(II) Definition 4.1.5 7→ Definition 4.1.1. Given a finitely generated al-
gebra R as in Definition 4.1.5, fix a set of generators, say f1, . . . , fr. Let
ψ : C[x1, . . . , xr] → R be the map that sends xi to the generators fi. This
is an algebra homomorphism, it is surjective, the kernel is an ideal, and
R ' C[x1, . . . , xr]/Kerψ. Since R contains no non-trivial nilpotent elements,
Kerψ is a radical ideal. Set XR = V(Kerψ) ⊆ Cr, then XR is an affine
variety in the sense of Definition 4.1.1, with coordinate ring isomorphic to
R. And, thanks to Proposition 4.1.4, we can identify the points in XR with
the points in MspecR.

As a next step we have to compare the notion of a morphism in Defini-
tion 4.1.2 with the concept in Definition 4.1.6.

(III) Definition 4.1.2 7→Definition 4.1.6. Suppose we are given affine va-
rieties X ⊆ Cn and Y ⊆ Cm, and a map φ : X → Y which can be extended
to a polynomial map φ̃ : Cn → Cm such that φ̃|X = φ. By Proposition 4.1.1
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we know that we get an induced algebra homomorphism

φ∗ : C[Y ]→ C[X], f 7→ f ◦ φ.

Let u ∈ X and set v = φ(u). Denote by Ju ⊂ C[X] the corresponding
maximal ideal, we want to understand the induced map

φ̃ : Mspec(C[X])→ Mspec(C[Y ])

sending a maximal ideal Ju ⊂ C[X] to the maximal ideal J ′ := (φ∗)−1(Ju) ⊂
C[Y ]. Now

f ∈ J ′ ⇔ φ∗(f) ∈ Ju ⇔ (f ◦ φ)(u) = 0⇔ f(φ(u)) = 0⇔ f ∈ Jφ(u),

which implies that φ : X → Y and φ̃ : Mspec(C[X])→ Mspec(C[Y ]) are, in
view of (I) and (II), the same maps, up to a slight difference in the notation:

φ(u) = y ⇔ φ̃(Ju) = Jy.

(IV) Definition 4.1.6 7→ Definition 4.1.2. Vice versa, suppose we are
given two finitely generated algebras R and Q, both having no non-trivial
nilpotent elements, and we are given an algebra homomorphism Ψ : Q→ R.
Let X ⊆ Cr and Y ⊆ Cs be corresponding affine varieties as in (II), then
C[X] ' R and C[Y ] ' Q. Now by Proposition 4.1.2, there exists a morphism
of affine varieties φ : X → Y such that φ∗ = Ψ.

We want to compare φ with the induced map

Ψ̃ : Mspec(C[X])→ Mspec(C[Y ])

sending a maximal ideal Ju ⊂ C[X] to the maximal ideal J ′ := Ψ−1(Ju) ⊂
C[Y ]. Now

f ∈ J ′ ⇔ Ψ(f) ∈ Ju ⇔ φ∗(f) ∈ Ju ⇔ (f◦φ)(u) = 0⇔ f(φ(u)) = 0⇔ f ∈ Jφ(u),

and hence
φ(u) = y ⇔ Ψ̃(Ju) = Jy.

(V) functions versus functions. In Definition 4.1.1 it is obvious what the
coordinate ring means: this are functions on X coming as restrictions from
polynomial functions on the ambient space Cn.
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In the Definition 4.1.5 the meaning of the coordinate ring as functions on
MspecR is a priori not so obvious, but we will see that it is indeed the same
as above. So let R and XR be as in (II). Let Ju ∈ MspecR be a maximal
ideal corresponding a point u ∈ XR (by Proposition 4.1.4). Given f ∈ R,
we have to define what we mean by f(Ju). Now Ju is a maximal ideal, so
R/Ju is isomorphic to C. This isomorphism is an algebra homomorphism, in
particular it sends the class “1̄” of 1 ∈ R to the “1” in C. So the isomorphism
is completely fixed, and the class f̄ of f in R/Ju = C is a well defined complex
number.

Now we have a well defined algebra homomorphism evu : R = C[XR] →
C, it is the evaluation in u: given a function g ∈ R = C[XR], g(u) is a
complex number. The kernel of this map in Ju, which gives us hence an
induced map ēvu : R/Ju → C. This map is an algebra homomorphism, it
sends 1 to 1, and hence has to be the same as above. It follows:

f(u) = f̄ in C = R/Ju.

In the following we will often freely jump between these various
points of view of an affine variety, its functions and the morphisms
between them.

4.2 LalgGLn(C) as algebraic ind-group

We want to endow the algebraic loop group LalgGLn(C) with the structure of
an affine variety, or, more precisely, a generalized version of an affine variety.

The following is only a quasi-example because we haven’t introduced all
necessary tools yet. But it should to show how the algebraic geometric lan-
guage connects with the theory of loop groups.

We have seen that LalgGLn(C) = GLn(C[t, t−1]), the group of invertible
matrices (over C[t, t−1]) with entries in the algebra of Laurent polynomials.

For d ≥ 0 let C[t, t−1]d be the subset of Laurent polynomials of the form
p(t) = a−dt

−d + . . . + adt
d, where a−d, . . . , ad ∈ C. This is a complex vector

space of dimension 2d+ 1.
Correspondingly let Mn(C[t, t−1]d) be the vector space of n×n-matrices,

with entries in C[t, t−1]d. This is a vector space of dimension n2(2d + 1).
If A ∈ Mn(C[t, t−1]d), then the determinant of such a matrix is a Laurent
polynomial of the form

detA = f−dn(A)t−dn + f−dn+1(A)t−dn+1 + . . .+ f0(A) + . . .+ fdN t
dn,
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where f−dn, . . . , fdn ∈ C[Mn(C[t, t−1]d)] are polynomial functions on this
n2(2d+ 1)-dimensional vector space. Note that if

A ∈Mn(C[t, t−1]d) ∩GLn(C[t, t−1]),

then detA = atm for some −dn ≤ m ≤ dm and a ∈ C∗. For −dn ≤ ` ≤ dn
let

GLn(C[t, t−1])d,` = {A ∈Mn(C[t, t−1]d) | f`(A) 6= 0, fk(A) = 0∀k 6= `}.

So up to the fact that we assume one function to be nonzero, this looks
like a perfect affine variety. We will look into this problem with a non-
vanishing function soon (see the section about GLn(C)), so let us assume for
the moment that the above is an affine variety.

The union of a finite number of affine varieties is an affine variety (see
section about Zariski topology), so

GLn(C[t, t−1])d =
⋃
`

GLn(C[t, t−1])d,`

is an affine variety. We get hence an increasing sequence of affine varieties:

GLn(C[t, t−1])1 ⊆ GLn(C[t, t−1])2 ⊂ · · · ⊆ GLn(C[t, t−1])d ⊆ · · · (4.1)

and
GLn(C[t, t−1]) =

⋃
d∈N

GLn(C[t, t−1])d

So our group LalgGLn(C) of algebraic loops can be described as a union of
affine varieties. In addtion, the filtration in (4.1) has the nice property that
the inclusions

GLn(C[t, t−1])d ⊆ GLn(C[t, t−1])d+1

are closed embeddings: it is of course injective, it is a morphism in the sense
of affine varieties, and the image is closed (Zariski topology): the image are
exactly those elements in GLn(C[t, t−1])d+1 such that the entries are Laurent
polynomials subject to the additional condition that the coefficient of td+1

and t−d−1 are equal to zero. This means we cut GLn(C[t, t−1])d+1 with a
finite number of hyperplanes.

Having a filtration with these properties, one says that GLn(C[t, t−1])
is an affine ind-variety. The inclusion GLn(C[t, t−1])d ⊆ GLn(C[t, t−1])d+1

induces (since the image is closed) a surjective morphism

C[GLn(C[t, t−1])d+1]→ C[GLn(C[t, t−1])d].
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More generally, for all k > d we get algebra homomorphsims

πk,d : C[GLn(C[t, t−1])k]→ C[GLn(C[t, t−1])d]

such that πk,d◦πd,b = πk,b for all k > d > b. The coordinate ring C[GLn(C[t, t−1])]
of this affine ind-variety is defined as the inverse limit

lim←
d

C[GLn(C[t, t−1])d].

of these algebras. This means that an element in the coordinate ring is a
sequence (fi)i∈N such that fd ∈ C[GLn(C[t, t−1])d] and ρk,d(fk) = fd for all
k > d.

Remark 4.2.1 An example for an inductive limit is the case of C∞, the
infinite dimensional vector space with basis B = {e1, e2, e3, . . .} obtained as
limit by the inclusions

C = Ce1 ⊂ C2 = 〈e1, e2〉 ⊂ C3 = 〈e1, e2, e3〉 ⊂ . . .

The inclusions are morphisms of affine varieties, the images are closed sub-
varieties in the Zariski topology, the union is C∞, so we get induced algebra
homomorphisms

C[x1]← C[x1, x2]← C[x1, x2, x3]← C[x1, x2, x3, x4]← · · ·

Let C[[x1, x2, . . . , xd, . . .]] be the algebra of formal power series in infinitely
many variables. The inverse limit

C ̂[x1, x2, . . .] := lim←
d

C[x1, x2, . . . , xd]

can be identified with a subalgebra of C[[x1, x2, . . . , xd, . . .]], it can viewed as
a kind of completion of the polynomial ring C[x1, x2, . . .] in infinitely many
variables. To describe the subalgebra more precisely, for f ∈ C[[x1, x2, . . .]]
and a positive integer k, let fk be the power series obtained by omitting all
monomials in f involving a variable xj for j > k, so fk ∈ C[[x1, . . . , xk]].
Let ρk : C[[x1, x2, . . . , xd, . . .]] → C[[x1, x2, . . . , xk]] be the map defined by
ρ(f) = fk, the map ρm,k : C[[x1, x2, . . . , xm]] → C[[x1, x2, . . . , xk]] for m ≥ k
is defined in the obvious way. Set

R(C∞) := {f ∈ C[[x1, x2, . . . , xd, . . .]] | ρk(f) ∈ C[x1, x2, . . . , xd]∀k ≥ 1}.
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The maps ρk are algebra homomorphisms, so one can check directly that
R(C∞) is indeed a subalgebra.

Starting with an element f ∈ R(C∞), the collection (ρk(f))k∈Z>0 satisfies
the conditions for an element in the inductive limit. So we get an algebra
homomorphism

R(C∞)→ C ̂[x1, x2, . . .], f 7→ (ρk(f))k∈Z>0 .

Vice versa, given (fk)k∈Z>0 , the formal power series f := f1 +
∑

i≥2(fi−fi−1)
is an element in R(C∞) because ρk(f) = fk for all k ≥ 1, so this is in fact an
isomorphism.

Let now v ∈ C∞ and f ∈ R(C∞) = C ̂[x1, x2, . . .]. Then the evaluation
f(v) is well defined: v is a finite linear combination of the basis vectors, so
all but a finite number of monomials occurring in f will vanish. Indeed, since
there exists a k such that v ∈ Ck, we have f(v) = ρk(f)(v).

We can view in the same way the C-vector space Mn(C[t, t−1]) as an in-
ductive limit of the finte dimensional vectors spaces Mn(C[t, t−1]d). Keeping
this in mind, one might think of a function f in C[GLn(C[t, t−1])] as the
restriction of an element f̃ ∈ R(Mn(C[t, t−1]) to GLn(C[t, t−1]).

A morphism between two such affine ind-varieties X =
⋃
i∈NXi, Y =⋃

j∈N Yj is a map φ : X → Y such that for all i ∈ N there exists a j(i) ∈ N
such that φ(Xi) ⊂ Yj(i), and the induced map φ : Xi → Yj(i) is a morphism
of affine varieties. For example, let us look at the case discussed above: the
inversion GLn(C[t, t−1]) → GLn(C[t, t−1]), g 7→ g−1, can be broken down
into maps between affine varieties. Using the standard argument that g−1 =
1

det g
g†, a simple guess about the possible powers of t occurring in the formula

gives that the inversion induces maps of affine varieties

GLn(C[t, t−1])d → GLn(C[t, t−1])(2n−1)d

Now as usual one endows GLn(C[t, t−1])×GLn(C[t, t−1]) with the structure
of an affine ind-variety, the filtration given by the affine varieties

GLn(C[t, t−1])d ×GLn(C[t, t−1])d,

and then one sees that the product map

GLn(C[t, t−1])×GLn(C[t, t−1])→ GLn(C[t, t−1])
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breaks down into a sequence of morphisms of affine varieties

GLn(C[t, t−1])d ×GLn(C[t, t−1])d → GLn(C[t, t−1])2d

It follows that the product and the inversion are morphisms of affine ind-
varieties. In such a case the group, which in our case is GLn(C[t, t−1]), is
called an algebraic ind-group.

4.3 Zariski topology

We have to fill in some gaps. As a first step we want to see an affine variety
X ⊂ Cn not with the induced C-topology but with a topology that makes
sense on MspecR too. This topology is called the Zariski-topology. Let us
first consider the case of an affine variety X ⊆ Cn embedded in some Cn and
R = C[X]. We keep the notation as in Definition 4.1.4.

Definition 4.3.1 A subset Y ⊆ X is called closed if there exists an ideal
J ⊂ C[X] such that Y = VX(J). The subset is called open if it is the
complement of a closed subset.

Remark 4.3.1 We keep the notation as above. Let J̃ ⊂ C[x1, . . . , xn] be the
preimage of the ideal J with respect to the natural quotient C[x1, . . . , xn]→
C[X] induced by the embedding X ⊆ Cn as affine variety. Since I(X) ⊆ J̃
we see

V(J̃) = {v ∈ Cn | f(v) = 0 ∀f ∈ J̃} = {v ∈ X | f(v) = 0∀f ∈ J} = VX(J).

In particular, a closed subset of X is always an affine variety. This is not
true in general for open subsets.

Exercise 4.3.1 Let a, b, ai, i ∈ J be ideals in C[X]. Show that:

(i) a ⊂ b =⇒ VX(a) ⊃ VX(b)

(ii)
⋂
i∈J VX(ai) = VX(

∑
i∈J ai).

(iii) VX(a) ∪ VX(b) = VX(a ∩ b) = VX(a · b).

The properties (i)–(iii) imply that the subsets of the form VX(I) ⊂ X fulfill
the axioms of a system of closed subsets of a topology.
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Definition 4.3.2 The topology on X having as closed subsets the sets of
the form VX(I), I ⊂ C[X] ideal, is called the Zariski-topology on X.

Let us now look at the more abstract version, which is essentially the same
(after a second thought). Let R be a finitely generated algebra with no
non-trivial nilpotent elements. Given an ideal I ⊂ R, set

VR(I) = {m ∈ Mspec R | I ⊂ m}

As in Exercise 4.3.1 one shows that these sets fulfill the axioms of a system
of closed subsets of a topology.

Definition 4.3.3 The topology on Mspec R having as closed subsets the sets
of the form VR(I), I ⊂ R ideal, is called the Zariski-topology on Y .

Now by (I)–(IV) we know that given an algebra R as above, there exists an
embedded affine variety X ⊂ Cn such that R ' C[X] and bijections

X ↔ Mspec R,

{
u 7→ Ju = IX(u)

VX(J) ←[ J

Lemma 4.3.1 The bijections above respect the Zariski-topology on X and
Mspec R, i.e. the maps in both directions send closed subsets to closed sub-
sets. In other words: these maps are homeomorphisms.

Proof. Let I ⊆ R ' C[X] be an ideal and let u ∈ X be a point with
associated maximal ideal Ju ⊂ R. Then

u ∈ VX(I)⇔ f(u) = 0 ∀f ∈ I ⇔ I ⊂ Ju ⇔ Ju ∈ VR(I)

•

Exercise 4.3.2 i) Show that a proper subset of C is closed if and only
if it is finite.

ii) Show that a morphism between affine varieties is continuous in the
Zariski-topology

The closure of a subset U ⊂ X of an affine variety is the intersection of
all closed subsets containing U . Another way of defining the closure is:
U = VX(IX(U)).
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Definition 4.3.4 An affine variety Z is called irreducible if Z = X ∪Y with
X, Y ⊂ Z closed implies X = Z or Y = Z. By taking the complements, an
equivalent version is the following: Z is called irreducible if the intersection
of any two open subsets is not empty. Another equivalent formulation: X is
irreducible if and only if X = U for every non-empty open subset of X.

Exercise 4.3.3 Prove the equivalence of the three definitions of irreducibil-
ity above.

It is expected that all important properties of an affine variety can be dis-
covered from C[X], so what about irreducibility:

Proposition 4.3.1 An affine variety X is irreducible if an only if C[X] has
no zero divisors.

Proof. If f, g ∈ C[X]− {0} are such that fg = 0, then X = VX(f) ∪ VX(g)
is a decomposition of X into closed subsets, non of which is equal to X, so
X is not irreducible.

Next suppose X = Z1 ∪ Z2, where Zi = V(ai) ⊂ X are proper closed
subsets and a1, a2 are ideals. Let f1 ∈ a1, f2 ∈ a2 be non-zero elements, then
f1f2 = 0 but f1, f2 6= 0, and hence C[X] has zero divisors. •

Exercise 4.3.4 Let X be an irreducible affine variety and let f, g ∈ [X].
Let U ⊂ Z be open and not empty. Show: f |U = g|U =⇒ f = g

The property of being irreducible is stable under morphisms:

Proposition 4.3.2 Let φ : X → Y be a morphism between affine varieties.
If X is irreducible, then so is φ(X) ⊆ Y .

Proof. Without loss of generality we may assume φ(X) = Y . Let U1, U2 ⊂ Y
be open and not empty subsets. Since φ is continuous, φ−1(U1) and φ−1(U2)
are open too. The preimages are not empty because Ui∩φ(X) = ∅ ⇔ φ(X) ⊆
compl(Ui) ⇔ Ui ∩ φ(X) = ∅. It follows that φ−1(U1) ∩ φ−1(U2) 6= ∅ in X,
and hence U1 ∩ U2 6= ∅, which implies φ(X) is irreducible. •

Exercise 4.3.5 Show that On(C) has at least two irreducible components.
Hint: use Proposition 4.3.2 and the determinant.
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4.4 GLn(C) as an affine algebraic group

To finish the proof in section 4.2, recall that we defined for d ≥ 0 and
−dn ≤ ` ≤ dn the subset GLn(C[t, t−1])d,` as

{A ∈Mn(C[t, t−1]d) | f`(A) 6= 0, fk(A) = 0∀ k 6= `} (4.2)

and claimed that this is an affine variety. The conditions fk(A) = 0 for k 6= `
look appropriate and have exactly the form demanded in Definition 4.1.1, so
they describe an affine variety, let us call it Z. But the additional condition
f`(A) 6= 0 describes an open subset in this affine variety Z, and it is not
at all clear why this should be an affine variety. We start with a slight
generalization of Definition 4.1.5.

Definition 4.4.1 A set Z endowed with an algebra of C-valued functions
O(Z) is called an affine variety if there exists an affine variety X ⊆ Cn

in the sense of Definition 4.1.1 and a bijection φ : Z → X such that the
comorphism φ∗ : C[X] → O(Z) is an isomorphism (i.e., for all h ∈ C[X]
the function φ∗(h) := h ◦ φ is an element in O(Z), and the map φ∗ is an
isomorphism of C-algebras).

Remark 4.4.1 Clearly, an affine variety in the sense of Definition 4.1.1 is
affine in the sense of Definition 4.4.1. For an affine variety in the sense of
Definition 4.1.5, the discussion in section 4.1 (I), (II) constructs the desired
bijection and identification of regular functions.

In the following let X be an irreducible affine variety, which by Proposi-
tion 4.3.1 is equivalent to say that the coordinate ring C[X] has no zero
divisors.

Definition 4.4.2 A quasiaffine variety Y is an open subset Y ⊂ X of an
irreducible affine variety, endowed with the induced Zariski topolgy from X.

A special class of quasiaffine varieties are the following.

Definition 4.4.3 A special open subset of an irreducible affine variety X is
a quasiaffine variety obtained as the complement of the vanishing set of an
element f ∈ C[X], i.e.,

Xf = {x ∈ X | f(x) 6= 0}.
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Lemma 4.4.1 The special open sets form a basis for the Zariski topology on
X, i.e. if U ⊂ X is open, then there exists an f ∈ C[X] such that Xf ⊆ U .

Proof. Let U ⊂ X be open, let V be its complement and set a := IX(V ).
Let u ∈ U and let Ju be the associated maximal ideal. Since u 6∈ V we have
a 6⊂ Ju. So there exists an f ∈ a such that f 6∈ Ju, and hence by construction
Xf 6= ∅. Since V ⊆ V((f)) implies V ∩Xf = ∅, one has Xf ⊆ U . •

Example 4.4.1 There are three examples one should have in mind through-
out the following: the special open subset GLn(C[t, t−1])d,` described above
in (4.2), the group GLn(C), which is the special open subset of Mn(C) where
the determinant does not vanish (the case d = 0), and the quasiaffine variety
C2 − {0}.

The functions on X are the elements of C[X], but what should be the func-
tions on a quasiaffine variety Y ⊂ X? We need to introduce the notion of a
regular function on a quasiaffine variety. The approach is the same as always,
we first say what it means for a function f to be regular at a point, and then
f is regular on Y if it is regular everywhere. Let us first recall the notion of
a quotient field.

The algebra C[X] has no zero divisors, let C(X) be its quotient field, it
is the field of rational functions. We have the following rules: every element
in C(X) is of the form f

g
with f, g ∈ C[X]. This description is not unique,

we have
f

g
=
p

q
in C(X)⇔ fq = gp in C[X]. (4.3)

One has a natural injective algebra homomorphism ι : C[X]→ C(X), p 7→ p
1
.

Without loss of generality, we identify C[X] with its image in C(X).

Definition 4.4.4 A function f on a quasi affine variety Y ⊆ X is called
regular at a point p ∈ Y if there exists an open neighborhood U ⊆ Y of p
(in the sense of the Zariski topology) and g, h ∈ C[X], such that h vanishes
nowhere on U and f |U = g

h
|U . A function is called regular on Y if it is

regular at all points of Y . The set of regular functions form in a natural way
an algebra, called the algebra of regular functions, which is denoted by O(Y ).

If f is regular in p ∈ Y and f(p) 6= 0, then there exists a neighborhood U
such that f |U = g

h
|U and h vanishes nowhere on U . Since g(p) 6= 0, the subset
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U ′ = {u ∈ U | g(u) 6= 0} is open and nonempty, and 1
f
|U ′ = h

g
|U ′ is regular

on U ′. So regular and non-vanishing functions can be locally inverted.
Consider now the set of all classes of pairs (U, f) where U ⊆ Y is open,

f is a regular function on U , and (U, f) and (U ′, f ′) are in the same class
if f |U∩U ′ = f ′|U∩U ′ . This set can be endowed in the obvious way with the
structure of field, called the function field of Y .

Definition 4.4.5 The function field of Y is denoted by K(Y ).

Lemma 4.4.2 K(Y ) = K(X) = C(X).

Proof. The first equality follows from the fact that if (U, f) is a represen-
tative of a class in K(Y ), then U is also open in X and hence (U, f) is a
representative of a class in K(X). Vice versa, if (U, f) is a representative of
a class in K(X), then (U ∩ Y, f) is a representative of a class in K(Y ). Since
open sets in X are always dense (i.e. U = X), it follows that the map which
sends the of (U, f) in K(Y ) to its class in K(X) induces a well-defined field
bijection between K(Y ) and K(X).

Given a class in C(X), by definition one can find elements p, q ∈ C[X]
such that p

q
is a representative for the given class. Let Xq be the open subset

in X where q does not vanish, then (Xq,
p
q
) is a regular function on the open

set Xq ⊂ X. Note that p
q

= p′

q′
in C(X) implies that pq′|Xq∩Xq′ = p′q|Xq∩Xq′ ,

which in turn implies p
q
|Xq∩Xq′ = p′

q′
|Xq∩Xq′ . It follows that members of the

same class in C(X) are sent to members of the same class in K(X).
So p

q
7→ (Xq,

p
q
) induces a well defined map C(X) → K(X), which is

injective, it is an algebra homomorphism (exercise!), it remains to show it is
surjective. But by the defintion of a regular function, we can find in its class
a representative which is of the form (U, p

q
), where p and q are elements of

the coordinate ring C[X], which is in the same class as (Uq,
p
q
). •

To better understand the connection between O(X) and C[X], we attach
now to every point in X two algebras. Given u ∈ X, let

C[X](u) =

{
p

q
∈ C(X) |

class has a representative
p̃
q̃ such that q̃ 6∈Ju(⇔q̃(u)6=0)

}
.

The other algebra is given by

O(X)(u) := {f ∈ K(X) | f is regular in u }.
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Because everything is local and we care only about open subsets containing
u, the same arguments as above show:

Lemma 4.4.3 If u ∈ Y , then O(Y )(u) = O(X)(u) = C[X](u).

Now we are ready to prove:

Lemma 4.4.4 O(X) = C[X].

Proof. By definition and by the lemma above we have:

O(X) =
⋂
u∈X

O(X)(u) =
⋂
u∈X

C[X](u)

It remains to show that the latter is equal to C[X]. Now given an element
f ∈ C(X), let N(f) = {q ∈ C[X] | qf ∈ C[X]}. The set N(f) is in fact an
ideal. It can be viewed as the ideal of denominators for f , i.e. q ∈ N(f) is
equivalent to say that for f one can find a representative in its class of the
form p

q
for some p ∈ C[X]. To say that f ∈ C[X] is equivalent to say that

N(f) = C[X]. Now for u ∈ X we have

f ∈ C[X](u) ⇔ ∃ p, q ∈ C[X], q(u) 6= 0 : f =
p

q
⇔ N(f) 6⊆ Ju.

Therefore, if f 6∈ C[X], then N(f) is a proper ideal, which is contained in
some maximal ideal N(f) ⊂ Ju for some u ∈ X, and hence f 6∈ C[X](u). It
follows that

⋂
u∈X C[X](u) = C[X]. •

Let g1, . . . , gr be a generating system for C[X]. To show that Xf is an affine
variety, let C[X]f be the subalgebra of C(X) generated by C[X] and 1

f
:

C[X]f =

{
g

fm
| m ∈ N, g ∈ C[X]

}
= C[g1, . . . , gr,

1

f
] ⊆ C(X).

The algebra is finitely generated, has no non-trivial nilpotent elements and
no zero divisors, so MspecC[X]f is an irreducible affine variety.

Proposition 4.4.1 The set Xf together with the algebra of regular functions
O(Xf ) is an affine variety. Moreover, O(Xf ) ' C[X]f , so one can identify
Xf with MspecC[X]f .
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Proof. We want to define a natural bijection between Xf and MspecC[X]f .
The inclusion C[X] ↪→ C[X]f induces a map between the sets of maximal
ideals:

MspecC[X]f 3 J̃ 7→ J := J̃ ∩ C[X] ∈ MspecC[X] = X. (4.4)

The map in (4.4) is well defined: since J̃ 6⊇ C[X], the intersection is a proper
ideal, and the ideal is maximal because C[X]/J ↪→ C[X]f/J̃ ' C.

The map in (4.4) is injective because one gets J̃ back as the ideal in C[X]f
generated by J : every element in J̃ is of the form h = g

fm
for some g ∈ C[X],

and hence g = fmh ∈ J = J̃ ∩ C[X], which in turn implies h = g
fm
∈ 〈J〉.

The image of the map in (4.4) is Xf : let J̃ ∈ MspecC[X]f be a maximal
ideal and let u ∈ X be the point corresponding to the maximal ideal J =
J̃∩C[X]. Since J̃ is a proper ideal one has necessarily f 6∈ J̃ and hence f 6∈ J ,
which implies f(u) 6= 0 and therefore u ∈ Xf . Vice versa, let J = Ju ⊂ C[X]
for some u ∈ Xf and let J̃ = 〈J〉 be the ideal generated by J in C[X]f . The

evaluation map C[X]f → C, g
fm
7→ g(u)

fm(u)
is well defined, surjective, the kernel

is J̃ , so the latter is a maximal ideal with image Ju with respect to the map
in (4.4). So (4.4) defines a natural bijection between Xf and MspecC[X]f .

Next we have to understand what happens with the functions. The bijec-
tion induces a natural map C[X]f → O(Xf ), which is well defined because
g
fm
∈ C[X]f is a regular function on Xf . The map is injective because

g
fm

= p
fk

on Xf implies gfk = pfm on Xf , and hence on all of X, and hence
g
fm

= p
fk

in C[X]f . It remains to see that the map is surjective.

For u ∈ Xf we write Ju ⊂ C[X] and J̃u ⊂ C[X]f for the corresponding
maximal ideals. Note that in C(X) we have

C[X](u) =

{
p
q
∈ C(X) |

class has a representative
p′

q′ such that q′ 6∈Ju

}

=

{
p
q
∈ C(X) |

class has a representative
(p′/fm)
(q′/fm) such that q′

fm
6∈J̃u

}
= (C[X]f )(u)

The bijection in (4.4) together with Lemma 4.4.4 implies hence:

O(Xf ) =
⋂
u∈Xf

O(X)(u) =
⋂
u∈Xf

C[X](u) =
⋂
u∈Xf

(C[X]f )(u) = C[X]f .

•
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Exercise 4.4.1 Let X ⊆ Cn be an irreducible affine variety, let I = I(X) be
its vanishing ideal, denote by C[X] its coordinate ring and let f ∈ C[X]−{0}.
Consider the affine variety

Z := {(v, c) ∈ Cn ⊕ C | ∀ g ∈ I : g(v) = 0, c · f(v)− 1 = 0}
i) Show that the projection π : Cn ⊕ C → Cn on the first summand

induces a bijection π|Z : Z → Xf .

ii) Show that C[Z] ' C[X]f .

iii) Show that π is a homeomorphism between Z (Zariski topology) and
Xf (induced Zariski topology from X).

Corollary 4.4.1 C2 − {0} is not an affine variety.

Proof. Set X = C2 and Y = C2 − {0}. Denote by C[x, y] the coordinate
ring of X, and let Xx respectively Xy be the two special open subsets where
the first respectively the second coordinate is not 0. Note that Y = Xx∪Xy.

Let f ∈ O[Y ] be a regular function on Y , then f |Xx = g
xm

for some
g ∈ C[x, y] and m ∈ N, and f |Xy = h

yk
for some h ∈ C[x, y] and k ∈ N. It

follows

f |Xx∩Xy =
g

xm
|Xx∩Xy =

h

yk
|Xx∩Xy

The intersection Xx ∩ Xy is open and dense in C2, and hence we get the
equation hxm = gyk in C[x, y]. Now the latter is a unique factorization ring
and hence h is divisible by yk respectively g is divisible by xm. In other words,
f can be representated by a polynomial. As a consequence we see that the
natural restriction map C[X]→ O[Y ] is a bijection. Now if Y = MspecC[Y ]
is an affine variety, then

C2 − {0} = Y = MspecC[Y ] = MspecO[Y ] = MspecC[X] = C2,

which is a contradiction. •
Corollary 4.4.2 GLn(C) is an affine algebraic group, i.e. GLn(C) is an
affine variety such that the product map and the inversion are maps of affine
algebraic varieties.

Proof. As a special open subset of a vector space, GLn(C) is an affine
variety. The rest of the proof is more or less the same as in Example 4.1.2,
keeping in mind that the inversion is given by the map which sends a matrix
to its adjunct matrix (a polynomial map) multiplied by 1

det
, which is a regular

function on GLn(C). •
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4.5 Two decompositions

The aim of this section is to prove two decomposition results. The first
concerns the group of algebraic loops LalgGLn(C), which we can identify
with GLn(C[t, t−1]). Given a vector λ with integral coefficients, say λ =
(λ1, . . . , λn) ∈ Zn, denote by tλ the following algebraic loop:

tλ : C∗ → GLn(C), t 7→


tλ1 0 0 0
0 tλ2 0 0

0 0
. . . 0

0 0 0 tλn

 .

Theorem 4.5.1 With respect to the left and right operation of the group
GLn(C[t])×GLn(C[t]), GLn(C[t, t−1]) has the following orbit decomposition:

GLn(C[t, t−1]) =
⋃
λ∈Zn

λ1≤λ2≤...≤λn

•
GLn(C[t]) · tλ · GLn(C[t]).

Remark 4.5.1 The irreducible, finite dimensional representation of GLn(C)
respectively Un(C) are in one-to-one correspondence with n-tuples λ ∈ Zn
such that λ1 ≤ λ2 ≤ . . . ≤ λn. So what is the connection between this
fact known from representation theory and the decomposition above? This
question has intrigued many mathematicians for quite some time, and was
only solved about 20 years ago. We will not have time to go into the details
(we need intersection cohomology for this, and this is another interesting
story), but hopefully be we will get to see a shadow of this.

Proof. Recall first the situation over a field K. In this case, for an arbitrary
matrix A ∈Mn(K) there exists invertible matrices g, h ∈ GLn(K), such that
gAh is in standard form:

gAh =



1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 0

0 0 0 0
. . . 0

0 0 0 0 0 0


.
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where the number of 1’s is the rank of the matrix. The latter can be calcu-
lated using the minors of A: for a nonzero matrix A, its rank is the maximum
of all 1 ≤ r ≤ n such that there exists a non-vanishing minor of A of size r.

Now C[t, t−1] is not a field, but recall that C[t] is a Euclidean ring. This
means in this case that the degree function

deg : C[t]− {0} −→ N, p(t) = a0 + a1t+ . . .+ a`t
` 7→ ` for a` 6= 0

can be used to make the Euclidean algorithm work: given any pair of poly-
nomials a(t), b(t) ∈ C[t], a(t) 6= 0, there exist q(t), r(t) ∈ C[t] such that

b(t) = q(t)a(t) + r(t), and, if r(t) 6= 0, then deg r(t) < deg a(t).

The same algorithm (Gaussian elimination, multiplication from left and right
by elementary matrices) as in the case of a fields yields: given A ∈Mn(C[t]),
there exists g, h ∈ GLn(C[t]) such that

gAh =



f1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 fr 0 0 0
0 0 0 0 0 0

0 0 0 0
. . . 0

0 0 0 0 0 0


, (4.5)

where f1 is a divisor of f2, f2 is a divisor of f3, etc. Now in our case we have
a matrix g ∈ GLn(C[t, t−1]). The multiplication by t commutes with the
matrix multiplication, so after multiplication with an appropriate power of t
we may assume without loss of generality that g ∈Mn(C[t])∩GLn(C[t, t−1]).

The matrix is invertible, so in (4.5) we have r = n. Further, the deter-
minant has to be a complex multiple of a power of t, so f1, . . . , fn are just
complex multiples of a power of t. Using the matrix multiplication by an
appropriate complex diagonal matrix from the right, we can assume without
loss of generality that all entries on the diagonal are just powers of t.

Since f1 is a divisor of f2, f2 is a divisor of f3, etc, the powers are weakly
increasing along the diagonal, i.e., 0 ≤ λ1 ≤ . . . ≤ λn.

The condition 0 ≤ λ1 holds if we start with g ∈Mn(C[t])∩GLn(C[t, t−1]).
If we start with an arbitrary g ∈ GLn(C[t, t−1]) and replace it by tbg ∈
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Mn(C[t]) ∩ GLn(C[t, t−1]) for some b > 0, then we have to shift the λi ac-
cordingly and hence get the desired decomposition

GLn(C[t, t−1]) =
⋃
λ∈Zn

λ1≤λ2≤...≤λn

GLn(C[t]) · tλ · GLn(C[t]). (4.6)

It remains to show that the union is disjoint. Again, let us first assume
g ∈Mn(C[t]) ∩GLn(C[t, t−1]). The entries are then elements in C[t], and so
are all minors of g. Denote by Id(g) ⊂ C[t] the ideal generated by all minors
of g of size d:

Id(g) = 〈all d× d-minors of g〉 ⊂ C[t].

Now C[t] is a principle ideal domain, so Id(g) has a unique monic generator
which we denote by fd(g).

Example 4.5.1 Let us look at the case n = 3 and the matrix

g =

 tλ1 0 0
0 tλ2 0
0 0 tλ3

 ,

where λ1 ≤ λ2 ≤ λ3. Then

I1(g) = 〈tλ1 , tλ2 , tλ3〉, I2(g) = 〈tλ1+λ2 , tλ1+λ3 , tλ2+λ3〉, I3(g) = 〈tλ1+λ2+λ3〉.

The assumption on the ordering of the λi implies:

f1(g) = tλ1 , f2(g) = tλ1+λ2 , f3(g) = tλ1+λ2+λ3 .

So we can recover g from the generators: the entries on the diagonal are

f1(g),
f2(g)

f1(g)
,
f3(g)

f2(g)
.

Exercise 4.5.1 For λ ∈ Zn, λ1 ≤ λ2 ≤ . . . ≤ λn, determine the ideals Id(t
λ)

for all 1 ≤ d ≤ n, and determine the monic generators f1(t
λ), . . . , fn(tλ).

Show how to recover tλ from this set of generators.

Let us examine how the ideals Ig(d) behave with respect to multiplication
with elementary matrices (over the ring C[t]):
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i) multiplication of a row or column with a complex number does not
change an ideal Ig(d);

ii) it is easy to see that switching rows or columns does not change an
ideal Ig(d);

iii) given 1 ≤ i1 < . . . < id ≤ b and 1 < j1, . . . , jd ≤ n let gi,j be
the submatrix consisting of the entries in the columns j1, . . . , jd and rows
i1, . . . , id. We write for short i, j for (i1, . . . , id) and (j1, . . . , jd). Let mi;j(g) =
det gi,j be the corresponding minor. Let g′ be the matrix obtained from g by
adding a multiple of the i-th row to the j-th row, i 6= j. If j is not in i or
i and j are in i, then mi;j(g) = mi;j(g

′). Suppose only j ∈ {i1, . . . , id}, say
j = ik, and let i′ be obtained from i by repacing j by i. We have

mij(g
′) = mi;j(g) + rmi′;j(g)

for some r ∈ C[t]. Now mi′;j(g) = mi′;j(g
′), which implies for the ideals:

〈mi;j(g),mi′;j(g)〉 = 〈mi;j(g
′),mi′;j(g

′)〉,

and hence Id(g) = Id(g
′). The same arguments show Id(g) = Id(g

′) if g′ is
obtained from g by adding a multiple of a column to a different column.

Summarizing: if g ∈ GLn(C[t]) · tλ · GLn(C[t]) for some λ ∈ Zn≥0, then
Id(g) = Id(t

λ). The same arguments as above show the general case λ ∈ Zn
can be reduced to the special case λ ∈ Zn≥0, and hence: Id(g) = Id(t

λ) for
g ∈ GLn(C[t]) · tλ ·GLn(C[t]) and λ ∈ Zn. By Exercise 4.5.1 we know how to
recover λ from the ideals Id(t

λ), 1 ≤ d ≤ n, so the union in (4.6) is disjoint.
•

The second decomposition shows the connection between algebraic loops in
GLn(C) and algebraic loops in Un(C).

Theorem 4.5.2 The algebraic loop group is the direct product of two of its
subgroups: the subgroups of based algebraic loops with image in Un(C), and
the subgroup of polynomial loops:

GLn(C[t, t−1]) = Ωalg(Un(C)) ·GLn(C[t]).

Proof. Clearly GLn(C[t]) is a subgroup of GLn(C[t, t−1]), and by Proposi-
tion 1.1.1 we know that LalgUn(C) is a subgroup of GLn(C[t, t−1]), and hence
so is Ωalg(Un(C)), the group of based algebraic loops. To see that the prod-
uct is direct let g be an element of the intersection GLn(C[t])∩Ωalg(Un(C)).
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Then g−1 is an element of the intersection too. But g ∈ GLn(C[t]) implies
g−1 ∈ GLn(C[t]) and g ∈ Ωalg(Un(C)) implies g−1 = gᵀ ∈ GLn(C[t−1]). It
follows that g ∈ GLn(C) ∩ Ωalg(Un(C)) and hence g = 1I. •

Before we continue with the proof, let us introduce some notation. We
regard (C[t, t−1])n as an infinite dimensional complex vector space, endowed
with the following hermitian form:

〈·, ·〉 : (C[t, t−1])n × (C[t, t−1])n → C, (f(t), g(t)) 7→ [f(t)
ᵀ
· g(t)]0. (4.7)

(Recall that f(t)
ᵀ

means to take the complex conjugate of all complex coef-
ficients, replace t by t−1, and to take the transpose of the resulting vector.)
The notation [. . .]0 means that inside the bracket we have a Laurent polyno-
mial and we take the coefficient of t0. Let {e1, . . . , en} be the standard basis
of Cn. One checks easily that

B = {. . . , t−2e1, . . . , t−2en, t−1e1, . . . , t−1en, e1, . . . , en, te1, . . . , ten, t2e1, . . .}

is an orthonormal basis for (C[t, t−1])n with respect to this form. We enu-
merate the basis elements by integers, the basis vector tkej has the number
nk + j.

Example 4.5.2 We get for n = 2:

basis element . . . t−2e2 t−1e1 t−1e2 e1 e2 te1 te2 . . .
enumeration . . . -2 -1 0 1 2 3 4 . . .

Next let A(t) ∈ GLn(C[t, t−1]), there exists some m ∈ N such that

A(t) =
m∑

j=−m

Ajt
j, A−m, . . . , Am ∈Mn(C).

With respect to the basis B we can represent the invertible linear map

(C[t, t−1])n → (C[t, t−1])n, f(t) 7→ A(t)f(t),
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as a matrix in M∞(C):

Â :=



. . .
...

...
...

...
...

...
...

· · · A0 A−1 A−2 A−3 A−4 A−5 · · ·
· · · A1 A0 A−1 A−2 A−3 A−4 · · ·
· · · A2 A1 A0 A−1 A−2 A−3 · · ·
· · · A3 A2 A1 A0 A−1 A−2 · · ·
· · · A4 A3 A2 A1 A0 A−1 · · ·
· · · A5 A4 A3 A2 A1 A0 · · ·

...
...

...
...

...
...

...
. . .


(4.8)

Note that in each row and each column there are only a finite number of
nonzero entries, so the multiplication of these type of matrices is well defined.
Further, the entries in the columns respectively rows are repetitive, after a
shift of n columns to the right and n rows down.

Example 4.5.3 Consider the matrices A(t) and A(t)−1 in GL2(C[t, t−1]),
where

A(t) =

(
t a0 + a1t
0 t

)
A(t)−1 =

(
t−1 −a0t−2 − a1t−1
0 t−1

)

Rewrite both as matrices in M∞(C) as in (4.8) and multiply them.

Example 4.5.4 Consider the matrix

A(t) =

(
1 t−1

0 1

)
=

(
1 0
0 1

)
+ t−1

(
0 1
0 0

)
∈ GL2(C[t, t−1]),

Then

A0 =

(
1 0
0 1

)
and A−1 =

(
0 1
0 0

)
,
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and Aj = 0 for all j 6= 0,−1. The matrix Â has hence the form

Â :=



· · · -3 -2 -1 0 1 2 · · ·
. . .

...
...

...
...

...
...

...
...

· · · 1 0 0 1 · · · -3
· · · 0 1 0 0 · · · -2
· · · 1 0 0 1 · · · -1
· · · 0 1 0 0 · · · 0
· · · 1 0 · · · 1
· · · 0 1 · · · 2

...
...

...
...

...
...

...
. . .

...


(4.9)

The top row and the last column indicate the numbering of the rows and
columns according to the enumeration of the basis B. So e1 (the 1-st basis
vector) is just mapped to itself, and e2 (the 2-nd basis vector) is mapped to
itself plus t−1e1 (which is the (−1)-st basis vector), and so on.

Now the arguments in section 1.1, in particular (1.3), imply that (by re-

stricting the map to S1) A(t) ∈ LalgUn(C) if and only if A(t)
ᵀ
A(t) = 1I, or,

equivalently

(
m∑

j=−m

A
transpose

j t−j)(
m∑

`=−m

A`t
`) =

2m∑
k=−2m

(
∑
−j+`=k

A
transpose

j A`)t
k = 1I. (4.10)

For k = 0 this results in the condition:
m∑

`=−m

A
transpose

` A` = 1I (4.11)

Let us translate this into a condition on the matrix of A(t) in (4.8). Note
that the entries in (4.8) are n × n-matrices, we collect the columns of A(t)
in (4.8) accordingly into groups: a group of columns consist exactly of the
images of the basis vectors tke1, . . . , t

ken for a fixed k. Then (4.11) implies: if
A(t) ∈ LalgUn(C), then all columns of this matrix consist of vectors of norm
one, and different vectors in the same group are orthogonal to each other.

For k = 1, equation (4.10) results in the condition:

m−1∑
`=−m

A
transpose

` A`+1 = 0, (4.12)
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which again can be translated into a property of the matrix of A(t). If
A(t) ∈ LalgUn(C), then the columns of adjoining groups of columns are
orthogonal to each other. We leave it as an exercise to generalize this and to
prove:

Exercise 4.5.2 Show that A(t) ∈ LalgUn(C) if and only if the matrix Â in
(4.8) has as columns an orthonormal basis of (C[t, t−1])n with respect to the
form defined in (4.7)

Example 4.5.5 We continue with Example 4.5.4 and we apply the Gram-
Schmidt process to the matrix in (4.9). Fix an odd number ` = 2k + 1 ∈ Z
and let (C[t, t−1])2` be the subspace spanned by the column vectors of the

matrix Â with index ≥ `. In the subspace spanned by these columns we find
the vectors

tke1, t
k+1e1, t

k+2e1, . . .

and the vectors

tk+1e2 = (tk+1e2 + tke1)− tke1, tk+2e2 = (tk+2e2 + tk+1e1)− tk+1e1, . . . .

To apply the Gram-Schmidt process in an infinite dimensional case, we have
to guarantee that we have an orthogonal projection

π` : (C[t, t−1])2 → (C[t, t−1])2` ,

i.e. given v ∈ (C[t, t−1])2 one has v = v1 + v2, where v2 = π`(v) ∈ (C[t, t−1])2`
and v2 = v − π`(v) is orthogonal to (C[t, t−1])2` . If we can prove that the
subspace has an orthonormal basis, then such a projection exists.

Now from the above we see that (C[t, t−1])2` , ` = 2k+ 1, has a basis given
by the vectors

{tke1, tk−1e1 + tke2} ∪ {tme1, tme2 | m ≥ k + 1}

This is already an orthogonal basis, by rescaling the vector tk−1e1 + tke2 to
1√
2
(tk−1e1+tke2), we get an orthonormal basis of this subspace, which implies

the existence of the orthogonal projection.
Let now Â2k−1, Â2k be the next two columns to the left of Â`. Consider

the images π`(Â2k−1), π`(Â2k) of the two in (C[t, t−1])2` . These are finite linear

combinations of the columns Â`, Â`+1, Â`+2, . . ..
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So to replace in the matrix Â the columns Â2k−1 and Â2k by Â2k−1 −
π`(Â2k−1) and Â2k − π`(Â2k) amounts to multiply Â from the right by a
matrix of the form:

C̃ :=



. . .
...

...
...

...
...

...
...

· · · 1I · · ·
· · · 1I · · ·
· · · 1I · · ·
· · · C1 1I · · ·
· · · C2 1I · · ·
· · · C3 1I · · ·

...
...

...
...

...
...

...
. . .


(4.13)

where C1, C2, . . . are 2 × 2-matrices (only a finite number of them are
nonzero!), filled in the matrix along the (2k−1)-th and the 2k-th column. So

the new matrix ÂC̃ has the following three properties: 1) all columns are the
same as before, except for the (2k − 1)-th and the 2k-th column; 2) the new
two columns are orthogonal to the subspace (C[t, t−1])2` , and 3) the subspace

(C[t, t−1])2`−2 is spanned by (C[t, t−1])2` and the columns Â2k−1, Â2k, or, alter-

natively, by (C[t, t−1])2` and the columns Â2k−1−π`(Â2k−1) and Â2k−π`(Â2k).
Recall that the entries in the columns are repetitive, after a shift of 2

columns to the right and 2 rows down, we have the same pair of columns. So
in a next step we perform this substitution on the columns all at once, i.e.
we multiply Â by the matrix Ĉ from the right, where

Ĉ :=



. . .
...

...
...

...
...

...
...

· · · 1I · · ·
· · · C1 1I · · ·
· · · C2 C1 1I · · ·
· · · C3 C2 C1 1I · · ·
· · · C4 C3 C2 C1 1I · · ·
· · · C5 C4 C3 C2 C1 1I · · ·

...
...

...
...

...
...

...
. . .


(4.14)

Recall, only a finite number of the Ci are nonzero matrices, so Ĉ is the matrix
in M∞(C) associated to a matrix C(t) ∈ GL2(C[t]).

The new matrix Ĝ = ÂĈ (corresponding to the matrix G(t) = A(t)C(t)

in GL2(C[t, t−1])) has the property that each pair of columns Ĝ2k−1, Ĝ2k is
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orthogonal to all other pairs of columns Ĝ2m−1, Ĝ2m, m 6= k, of the matrix.
In our example the new matrix has the form

Ĝ :=



· · · -3 -2 -1 0 1 2 · · ·
. . .

...
...

...
...

...
...

...
...

· · · 1 0 0 1 0 0 · · · -3
· · · 0 1 0 0 0 0 · · · -2
· · · 0 0 1 0 0 1 · · · -1
· · · -1 0 0 1 0 0 · · · 0
· · · 0 0 0 0 1 0 · · · 1
· · · 0 0 -1 0 0 1 · · · 2

...
...

...
...

...
...

...
. . .

...


(4.15)

So get at the end a unitary loop U(t), all what remains to do is to replace

each pair of columns Ĝ2k−1, Ĝ2k by an orthonormal basis of the subspace
spanned by the pair of columns. This amounts to normalize Ĝ2k, so Û2k =

1

‖Ĝ2k‖
Ĝ2k, and to replace G2k−1 by a linear combination of Ĝ2k−1 and Ĝ2k, so

that the result is orthogonal to Ĝ2k and of norm one. Again doing this for
all pairs of columns at once, this amounts to multiply Ĝ from the right by a
matrix of the form

D̂ :=



. . .
...

...
...

...
...

...
...

· · · D0 · · ·
· · · D0 · · ·
· · · D0 · · ·
· · · D0 · · ·
· · · D0 · · ·
· · · D0 · · ·

...
...

...
...

...
...

...
. . .


, (4.16)

where D0 is a lower tringular matrix in GL2(C). So the matrix D̂ corresponds
to a constant loop matrix D(t) ∈ GL2(C[t]), and the resulting matrix

U(t) = A(t)C(t)D(t)

is a unitary loop. It follows that for the matrix A(t) in (4.9) one can find a
matrix H(t) ∈ GL2(C[t]) such that U(t) = A(t)H(t) is a unitary loop. In
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our example the resulting unitary loop is

Û :=



· · · -3 -2 -1 0 1 2 · · ·
. . .

...
...

...
...

...
...

...
...

· · · 1√
2

0 0 1√
2

0 0 · · · -3

· · · 0 1 0 0 0 0 · · · -2
· · · 0 0 1√

2
0 0 1√

2
· · · -1

· · · − 1√
2

0 0 1√
2

0 0 · · · 0

· · · 0 0 0 0 1 0 · · · 1
· · · 0 0 − 1√

2
0 0 1√

2
· · · 2

...
...

...
...

...
...

...
. . .

...


(4.17)

or, formulated in terms of matrices contained respectively in GL2(C[t, t−1]),
ΩalgU2(C) and GL2(C[t]):(

1 t−1

0 1

)
=

(
1√
2

t−1
√
2

− t√
2

1√
2

)(
1√
2
t√
2

2√
2

)
=

(
1+t−1

2
−1+t−1

2
−t+1

2
t+1
2

)(
1+t
2

1
−1+t

2
1

)
Example 4.5.6 In the same way one shows(

1 0
t−1 1

)
=

(
1√
2
− t√

2
t−1
√
2

1√
2

)(
2√
2

t√
2
1√
2

)
=

(
1+t
2

1−t
2

t−1−1
2

t−1+1
2

)(
1 1−t

2

1 1+t
2

)
∈ ΩalgU2(C) ·GL2(C[t]).

Exercise 4.5.3 Describe explicitly the decomposition into a product of a
unitary and a polynomial loop for the algebraic loops(

1 t−k

0 1

)
,

(
1 0
t−k 1

)
, k ∈ N.

Continuation of the proof of the theorem. Except for the difference that one
considers groups of columns of size n instead of just two columns, the strategy
of the proof is the same as in Example 4.5.5.

Fix a number ` = nk + 1 for some k ∈ Z and let (C[t, t−1])n` be the span
of all columns of index ≥ `. To show that an orthogonal projection

π` : (C[t, t−1])n → (C[t, t−1])n`
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exists, one has to show that (C[t, t−1])n` admits an orthonormal basis. To
prove the existence of an orthonormal basis, consider

A(t)−1 =
m′∑

p=−m′
A′pt

p.

The jn+i-th column of the corresponding matrix Â′ ∈M∞(C) can be viewed
as an array describing the basis vector tjei as a linear combination of the basis
elements given by the columns of the matrix Â. Now the special form of the
matrices of type (4.8) implies hence that (C[t, t−1])n` ∩B spans a subspace of
finite codimension. So after a finite number of steps (using Gram Schmidt)
one can complete the orthonormal system given by (C[t, t−1])n` ∩ B to an
orthonormal basis of (C[t, t−1])n` . This implies the existence of an orthogonal
projection:

π` : (C[t, t−1])n → ((C[t, t−1])n)`.

Now one can proceed as in the example: consider the next n columns to the
left of the column Â`, and replace the columns Ân(k−1)+1, Ân(k−1)+2, . . ., Ânk
by the columns

Ân(k−1)+1 − π`(Ân(k−1)+1), Ân(k−1)+2 − π`(Ân(k−1)+2), . . . , Ânk − π`(Ânk).

Recall that the entries in the columns are repetitive, after a shift of n columns
to the right and n rows down, we have the same group of n columns. So in a
next step one performs this substitution on the columns all at once, i.e. one
multiplies Â by a matrix Ĉ from the right, which has the same form as in
(4.16). Only this time the matrices Ci are complex n × n-matrices. But as

before, only a finite number of these matrices are nonzero. In particular, Ĉ
is the matrix associated to a polynomial loop C(t) ∈ GLn(C[t]).

The resulting matrix Ĝ = ÂĈ has the following property: for all k ∈ N,
the group of columns Âkn+1, . . . , Âkn+n−1 is orthogonal to all other columns
Âj for j 6∈ {kn + 1, . . . , kn + n − 1}. So to turn Ĝ into a unitary matrix, it
remains to apply the Gram-Schmidt procedure each of these groups. As in
Example 4.5.5, this amounts to multiply Ĝ from the right by a matrix D̂ as
in Example 4.5.5, where this time D0 is a lower tringular matrix in GLn(C).

So the matrix D̂ corresponds to a constant loop matrix D(t) ∈ GLn(C[t]),
and the resulting matrix

U(t) = A(t)C(t)D(t)
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is a unitary loop. To turn it into a based loop, one multiplies from the right
by U−1(1) and obtains

A(t) =
(
U(t)U−1(1)

)︸ ︷︷ ︸
based unitary loop

(
U(1)D−1(t)C−1(t)

)︸ ︷︷ ︸
polynomial loop

•



Chapter 5

Lattice realization of ΩalgUn(C)

Another way of formulating Theorem 4.5.2 is to say that it induces a bijection

GLn(C[t, t−1])/GLn(C[t])
1:1←→ΩalgUn(C).

We want to use this to give a new description of ΩalgUn(C).

5.1 Lattices and quotients: an example

Let us start with Z-lattices in Qn. Given a basis B = {v1, . . . , vn} of Qn,
denote by

LB = {
n∑
i=1

aivi | a1, . . . , an ∈ Z}.

the set of integral linear combinations of the elements of B. This subset has
the following properties:

1) it is a subgroup of Qn, i.e. for all `1, `2 ∈ LB we have `1 − `2 ∈ LB;

2) it is stable under multiplication with integers.

These two properties are just the definition of a Z-module. Recall that a
vector space over a field has always a basis, but, in general, modules over a
ring R do not have a basis.

Definition 5.1.1 If an R-module has a basis, then the module is called a
free module. If the module admits a finite basis, then all bases have the same
number of elements, the number is called the rank of the free module.

75
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Remark 5.1.1 So for bases of a free module of finite rank we can talk about
base change matrices. These matrices are of course quadratic matrices, with
entries in the ring, and they are invertible over this ring. So as in the case
of a vector space of a field, for a free module of rank n over R, we have a
bijection between ordered bases and elements of

GLn(R) = {A ∈Mn(R) | detA ∈ R×},

i.e. the determinant is an element of the group of units R× in R.

Let us go back to the example above:
3) LB is a free Z-module with basis B, and the Z-basis for LB is also a

Q-basis for Qn.
The properties 1)–3) are a charcterization of Z-lattices in Qn. (Usually

one finds in the books a definition via tensor product, but for the moment lets
stay with the characterization above.) Let L(Qn,Z) be the set of all Z-lattices
in Qn. A lattice is determined by a basis, which, by collecting the basis
elements column wise, corresponds to an invertible matrix. Hence we have
a surjective map GLn(Q) → L(Qn,Z). Now two matrices g, g′ ∈ GLn(Q)
correspond to the same lattice if and only if the columns of g and the columns
of g′ span the same lattice, which is equivalent to say that g−1g′ is a basis
transformation matrix corresponding to two bases of the standard lattice
Zn = Ze1 ⊕ · · · ⊕ Zen. Or, in other words, g−1g′ ∈ GLn(Z), so we get a
bijection

GLn(Q)/GLn(Z)
1:1−→L(Qn;Zn).

Now we are ready to try out the procedure with the groups GLn(C[t, t−1])
and GLn(C[t]).

5.2 C[t]-lattices in C(t)n and C[t, t−1]n

We start with the definition of C[t]-lattices in C[t, t−1]n and in C(t)n:

Definition 5.2.1 A C[t]-lattice L ⊂ C(t)n is a free C[t]-submodule such
that one (and hence every) C[t]-basis of L is a C(t)-basis for C(t)n. We say
that a free C[t]-module L is a lattice in C[t, t−1]n if this C[t]-module has the
property that one (and hence every) C[t]-basis of L is a C[t, t−1]-basis for
C[t, t−1]n.
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Exercise 5.2.1 Prove the “and hence every” parts of the definition above.

As pointed out in Remark 5.1.1, the set of all ordered bases of C[t, t−1]n as
a free C[t, t−1]-module can be naturally identified with GLn(C[t, t−1]), and
the set of all ordered bases of C[t]n as a free C[t]-module can be naturally
identified with GLn(C[t]).

Let G(C[t, t−1]n,C[t]) be the set of all C[t]-lattices L in C[t, t−1]n. So
the same reasoning as above in the case of Z-lattices in Qn shows that C[t]-
lattices L in C[t, t−1]n correspond to matrices in GLn(C[t, t−1]), so we get a
surjective map GLn(C[t, t−1])→ G(C[t, t−1]n,C[t]). And two matrices g, g′ ∈
GLn(C[t, t−1]) correspond to the same lattice if and only if the columns span
the same C[t]-lattice, which is equivalent to say g−1g′ is a basis transformation
matrix corresponding to two bases of the standard lattice C[t]n = C[t]e1 ⊕
· · · ⊕ C[t]en. Or, in other words, g−1g′ ∈ GLn(C[t]), so we get a bijection

GLn(C[t, t−1])/GLn(C[t])
1:1−→G(C[t, t−1]n,C[t]).

Together with the Iwasawa decomposition in Theorem 4.5.2 this implies:

Proposition 5.2.1 We have natural bijections

Ωalg(Un(C))
1:1←→GLn(C[t, t−1])/GLn(C[t])

1:1←→G(C[t, t−1]n,C[t]).

We want to use these bijections to construct a new parameterization of
Ωalg(Un(C)) and endow the loop group with the structure of a projective
Ind-variety.

To do so, we want know to find a characterization of the lattices in
G(C[t, t−1]n,C[t]). Let L0 be the standard lattice C[t]n = C[t]e1⊕· · ·⊕C[t]en
and let L be a C[t]-lattice in C(t)n. To say that L is a lattice in C[t, t−1]n

is by the bijection in Proposition 5.2.1 and Theorem 4.5.1 equivalent to say
that the lattice can be represented by a matrix in GL(C[t, t−1]) of the form
gtλ where g ∈ GL(C[t]) and λ1 ≤ . . . ≤ λn.

Now let Lλ be the C[t]-lattice having as basis tλ1e1, . . . , t
λnen. If N ∈ N

is such that N ≥ max{|λ1|, . . . , |λn|}, then

tNL0 ⊆ Lλ ⊆ t−NL0. (5.1)

The C-vector space t−NL0/t
NL0 has dimension 2nN , having Lλ/tNL0 as a

C-subspace of dimension

(λ1 +N) + (λ2 +N) + (λ3 +N) + . . .+ (λn +N) = Σλ+ nN, (5.2)
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where Σλ ∈ Z is an abbreviation for λ1 + . . .+ λn.
Since left multiplication by g ∈ GLn(C[t]) commutes with multiplication

by powers of t and gL0 = L0 for g ∈ GLn(C[t]), we see that the lattice L
above satisfies (5.1) and (5.2) too.

Lemma 5.2.1 If L is a C[t]-lattice in C(t)n, then L is a lattice in C[t, t−1]n

if and only there exists an N ∈ N such that

tNL0 ⊆ L ⊆ t−NL0.

Moreover, there exists a λ = (λ1 ≤ . . . ≤ λn) ∈ Zn such that

dimC L/tN
′L0 = nN ′ + Σλ ∀N ′ ≥ N.

Proof. It remains to prove the “⇐” direction of the first part of the lemma.
So let L be a C[t]-lattice in C(t)n satisfying the condition. The inclusion
L ⊆ t−NL0 implies L ⊆ C[t, t−1]n, so by choosing a C[t]-basis for L, the
lattice L can be represented by a matrix L ∈ Mn(C[t, t−1]), invertible over
C(t). Multiplying L from the right by an element in GLn(C[t]) amounts to
a base change and hence does not change the lattice. By multiplying L from
the left by an element in GLn(C[t]) we may replace L by a new lattice still
satisfying the condition. So up to left and right multiplication by elements
in GLn(C[t]) we can assume that L is represented by a matrix of the form
(see (4.5)),

L =̂

 f1 0 0

0
. . . 0

0 0 fn

 , (5.3)

where f1 is a divisor of f2, f2 is a divisor of f3 etc. Now the condition tNL0 ⊆
L implies that the fi have to be just powers of t. Indeed, the special form in
(5.3) reduces the proof to the case n = 1. Assume f = f1 = ait

i + . . .+ ajt
j

such that i < j and ai, aj 6= 0. In fact, without loss of generality we may
assume ai = 1. Viewed as a C-vector space, L has as basis f, tf, t2f, . . ..
It is now easy to see that it is impossible to write for any choice of N the
monomial tN as a C-linear combination of these basis elements. So we have
necessarily i = j, which finishes the proof of the lemma. •

So starting with an algebraic loop γ ∈ Ωalg(Un(C)), we can attach to the
loop a C[t]-lattice L in C[t, t−1]n, which is associated to a matrix of the form



79

gtλ for some g ∈ GLn(C[t]). By abuse of notation we define in this case

detL := deg(det(gtλ)).

Of course, the matrix gtλ associated to L is not unique, but note that for all
g, h ∈ GLn(C[t]) we have det g, deth ∈ C∗ and hence

deg(det(gtλ)) = deg(det tλ) = Σλ.

Since λ is uniquely determined by L, detL is hence well defined. For q ∈ Z
denote by

Gq := {L ∈ G(C[t, t−1]n,C[t]) | detL = q}
= {gGLn(C[t]) ∈ GLn(C[t, t−1])/GLn(C[t]) | deg(det g) = q}
= {γ ∈ ΩalgUn(C) | deg(det γ) = q}

Let g̃ be a representative of gGLn(C[t]) ∈ Gp and let h̃ be a representative
of hGLn(C[t]) ∈ Gp. Similarly, let γ, γ′ ∈ ΩalgUn(C) be such that γ ∈ Gp
and γ′ ∈ Gq. The multiplicative property of the determinant implies that the
class of g̃ · g̃ in GLn(C[t, t−1])/GLn(C[t]) lies in Gp+q, similarly, the product
γ · γ′ ∈ Gp+q. So the multiplication by g̃ (respectively its inverse), or, in the
loop picture, the multiplication by γ, induces bijections

Gq
·γ
�
·γ−1

Gp+q

To simplify the analysis, we consider throughout the following only G0.

5.3 Lattices in G0 and subspaces

Fix N ∈ N and let VN ⊆ C[t, t−1] be the complex subspace spanned by the
basis vectors

VN = 〈t−Ne1, . . . t−Nen, . . . , e1, . . . , en, . . . , tN−1e1, . . . , tN−1en〉 ⊆ C[t, t−1].

We have dimVN = 2nN , and we have a sequence of inclusions

V1 ⊂ V2 ⊂ V3 ⊂ . . . ⊂ VN−1 ⊂ VN ⊂ VN+1 ⊂ . . . (5.4)

Denote by GnN,2nN the set of all subspaces of VN of dimension nN . The set
GnN,2nN is called the Grassmann variety of nN -dimensional subspaces of VN .
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We would like to have an increasing sequence for the Grassmann varieties
GnN,2nN similar to the one in (5.4) for the vector spaces VN . So given a
subspace WN ∈ GnN,2nN , let WN+1 ∈ Gn(N+1),2n(N+1) be the subspace of
VN+1 obtained from WN ⊂ VN ⊂ VN+1 by taking the span

〈WN , t
N−1e1, . . . , t

N−1en〉 ⊂ VN+1.

One checks directly that the induced map

GnN,2nN → Gn(N+1),2n(N+1), WN 7→ WN+1 (5.5)

is injective. So we get the desired sequence of inclusions of Grassmann vari-
eties:

Gn,2n ⊂ G2n,4n ⊂ . . . ⊂ GnN,2nN ⊂ Gn(N+1),2n(N+1) ⊂ . . . (5.6)

and we set:

G∞ :=
⋃
N≥1

GnN,2nN . (5.7)

Let L ∈ G0 be a lattice, so there exists an N ∈ N such that

tNL0 ⊆ L ⊆ t−NL0, (5.8)

and, by Lemma 5.2.1, the quotient L/tNL0 ⊂ t−NL0/t
NL0 is a subspace of

dimension nN in the 2nN -dimensional vector space L0/t
NL0.

After identifying the quotient t−NL0/t
NL0 with VN :

t−NL0/t
NL0 =̂ 〈t−Ne1, . . . , e1, . . . , en, . . . , tN−1en〉 = VN , (5.9)

we can hence associate to the lattice (or the associated algebraic loop in
ΩalgUn(C)) a point in GnN,2nN . Now if (5.8) holds, then

tN+1L0 ⊆ L ⊆ t−N−1L0

holds too, and the map in (5.5) is exactly the map

L/tNL0 7→ L/tN+1L0∈ ∈

GnN,2nN ↪→ Gn(N+1),2n(N+1)
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which sends the subspace L/tNL0 of t−NL0/t
NL0 to the subspace L/tN+1L0

of t−N−1L0/t
N+1L0. So the map

G0 −→ G∞ =
⋃
N≥1

GnN,2nN , L 7→ (L/tNL0 ⊂ t−NL0/t
NL0)N�0

is well defined. The map is injective because if tNL0 ⊂ L and tNL0 ⊂ L′,
then L/tNL0 = L′/tNL0 implies L = L′.

It remains to describe the image of the map.

5.4 Subspaces invariant under multiplication

with t

By definition, a C[t]-lattice L is stable under multiplication with the variable
t. Now multiplication by t induces a nilpotent endomorphism on t−NL0/t

NL0.
To not confuse the variable t with the multiplication by t, let us write t̃ for
the multiplication map. Then φ := 1I + t̃ induces a unipotent endomorphism
of t−NL0/t

NL0. Since L is stable under multiplication with t, the subspace
L/tNL0 ⊂ t−NL0/t

NL0 is stable under φ = 1I + t̃, which is equivalent to say
that the point in GnN,2nN corresponding to L is a fixed point with respect to
the action of φ on GnN,2nN .

Lemma 5.4.1 Let W ∈ GnN,2nN be an nN dimensional subspace of VN .
There exists a lattice L ∈ G0 such that

tNL0 ⊆ L ⊆ t−NL0, dimL/tNL0 = nN

and W = L/tNL0 with respect to the identification in (5.9) if and only if W
is a fixed point with respect to the action of φ.

Denote by Ωalg
0 (Un(C)) the subgroup of based loops such that det γ ∈ C∗.

The proposition above implies:

Corollary 5.4.1 We have natural bijections between the following loops, lat-
tices and subspaces:

Ωalg
0 (Un(C))

1:1←→G0
1:1←→

⋃
N≥1

Gφ
nN,2nN .
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Proof. So let W ∈ GnN,2nN be a fixed point with respect to the action of
φ, and let L be the preimage of W with respect to the canonical map (of
C-vector spaces)

t−NL0 → t−NL0/t
NL0.

Since W is a φ = 1I + t̃-fixed point and tNL0 is stable under multiplication
by t, the subspace L is in fact a C[t]-module. Now C[t] is a Euclidean ring,
the module L is embedded as a submodule in C(t)n, and hence free of rank
at most n. Since tNL0 ⊂ L, it follows the module is free of rank n. Now
the same arguments as in the proof of Lemma 5.2.1 show that, after possibly
replacing L by gL for some g ∈ GL(C[t]), the lattice can be represented by
a matrix of the form

gL =̂

 tλ1 0 0

0
. . . 0

0 0 tλn

 , (5.10)

where λ1 ≤ . . . ≤ λn. It remains to inspect what happens with the subspace
W while changing from L to gL. To replace L by gL implies we have to
replace W by gW . Note that the lattices tNL0 and t−NL0 are GLn(C[t])-
stable, so we have a well defined action of GLn(C[t]) on the finite dimensional
complex vector space t−NL0/t

NL0 by linear automorphisms. It follows that
gW is again a subspace of dimension nN , and since the multiplication by t
on (C[t, t−1])n commutes with the action of GLn(C[t]), the subspace gW ∈
GnN,2nN is again a fixed point with respect to the action of φ.

The dimension formula in Lemma 5.2.1 implies dim gW = nN if and only
if Σλ = 0, and hence gL ∈ G0. Now detL = det gL implies L ∈ G0 too, which
finishes the proof of the lemma. •

5.5 The Grassmann variety

Let us start with the most simple example of a Graßmann variety, the pro-
jective space Pn−1. Recall that the projective space Pn−1 is defined as the
set of all lines in V = Cn. Another way to formulate the definition is to say
that the projective space is the quotient (V \ {0})/ ∼, where the equivalence
relation is defined by: v ∼ v′ if there exists an element r ∈ C∗ such that
rv = v′.
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The definition of a Graßmann variety is a straight forward generalization
of the above, only one has to replace lines, i.e. 1-dimensional subspaces, by
d-dimensional subspaces.

Definition 5.5.1 Let 1 ≤ d < n. The Graßmann variety Gd,n is defined as
the set of all d-dimensional subspaces in V .

In particular, G1,n = Pn−1. To get a description of Gd,n as a quotient sim-
ilar to the description of the projective space above, let U ∈ Gd,n be a
d-dimensional subspace of Cn. Fix a basis {v1, . . . , vd} of U , then we can
associate to U an n×d matrix A = (ai,j) of rank d such that the j-th column
consists of the coefficients of vj with respect to the standard basis {e1, . . . , en}
of V , i.e. vj =

∑n
i=1 aijei.

Vice versa, to an n × d matrix A ∈ Mn,d(C) of rank d one associates
naturally the d-dimensional subspace U of V obtained as the span of the
column vectors. In this language we can give a description of Gd,n similar to
that of the projective space above: let Z be the set of n× d matrices of rank
strictly less than d, then Gd,n = (Mn,d(C) \ Z)/ ∼, where the equivalence
relation is defined by: A ∼ A′ if the column vectors span the same subspace
of V .

Above we defined the relation “∼” on V \{0} in terms of the group action
of C∗ on V . Here we can do the same by using the fact that GLd(C) acts
transitively on the set of bases of a d-dimensional subspace:

Gd,n = (Mn,d(C) \ Z)/ ∼, where A ∼ A′ ⇔ A′ = AC for some
C ∈ GLd(C)

For d = 1, this is exactly the description of the projective space Pn−1 = G1,n

given above.

Gd,n as homogeneous space.

Another very useful description of the Graßmann variety is that of Gd,n as a
homogeneous space. If W ⊂ V is a d-dimensional subspace and g ∈ SLn(C),
then gW = {gu | u ∈ W} is again a d-dimensional subspace. In fact, given
W,W ′ ∈ Gd,n, there exists always a g ∈ SLn(C) such that gW = W ′.

Denote by Fj ⊂ V the j-dimensional subspace Fj = 〈e1, e2 . . . , ej〉 spanned
by the first j elements of the standard basis. Then we can identify Gd,n
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with the coset space SLn(C)/Pd, where Pd is the isotropy group of the d-
dimensional subspace Fd. Now g ∈ SLn(C) is an element of Pd if and only if
gej ∈ Fd for 1 ≤ j ≤ d, and hence:

Gd,n = SLn(C)/Pd , where Pd =

{
A ∈ SLn(C)

∣∣∣∣ A =

(
∗ ∗

0(n−d)×d ∗

)}
.

Plücker coordinates.

To endow the Graßmann variety with the structure of an algebraic variety,
we will identify Gd,n with a subset of the projective space P(ΛdV ). A first
step in this direction is the introduction of Plücker coordinates, which can be
viewed as linear functions on ΛdV as well as multilinear alternating functions
on Mn,d(C).

Remark 5.5.1 There are several ways to introduce the vector space ΛdV ,
the following uses a universal property: The d-th exterior power of a finite
dimensional vector space is a pair (ΛdV, ι) consisting of a vector space ΛdV
and a a the unique (up to unique isomorphism) multilinear alternating map

ι : V × · · · × V︸ ︷︷ ︸
d

→ ΛdV

such that for any multilinear and alternation map φ : V × · · · × V︸ ︷︷ ︸
d

→ W in

some vector space W , there exists a unique linear map φ̃ : ΛdV → W , such
that the diagram

V × · · · × V︸ ︷︷ ︸
d

→φ W

↓ι ↗φ̃

ΛdV

Or, for short: studying multilinear, alternating maps on V × · · · × V︸ ︷︷ ︸
d

is the

same a studying linear maps on ΛdV .
Let us assume such a vector space ΛdV and the map ι exists. The uni-

versal property has some immediate consequences: let {e1, . . . , en} be the
standard basis of V = Cn. The multilinear map ι : V × · · · × V d → ΛdV
is completely determined by the images ι(ei1 , . . . eid) of the tuples of basis
elements, and hence ΛdV has to be spanned by the images ι(ei1 , . . . , eid),
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1 ≤ i1, . . . , id ≤ n. Now above we ask in fact more: the map ι has the
additional property of being alternating, so whenever σ ∈ Sd, then

ι(eiσ(1) , . . . , eiσ(d)) = sgn(σ)(ei1 , . . . , eid).

It is now easy to see that then the images of the ordered tuples ι(ei1 , . . . , eid),
1 ≤ i1 < . . . < id ≤ n form indeed a basis of ΛdV . The usual notation one
uses is the wedge product:

ei1 ∧ ei2 ∧ . . . ∧ eid := ι(ei1 , . . . , eid), where 1 ≤ i1 < . . . < id ≤ n.

and this basis is called the standard basis of ΛdV .
More generally, for a d-tuple of vectors we write v1 ∧ v2 ∧ . . . ∧ vd :=

ι(v1, . . . , vd), and using again the properties that ι is multilinear and alter-
nating, one gets the following explicit formula for ι:

v1 ∧ v2 ∧ . . . ∧ vd =
∑

1≤i1<···<id≤n

pi1,...,id(v1| . . . |vd)ei1 ∧ ei2 ∧ . . . ∧ eid ,

where (v1| . . . |vd) is the n×d-matrix having the vectors v1, . . . , vd as columns,
and pi1,...,id(v1| . . . |vd) is the minor of the matrix formed by the determinant
of the submatrix formed by rows i1, i2, . . . , id.

Definition 5.5.2 Let Id,n := {i = (i1, . . . , id)|1 ≤ i1 < · · · < id ≤ n} be
the set of all strictly increasing sequences of length d between 1 and n. For
i = (i1, . . . , id) ∈ Id,n we write ei = ei1 ∧ · · · ∧ eid . We define a partial order
“≥” on Id,n as follows: i ≥ j ⇔ it ≥ jt for all t = 1, . . . , d.

So the standard basis of ΛdV can be written as {ei | i ∈ Id,n}. Denote by
{pi | i ∈ Id,n} the dual basis of (ΛdV )∗, i.e., pi(ej) = δi,j.

Definition 5.5.3 The linear functions pi, i ∈ Id,n, on ΛdV are called Plücker
coordinates.

By the definition of the d-fold wedge product the space of linear functions
on ΛdV can be naturally identified with the space of multilinear alternating
functions on d-copies of V , i.e., on Md,n(C) = V × . . .× V︸ ︷︷ ︸

d times

.

Remark 5.5.2 We use the same name Plücker coordinates and the same
symbol pi for the linear functions on ΛdV as well as the corresponding mul-
tilinear alternating function on the space Mn,d(C).
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To make this relationship more explicit, recall that we have a natural map,
the exterior product map:

πd : Mn,d(C) → ΛdV
A = (v1, . . . , vd) 7→ v1 ∧ · · · ∧ vd

. (5.11)

Here v1, . . . , vd are the column vectors of the matrix A. If we express the
product v1 ∧ · · · ∧ vd as a linear combination of the elements of the canonical
basis, then, by the definition of the dual basis, we have

v1 ∧ · · · ∧ vd =
∑
i∈Id,n

pi(A)ei.

The alternating multilinear function on Mn,d(C) associated to pi is just the
i-th coordinate of the linear combination above, i.e., it is the composition
pi ◦ πd. So by abuse of notation we write just pi(A) instead of pi(πd(A)).

GLn(C)-action on ΛdV

Given an element g ∈ GLn(C), we define a map which is linear in each factor:

V × · · · × V︸ ︷︷ ︸
d

→g· V × · · · × V︸ ︷︷ ︸
d

(v1, . . . , vd) 7→ (gv1, . . . , gvd).

Combining the map with ι, we get a multilinear and alternating map

V × · · · × V︸ ︷︷ ︸
d

→ι◦(g·) ΛdV

(v1, . . . , vd) 7→ (gv1) ∧ . . . ∧ (gvd).

Now the universal property of ΛdV , we get hence a commutative diagram

V × · · · × V︸ ︷︷ ︸
d

→ι◦(g·) ΛdV

↓ι ↗ι̃◦(g·)

ΛdV

One often writes just ∧g for the homomorphism ι̃ ◦ (g·) : ΛdV → ΛdV . So
having the group action of GLn(C) on V = Cn, the universal property of ΛdV
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has as a consequence that we get for every isomorphism g : V → V, v 7→ gv,
an induced isomorphism

∧g : ΛdV → ΛdV, v1 ∧ . . . ∧ vd 7→ (gv1) ∧ . . . ∧ (gvd).

Now by definition we have

∧(gh)(v1 ∧ . . . ∧ vd) = ((gh)v1) ∧ . . . ∧ ((gh)vd)
= ∧g

(
(hv1) ∧ . . . ∧ (hvd)

)
= (∧g ◦ ∧h)(v1 ∧ . . . ∧ vd)

Since ΛdV is spanned by the “pure” wedges v1∧ . . .∧vd, this implies ∧(gh) =
∧g ◦ ∧h, or, in other words,

∧ : GLn(C) −→ GL(ΛdV ), g 7→ ∧g,

is a group homomorphism. Here is another name for this: it is a representa-
tion.

GLn(C)-action on P(ΛdV )

To go from a vector space U to the associated projective space P(U) means
to pass from a non-zero vector u ∈ U to the equivalence class of the vector:
[u] = {λu | λ ∈ C∗}. The linearity of a vector space isomorphism φ : U → U
implies that we get an induced map [φ] : P(U)→ P(U), [u] 7→ [φ(u)].

Given g ∈ GLn(C), it follows that the isomorphism v 7→ gv on V induces
an isomorphism ∧g : v1 ∧ . . . ∧ vd 7→ gv1 ∧ . . . ∧ gvd, which in turn induces a
map [∧g] : [v1 ∧ . . . ∧ vd] 7→ [gv1 ∧ . . . ∧ gvd] on P(ΛdV ).

Since ∧ : GLn(C) −→ GL(ΛdV ) is a representation, it is easy to see that

GLn(C)× P(ΛdV )→ P(ΛdV ), [
r∑
j=1

vj,1 ∧ . . . ∧ vj,d] 7→ [
r∑
j=1

gvj,1 ∧ . . . ∧ gvj,d].

defines a group action.
A pure wedge in ΛdV is an element which can be written as v1 ∧ . . .∧ vd.

Note that not all elements in ΛdV can be written in this way (Exercise!).
The action of GLn(C) stabilizes this set because

(∧g)(v1 ∧ . . . ∧ vd) = (gv1) ∧ . . . ∧ (gvd)
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is again a pure wedge. Actually, the set of pure wedges decomposes into
two orbits: one consists just of one element: {0}, the other set is the orbit
∧(GLn(C))e1 ∧ . . . ∧ ed. Indeed, the pure wedge v1 ∧ . . . ∧ vd is not equal
to zero if and only if the vectors v1, . . . , vd are linearly independent. So the
later can be extended to a basis of V , the corresponding matrix g has the
property g(e1 ∧ . . . ∧ ed) = v1 ∧ . . . ∧ vd.

A pure wedge in P(ΛdV ) is an element which can be written as [v1∧. . .∧vd].
The considerations above show that the set of all pure wedges is stable with
respect to the GLn(C)-action on P(ΛdV ). Indeed, the set is just one orbit:

GLn(C) · [e1 ∧ . . .∧ ed] = {[v1 ∧ . . .∧ vd] ∈ P(ΛdV ) | v1, . . . , vd ∈ V linearly
independent}

Plücker embedding.

Our next step is to identify the Graßmann variety with the subset of pure
wedges in the projective space P(ΛdV ).

For A ∈ Mn,d(C) of rang d let v1, . . . , vd ∈ kn be the column vectors, let
W ⊂ V be the span of these column vectors and let u1, . . . , ud ∈ W . Denote
by C = (ci,j) the d × d-matrix expressing the uj as linear combinations of

the vi. i.e., uj =
∑d

i=1 ci,jvi. The exterior product is alternating, so we get
v1∧ . . .∧ vd = (detC)u1∧ . . .∧ud. As a consequence we see that the exterior
product map induces a well defined map:

π : Gd,n = ((Mn,d(C) \ Z)/ ∼) −→ P(ΛdV )

called the Plücker embedding. We have a left action of GLn(C) on Mn,d(C)
defined by g(v1, . . . , vd) = (gv1, . . . , gvd), and we have a natural action of
GLn(C) on ΛdV given by (∧g)(v1 ∧ · · · ∧ vd) = (gv1) ∧ · · · ∧ (gvd). It follows
that the exterior product map πd : Mn,d(C) → ΛdV is equivariant with
respect to these GLn(C)-actions, and hence so is the Plücker embedding.
The term embedding is justified because:

Proposition 5.5.1 The Plücker map π : Gd,n → P(ΛdV ) is injective.

Proof. Let Fd be the d-dimensional subspace of V spanned by e1, . . . , ed.
By the homogeneity of the GLn(C)-action on Gd,n, it is sufficient to show if
π(W ) = π(Fd), then W = Fd.

So suppose π(W ) = π(Fd) and let {v1, . . . , vd} be a basis of W . Denote
by A ∈ Mn,d(C) the corresponding matrix. Since [πd(A)] = [e1 ∧ . . . ∧ ed],
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we can choose the basis such that πd(A) = e1 ∧ . . . ∧ ed. It follows that the
submatrix A1,...,d consisting of the first d-rows of A has determinant one, so
by replacing A by A · A−11,...,d if necessary we can (and will) assume that the
submatrix of A consisting of the first d rows is the d× d identity matrix.

Now all d × d minors except p1,2,...,d(A) vanish. In particular, for i > d
we have ±ai,j = p1,...,j−1,j+1,...,d,i(A) = 0 and hence W = Fd. •

Projective varieties

The first definition of an affine variety was the following: an affine variety X
in a finite dimensional vector space V is a subset such that there exists a set of
polynomials I ⊂ C[V ] and X = {v ∈ V | f(v) = 0∀ f ∈ I}. Such a definition
does not make sense for the projective space P(V ) = (V \ {0})/ ∼ because a
point in P(V ) is line in V . We write [a1 : . . . : an] for the line spanned by the
vector

∑n
i=1 aiei. Note that [λa1 : . . . : λan] = [a1 : . . . : an] as points in the

projective space but in general one has f(a1, . . . , an) 6= f(λa1, . . . , λan) for a
polynomial f ∈ C[V ]. So there is no way of seeing polynomials as functions
on P(V ).

But if a polynomial f is homogeneous, say of degree m, then

f(λa1, . . . , λan) = λmf(a1, . . . , an).

In particular, f(a1, . . . , an) = 0 if and only if f(λa1, . . . , λan), and one just
writes f([a1 : . . . : an]) = 0. So the following definition still makes sense:

Definition 5.5.4 A closed set X ⊂ P(V ) for a finite dimensional vector
space V is a subset such that there exists a set of homogeneous polynomials
I ⊂ C[V ] such that

X = {[v] ∈ P(V ) | f([v]) = 0 ∀ f ∈ I, f homogeneous} (5.12)

As in the affine case, one shows that a finite union and an arbitrary inter-
section of closed sets are closed sets, and the empty set as well as P(V ) are
closed sets. So it makes sense to define a topology on P(V ) having as closed
sets exactly the sets as in Definition 5.5.5 and as open sets exactly the com-
plements of the closed sets. This topology is called the Zariski topology on
P(V ).

Definition 5.5.5 A projective variety X ⊂ P(V ) for a finite dimensional
vector space V is a closed subset of P(V ). The variety is endowed with the
induced Zariski topology.
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Theorem 5.5.1 The Grassmann variety Gd,n ⊂ P(ΛdV ) is a projective va-
riety.

A proof can be found in the Appendix.

Corollary 5.5.1 Gd,n = GLn(C) · [e1 ∧ e2 ∧ . . . ∧ ed] ⊂ P(ΛdV ).

5.6 Ωalg
0 Un(C) as Ind-variety

5.6.1 Ind-varieties

By an ind-variety we mean a set X together with a filtration

X0 ⊆ X1 ⊆ X2 ⊆ . . .

such that

i)
⋃
j≥0Xn = X,

ii) each Xn is a finite dimensional complex variety (affine or projective)
such that the inclusion Xn ↪→ Xn+1 is a closed embedding.

Remark 5.6.1 In the following we omit some technicalities, for example we
omit the proof that the maps we consider are closed embeddings.

We define the Zariski topology on an ind-variety X by declaring a set U ⊂ X
as open if and only if U ∩Xn is Zariski-open in Xn for all n. A subset Z ⊆ X
is closed if and only if Z ∩Xn is closed in Xn for each n (Exercise).

We have seen a first example of such a construction in section 4.2, where
we have constructed LalgGLn(C) as an affine ind-variety. The filtration de-
scribed on LalgGLn(C) in (4.1) is exactly a filtration with the properties
above.

Next recall that the inclusions described in (5.5):

P(ΛnNVN) P(Λn(N+1)VN+1)
∪ ∪

GnN,2nN → Gn(N+1),2n(N+1)3 3

WN 7→ WN+1;
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they induce a sequence of inclusions (see (5.6)):

P(ΛnV1) P(Λ2nV2) . . . P(ΛnNVN) . . .
∪ ∪ ∪ ∪

Gn,2n ⊂ G2n,4n . . . ⊂ GnN,2nN ⊂ . . .
∪ ∪ ∪ ∪

Gφ
n,2n ⊂ Gφ

2n,4n . . . ⊂ Gφ
nN,2nN ⊂ . . .

The condition of being a fixed point is a closed condition (Exercise: [φ] is
continuous in the Zariski topology), so we see that (see Corollary 5.4.1)

Proposition 5.6.1

Ωalg
0 Un(C) =

⋃
N≥1

Gφ
nN,2nN

is an Ind-projective variety.

Remark 5.6.2 Of course, it remains to prove that the inclusions are closed
embeddings. We leave this as an exercise to the reader, or suggest as an
alternative to have a look at the book Kac-Moody groups, their flag varieties
and representation theory by Shrawan Kumar.

5.6.2 An approach towards G∞ using GL∞(C)

Consider again the infinite dimensional vector space V = (C[t, t−1])n, en-
dowed with the standard basis given by the vectors {eitj | 1 ≤ i ≤ n, j ∈ Z}.

Subspaces

For a finite dimensional vector space U , the wedge product is a tool to think
of a d-dimensional sub-vector space W ⊂ U as a point in the projective space
P(ΛdU). To achieve something similar in the infinite dimensional case, recall
that we have been looking at C[t]-lattices L in (C[t, t−1])n with the property:

∃N ∈ N : tNL0 ⊂ L ⊂ t−NL0.

and we investigated the set of all subspaces GnN,2nN of t−NL0/t
NL0 of di-

mension nN . Now a subspace U ⊂ t−NL0/t
NL0 of dimension nN is the same

as a subspace U ⊂ (C[t, t−1])n with the property

tNL0 ⊂ U ⊂ t−NL0, dimU/tNL0 = nN.
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So if one wants to fix a basis BU of U as C-vectorspace, then we can divide
such a basis into two parts: one is the infinite part consisting of the standard
basis of tNL0:

B2
U ,N := {tNe1, tNe2, . . . , tNen, tN+1e1, t

N+1e2, . . . , t
N+1en, . . .},

the remaining finite part B1
U ,N = {v1, . . . , vnN} is obtained by completing

B2
U ,N to a C-basis B1

U ∪B2
U for U . We associate to this basis the semi-infinite

wedge product

v1 ∧ . . .∧ vnN ∧ tNe1 ∧ tNe2 ∧ . . .∧ tNen ∧ tN+1e1 ∧ . . .∧ tN+1en ∧ . . . (5.13)

More on semi-infinite wedge products

The notion of a semi-infinite wedge product we introduce now is neither really
formal nor really standard, we use an ad hoc approach adapted to our needs.
In the following we need sometimes an enumeration of the elements of the
standard basis of V :

bi+nj := eit
j, 1 ≤ i ≤ n, j ∈ Z.

Definition 5.6.1 The semi-infinite wedge product Λ
∞
2 V of V is the (infinite

dimensional) vector space having as basis the vectors

bk1 ∧ bk2 ∧ . . . ∧ bk`︸ ︷︷ ︸
head:k1<k2<...<k`<1+np

∧ b1+np ∧ b2+np ∧ . . . ∧ bn+np ∧ b1+n(p+1) ∧ . . .︸ ︷︷ ︸
tail=stable part

i.e., a basis vector has a head, which is a finite wedge product, and a tail,
also called the stable part. The tail is an infinite wedge product, it is called
the stable part because it is the wedge product of consecutive elements with
respect to the enumeration above of the elements of the standard basis of V .
The length of the head can be chosen so that the stable part starts with an
basis element of the form b1+np = e1t

p. So by translating the bi+nj back into
eit

j, a tail looks like:

e1t
p ∧ e2tp ∧ . . . ∧ entp ∧ e1tp+1 ∧ e2tp+1 ∧ . . . ∧ entp+1 ∧ . . .

The head looks like

ei1t
j1 ∧ ei2tj2 ∧ . . . ∧ ei`tj` , i1 + nj1 < i2 + nj2 < . . . < i` + nj` < 1 + np
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Example 5.6.1 Suppose n = 2, below we give as an example two basis
elements. The first is an example emphasizing on the fact that a tail is not
unambiguously defined:

e1 ∧ e2 ∧ te1 ∧ te2 ∧ t2e1 ∧ t2e2 ∧ t3e1 ∧ t3e2 ∧ t4e1 ∧ t4e2 ∧ . . .︸ ︷︷ ︸
tail

= e1 ∧ e2 ∧ te1 ∧ te2 ∧ t2e1 ∧ t2e2 ∧ t3e1 ∧ t3e2 ∧ t4e1 ∧ t4e2 ∧ . . .︸ ︷︷ ︸
tail

= e1 ∧ e2 ∧ te1 ∧ te2 ∧ t2e1 ∧ t2e2 ∧ t3e1 ∧ t3e2 ∧ t4e1 ∧ t4e2 ∧ . . .︸ ︷︷ ︸
tail

and

t−3e1 ∧ t−2e1 ∧ t−2e2 ∧ t−1e1︸ ︷︷ ︸
head

∧ t2e1 ∧ t2e2 ∧ t3e1 ∧ t3e2 ∧ t4e1 ∧ t4e2 ∧ . . .︸ ︷︷ ︸
tail

.

To be able to talk also about semi-infinite wedge products of finite linear
combinations of the eit

j, we add the following rules, which are of course
inspired by what happens in the finite dimensional case:

1) we allow a finite number of the wedge factors to be arbitrary vectors
in V = (C[t, t−1])n;

2) the wedge product is alternating: switching two consecutive wedge
factors changes the sign of the vector;

3) multilinearity: if v =
∑
ai,jeit

j, then

. . . ∧ v ∧ . . . =
∑

ai,j(. . . ∧ eitj ∧ . . .).

The elements of the form v1 ∧ v2 ∧ . . . ∧ vk ∧ (stable part) are called pure
semi-infinite wedge products.

More on subspaces

Let us again consider the semi-infinite wedge product in (5.13). If we choose
a different N ′ such that tN

′L0 ⊂ U ⊂ t−N
′L0, then we may assume without

loss of generality that N ′ ≥ N . Let B2
U ,N ′ be defined as above and let

B1
U ,N ′ = {u1, . . . , unN ′} be such that B1

U ,N ′ ∪B2
U ,N ′ is a C-basis for U , and we

associate to this basis the semi-infinite wedge product:

u1 ∧ . . . ∧ unN ′ ∧ tN
′
e1 ∧ tN

′
e2 ∧ . . . ∧ tN

′
en ∧ tN

′+1e1 ∧ . . . ∧ tN
′+1en ∧ . . .
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Note that both are of the form

. . . ∧ . . . ∧ . . .︸ ︷︷ ︸
head

∧ tN ′e1 ∧ tN
′
e2 ∧ . . . ∧ tN

′
en ∧ tN

′+1e1 ∧ . . . ∧ tN
′+1en ∧ . . .︸ ︷︷ ︸

tail

so both have a head of length nN ′, where they may differ, but both have the
same tail. The head may hence be seen as the wedge product of two bases of
the subspace U = U/tN ′L ⊆ t−N

′L0/t
N ′L0. In particular, the two heads differ

only by a non-zero constant plus a sum of terms involving basis elements of
the form eit

j for some j ≥ N ′. Having in mind the rules mentioned above, one
sees that these extra summands will vanish after taking the wedge product
on both sides with the tail above. It follows immediately that

v1 ∧ . . . ∧ vnN ∧ tNe1 ∧ . . . ∧ tNen ∧ tN+1e1 ∧ . . . ∧ tN+1en ∧ . . .
= cu1 ∧ . . . ∧ unN ′ ∧ tN

′
e1 ∧ . . . ∧ tN

′
en ∧ tN

′+1e1 ∧ . . . ∧ tN
′+1en ∧ . . .

for some non-zero complex number c ∈ C. So in P(Λ
∞
2 V ) we have:

[v1 ∧ . . . ∧ vnN ∧ tNe1 ∧ . . . ∧ tNen ∧ tN+1e1 ∧ . . . ∧ tN+1en ∧ . . .]
= [u1 ∧ . . . ∧ unN ′ ∧ tN

′
e1 ∧ . . . ∧ tN

′
en ∧ tN

′+1e1 ∧ . . . ∧ tN
′+1en ∧ . . .].

So we can associate to a subspace U ⊂ (C[t, t−1])n with the property ∃N ∈ N
such that tNL0 ⊂ U ⊂ t−NL0 and dimU/tNL0 = nN a point in P(Λ

∞
2 V ).

The degree zero part

To get a connection between pure semi-infinite wedge products and subspaces
having the property above, we introduce the notion of a degree of a pure
semi-infinite wedge product. In the following let

v0 = e1 ∧ . . . ∧ en ∧ t1e1 ∧ . . . ∧ t1en ∧ t2e1 ∧ . . . ∧ tj+2en ∧ . . .

and, more generally, for 1 ≤ i ≤ n and j ∈ Z, set q = [(j + 1)n+ 1]− [i+ 1]
and denote by vq the vector

vq = tje1 ∧ . . . ∧ tjei︸ ︷︷ ︸
head

∧ tj+1e1 ∧ . . . ∧ tj+1en ∧ tj+2e1 ∧ . . . ∧ tj+2en ∧ . . .︸ ︷︷ ︸
tail

.

The vector vq is sometimes called a vacuum vector. These are the semi-infinite
wedge products of reference for the notion of a degree. In the following let
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Λ
∞
2
q V be the linear span in Λ

∞
2 V of all pure semi-infinite wedge products

that coincide with vq after finitely many factors. Or, in other words, for w

to be an element in Λ
∞
2
q V is equivalent to the existence of a decomposition

for both: v1 = vq,head ∧ vq,tail, w = whead ∧ wtail such that the heads have the
same length and the tails coincide. In this case we say that w has degree q.

Degree 0 wedges

By using the calculation rules for semi-infinite wedge products, we may think

of Λ
∞
2
0 V as the union⋃

N∈N

(ΛnNVN)︸ ︷︷ ︸
head

∧ e1tN+1 ∧ e2tN+1 ∧ . . . ∧ entN+1 ∧ e1tN+2 ∧ . . .︸ ︷︷ ︸
tail

Note that this point of view coincides with our subspace / lattice construc-
tion. Recall the inclusion of Grassmann varieties in (5.5): given a subspace
WN ∈ GnN,2nN , let WN+1 ∈ Gn(N+1),2n(N+1) be the subspace of VN+1 obtained
from WN ⊂ VN ⊂ VN+1 by taking the span

〈WN , t
N+1e1, . . . , t

N+1en〉 ⊂ VN+1.

So the corresponding point in P(Λn(N+1)VN+1) is

[(ΛnNWN) ∧ tN+1e1 ∧ . . . ∧ tN+1en].

Now in P(Λ
∞
2
0 V ) both give rise to the same point:

[(ΛnNWN) ∧ tN+1e1 ∧ . . . ∧ tN+1en ∧ tN+2e1 ∧ . . . ∧ tN+2en ∧ . . .]
= [(Λn(N+1)WN+1 ∧ tN+2e1 ∧ . . . ∧ tN+2en ∧ . . .]

It follows:

Lemma 5.6.1

G∞ = {[v] ∈ P(Λ
∞
2
0 V ) | v is a pure semi-infinite wedge product}
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The group GL∞(C)

Let GL∞(C) be the set of complex Z× Z matrices of the form

1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 A 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1


,

where A is an invertible ` × `-matrix for some ` ∈ N. These matrices are
invertible and the product of two of them is again of the same form, so these
matrices form in a natural way a group. Another way of describing this group
is to say that it consists of Z×Z-matrices which have only a finite number of
off-diagonal entries, all but a finite number of the diagonal entries are equal
to one, and the matrix is invertible.

Since geit
j = eit

j for g ∈ GL∞(C) except for a finite number of basis
elements, it makes sense to define an action on a pure semi-infinite wedge
product by setting:

gv = (gv1) ∧ . . . ∧ (gv`)︸ ︷︷ ︸
head

∧ (ge1t
N) ∧ . . . ∧ (gent

N) ∧ . . .︸ ︷︷ ︸
tail

, (5.14)

More precisely, given a pure semi-infinite wedge product v ∈ Λ
∞
2
0 V , then

there exists an N ∈ N such that

v ∈ (ΛnNVN) ∧ e1tN+1 ∧ . . . ∧ entN+1 ∧ e1tN+2 ∧ . . . ⊂ Λ
∞
2
0 V,

a finite dimensional subspace which can be identified with ΛnNVN . Moreover,
by replacing N by a larger positive integer if necessary, one can assume that
geit

j = eit
j for all |j| > N and g(VN) ⊆ VN , so g induces an automorphism

of VN ⊂ V :
g|VN : VN → VN , , u 7→ gu.

and hence an automorphism of ΛnNVN . Because of the assumption geit
j =

eit
j for all |j| > N , this gives an induced automorphism of the subspace:

(ΛnNVN) ∧ e1tN+1 ∧ . . . ∧ entN+1 ∧ e1tN+2 ∧ . . . ⊂ Λ
∞
2
0 V,
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such that the linear action coincides with the action on pure semi-infinite
wedge products in (5.14). Vice versa, any automorphism g ∈ GL(VN) can
be extended trivially to an automorphism of V by setting geit

j = eit
j for all

|j| > N , so we may view g as an element in GL∞(C). We conclude:

Lemma 5.6.2 The action of GL∞(C) on pure semi-infinite wedge products

defined in (5.14) extends to an action of GL∞(C) on Λ
∞
2
0 V by vector space au-

tomorphisms. The induced GL∞(C)-action on the projective space P(Λ
∞
2
0 V )

makes G∞ into a homogeneous space:

G∞ = GL∞(C) · [e1 ∧ . . . ∧ en ∧ te1 ∧ . . . ∧ ten ∧ t2e1 ∧ . . . ∧ t2en ∧ . . .]

5.6.3 An approach towards G0 using GLn(C[t, t−1])

We will leave out many details. We know that GLn(C[t, t−1]) acts on V =
(C[t, t−1])n by automorphisms. The naive approach to define an action of
GLn(C[t, t−1]) on Λ

∞
2 V by

g · (v1 ∧ . . . ∧ v` ∧ tNe1 ∧ tNe2 ∧ . . . ∧ tNen ∧ tN+1e1 ∧ . . .)
= (gv1) ∧ . . . ∧ (gv`) ∧ (gtNe1) ∧ (gtNe2) ∧ . . . ∧ (gtNen) ∧ (gtN+1e1) ∧ . . .

does not work because we would get infinite sums. But the point of view of
subspaces helps in this case. For simplicity let us stick to pure wedge products
of degree 0. A pure semi-infinite wedge product of degree 0 corresponds (in
the projective space) to a subspace U ⊂ (C[t, t−1])n with the property

∃N ∈ N : tNL0 ⊂ U ⊂ t−NL0, dimU/tNL0 = nN.

Now for g ∈ GLn(C[t, t−1]) we know that gL0 is a C[t]-lattice in C[t, t−1], so
there exists some N ′ ≥ N such that tN

′L0 ⊆ gL0 ⊆ t−N
′L0, and hence

tN
′L0 ⊆ gU ⊆ t−N

′L0.

So the subspace gU has again similar properties as the subspaces consider in
section 5.6.2, but note that the dimension condition in section 5.6.2 may not
hold because GLn(C[t, t−1]) does not necessarily preserve the decomposition

of Λ
∞
2 V into the direct sum of the Λ

∞
2
q V . But if we consider only

GLn(C[t, t−1])0 = {g ∈ GLn(C[t, t−1]) | det g ∈ C∗},

then i.e. gU ∈ G∞.
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Exercise 5.6.1 Prove that gU ∈ G∞ for g ∈ GLn(C[t, t−1])0. Hint: use the
decomposition g = h1t

λh2, where h1, h2 ∈ GLn(C[t]).

Theorem 5.6.1 It is possible to define a linear action of GLn(C[t, t−1])0 on

P(Λ
∞
2
0 V ) such that the induced action on G∞ ⊂ P(Λ

∞
2
0 V ) is exactly the one

above:
GLn(C[t, t−1])×G∞ → G∞, (g,U) 7→ gU .

More details about the construction can be found, for example, in the lecture
notes of Pavel Etingof’s lecture.

Now the vector v0 = e1 ∧ . . . ∧ en ∧ te1 ∧ . . . ∈ Λ
∞
2
0 V corresponds exactly

to the lattice L0, and we have for g ∈ GLn(C[t, t−1]):

g[v0] = [v0]⇔ g ∈ GLn(C[t])

So by Proposition 5.2.1, Corollary 5.4.1 and Theorem 4.5.2 we see:

Theorem 5.6.2 i) The orbit GLn(C[t, t−1])0 · [v0] has a natural structure
as a projective Ind-variety and can be identified with G0.

ii) G0 = Ωalg
0 Un(C) · [v0]↔1:1 Ωalg

0 Un(C).

5.7 LalgSUn(C) is dense in L∞SUn(C)

The next question we want to address is: how big is the difference between
LalgUn(C) and L∞Un(C)?

Consider first the simplest case n = 1. We know that LalgU1(C) consists of
1× 1 matrices, the only entry is a Laurent polynomial, invertible in C[t, t−1],
and it defines a map

S1 → U1(C) = {(a) ∈M1(C) | aa = 1} = S1.

It follows that all elements in LalgUn(C) are of the form (atm), where |a| = 1
and m ∈ Z. So there is a big difference between LalgU1(C) and L∞U1(C)
for n = 1, for example let f be any real valued smooth function on S1, then
exp(2πif) : S1 → S1 defines a smooth loop. If we consider only the based
loops, then the bijection

Ω∞U1(C)←→GL1(C[t, t−1])/GL1(C[t]) = {atm | a ∈ C∗,m ∈ Z}/C∗
= {tm | m ∈ Z}
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yields yet something discrete.
So let us replace now Un(C) by SUn(C) = Un(C) ∩ SLn(C). This looks

like only a slight difference, but this change has important consequences.
In the following we use the topology introduced in section 3.2. One has to
replace in this section GLn(C) by SLn(C) and Un(C) by SUn(C), and for the
Lie algebras one has to replace Mn(C) by sln(C) = {A ∈Mn(C) | tr(A) = 0}
and un(C) by sun(C) = un(C) ∩ sln(C).

Theorem 5.7.1 LalgSUn(C) is dense in L∞SUn(C).

Proof. Let H := LalgSUn(C) ⊂ L∞SUn(C) be the closure. Note that H is
a subgroup: by definition, the inversion is a C∞-map, so

LalgSUn(C) = {g−1 | g ∈ LalgSUn(C)} = {g−1 | g ∈ LalgSUn(C)}.

and, for the same reason, for γ ∈ LalgSUn(C) one has

γ · (LalgSUn(C)) = γ · LalgSUn(C) = LalgSUn(C).

The last equality implies γη ∈ LalgSUn(C) for all γ ∈ LalgSUn(C) and η ∈
LalgSUn(C). Using the inversion, we get also ηγ ∈ LalgSUn(C), and hence
for the same reason as above for η ∈ LalgSUn(C):

η · (LalgSUn(C)) = η · LalgSUn(C) = LalgSUn(C).

We want to invest the Lie algebra of this subgroup. The Lie algebra of
L∞SUn(C) is L∞(S1, su). Note that if ξ ∈ L∞(S1, su), then so is tξ for any
t ∈ R. Denote by γ(t) := exp(tξ) the corresponding one parameter subgroup
γ : R→ L∞SUn(C).

Let V ⊂ L∞(S1, su) be the subset of elements in the Lie algebra such that
the corresponding one parameter subgroup is contained in H. Note that V is
a vector space: the set is obviously stable under multiplication with scalars,
it remains to prove that V is stable under addition. So let ξ, η ∈ V and
consider the sequence

(
γξ(t/n)γη(t/n)

)n
for n ∈ N. To explain better what

this precisely means, choose an appropriate open neighborhood U0 ⊆ su of
the origin such that the exponential map defines a diffeomorphism onto an
open neighborhood U1I ⊂ SUn(C) of the identity. One can now define a
sequence of maps

fn : U1I × U1I → G, (exp(A), exp(B)) 7→
(

exp(
A

n
) exp(

B

n
)
)n
.
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Now Lie’s product formula implies that this sequence converges for n → ∞
in the C∞-topology towards the map

f : U1I × U1I → G, (exp(A), exp(B)) 7→ exp(A+B).

For our one parameter subgroups we get

lim
n→∞

(
γξ(t/n)γη(t/n)

)n
= γξ+η(t).

So if the one parameter subgroups γξ, γη are contained in H, then so is γξ+η.
It follows that V is a vector space, and, since H is closed, so is V .

Since the exponential map is locally a diffeomorphism, to prove that
H = L∞SUn(C) it suffices to prove that V = L∞(S1, sun). Let us start
with the simplest case n = 2. The Lie algebra loops

ξn(t) :=

(
0 tn

−t−n 0

)
, ηn(t)

(
0 itn

it−n 0

)
are elements in V . Indeed, the corresponding one parameter subgroups lie
in Lalg(S1, su2):

exp(sξ(t)) = (
∞∑
i=1

(−1)i
s2i

2i!
)1I + st

(
0 1
−1 0

)
+

By linearity and the fact that V is closed, it follows that

f

(
0 1
−1 0

)
+ g

(
0 i
i 0

)
are elements in V for all smooth, real valued functions f, g on the circle.
ETC

TO BE CONTINUED.........
•
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5.8 Appendix: Gd,n as a projective variety

One has to show that there exists a homogeneous ideal I ⊂ C[ΛdCn] such
that the zero set V(I) ⊆ P(ΛdCn) is exactly Gd,n. This will be proved in
Theorem 5.8.1.

Again Plücker coordinates.

In section 5.5 we introduced the name Plücker coordinate for the dual basis
pi of the standard basis of ΛdV . To simplify the notation we use pi in the
following for arbitrary d-tuples and not only for elements i ∈ Id,n.

We give a description of the functions as alternating multilinear functions
on the columns of Mn,d(C) (instead of describing them as linear functions on
ΛdV ).

For 1 ≤ i1, . . . , id ≤ n (not necessarily distinct nor in increasing order)
set i = (i1, . . . , id). For an n× d matrix A let Ai be the d× d matrix having
as first row the i1-th row of A, as second row the i2-th row of A and so on.
We set pi(A) = detAi.

Clearly, pi = 0 if the ij’s are not distinct, and if they are all distinct, then

pi1,...,id = sgn(σ)pσ(i1),...,σ(id) (5.15)

where σ ∈ Sd is such that (σ(i1), . . . , σ(id)) ∈ Id,n.

Alternating functions.

In view of Proposition 5.5.1, we can identify Gd,n with Im π. In general the
image will not be all of P(ΛdV ), so the Plücker coordinates restricted to Gd,n

must satisfy some relations.
By definition, the Plücker coordinates are i) linear functions on ΛdV as

well as ii) multilinear alternating functions on the columns of Mn,d(C) (the
latter being identified with d-copies of V ).

These functions are defined as determinants of maximal submatrices, so
they have a third property: iii) the Plücker coordinate pi is a multilinear and
alternating function in the i1-th, i2-th etc. row of Mn,d(C).

Suppose now i ∩ j = ∅, then the product pipj is a quadratic function on

ΛdV which is definitely not anymore multilinear in the columns of Mn,d(C).
But this function is still multilinear in the i1-th, i2-th, . . ., j1-th, j2-th etc.
row of Mn,d(C), and alternating separately in the ik and j`. So if we alternate
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this function so that it becomes alternating in the rows say i1, . . . , id, j1, then
we have an alternating function on d + 1-copies of a d-dimensional vector
space (the space of row vectors of Mn,d(C)). Hence this function is zero on
Mn,d(C). Or, in other words, viewed as a quadratic function on ΛdV , we
have a function such that the restriction to Imπd vanishes.

Example 5.8.1 Before starting with the formal approach consider the ex-
ample G2,4 and the product of Plücker coordinates p1,2p3,4 ∈ k[Λ2k4]. The
composition with π2 : M4,2 → Λ2k4 gives a function which is of course not
anymore multilinear in the columns of M4,2(C), but which is still multilin-
ear in the rows of this space of matrices. We will “formally alternate” this
function. For example (we will see below why this is the alternated function)

p1,2p3,4 + p2,3p1,4 − p2,4p1,3 (5.16)

is a quadratic polynomial on Λ2k4. The restriction to Im π2 is a multilinear
function on M4,2(C) which is alternating in the first, the third and the fourth
row of M4,2(C). The only function with this property (i.e. being alternating
on 3 copies of a 2-dimensional space) is the zero function, so the function
above vanishes identically on Imπ2. But this means that the restriction of
the quadratic polynomial in (5.16) to G2,4 is identically zero, and hence the
Plücker coordinates satisfy on G2,4 a quadratic relation.

To formalize this idea, let us start with some generalities. We work in-
side the ring k[xi,j] of polynomial functions on Mn,d(C) and we write just
x1, . . . , xn for the vector variables corresponding to the rows of Mn,d(C).
Let f(x1, . . . , xn) be a multilinear function, then we can alternate it by set-
ting:

Alt(f) :=
∑
σ∈Sn

sgn(σ)(σf)(x1, . . . , xn),

where σf(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)).
Suppose n ≥ d+1. Instead of assuming that the function is multilinear in

all vector variables, fix a subset M = {k1, . . . , kd+1}, 1 ≤ k1 ≤ . . . ≤ kd+1 ≤
n, of pairwise different indices, and assume the function is multilinear in the
rows corresponding to the indices k1, . . . , kd+1. The function

AltM(f) :=
∑

σ∈Sd+1

sgn(σ)f(. . . , xkσ−1(1)
, . . . , xkσ−1(d+1)

, . . .)
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(i.e. all vector variables different from xk1 , . . . , xkd+1
are not changed) is

alternating and multilinear in xk1 , . . . , xkd+1
.

For 1 ≤ t < d + 1 let M = M1 ∪M2 be a disjoint decomposition such
that ]M1 = t. If f is alternating separately in the variables {xk | k ∈ M1}
and {x` | ` ∈M2}, then

sgn(σ)f(. . . , xkσ−1(1)
, . . . , xkσ−1(d+1)

, . . .)

= sgn(σ′)f(. . . , xk
σ′−1(1)

, . . . , xk
σ′−1(d+1)

, . . .)

whenever σ and σ′ are in the same coset in Sd+1/St × Sd+1−t. Here we
identify the subgroup St × Sd+1−t with the subgroup of permutations in
Sd+1 which separately permute only the elements in M1 and M2 among
themselves.

So to get an alternating function one has to take the sum

AltM1,M2(f) :=
∑

σ∈Sd+1/St×Sd+1−t

sgn(σ)f(. . . , xkσ−1(1)
, . . . , xkσ−1(d+1)

, . . .)

only over a system of representatives of the cosets.

Example 5.8.2 Suppose n = 4 and d = 2. Let f(x1, x2, x3, x4) = p1,2p3,4 be
the product of these two Plücker coordinates, then f is a multilinear function
on M4,2(C), alternating separately in the 1st and 2nd and the 3rd and 4th
row. Set M1 = {1}, M2 = {3, 4} and M = M1 ∪M2, and denote by SM

respectively SMi
the permutation groups of the sets. Then

id =

(
134
134

)
, σ1 =

(
134
314

)
, σ2 =

(
134
341

)
,

is a set of representatives of SM/SM1 ×SM2 (see section 5.8 for a procedure
to get the representatives) and

AltM1,M2(f) = f + sgn(σ1)(
σ1f) + sgn(σ2)(

σ2f)
= f(x1, x2, x3, x4)− f(x3, x2, x1, x4) + f(x4, x2, x1, x3)
= p1,2p3,4 + p2,3p1,4 − p2,4p1,3

is the function on M4,2(C) in equation 5.16, which is alternating in the 1st,
3rd and 4th row.
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Quadratic relations.

A product f = pipj of Plücker coordinates is a quadratic polynomial on

ΛdV . Suppose now all indices ik, j` are different. The product is a function
on Mn,d(C) which is multilinear with respect to the rows of this space of
matrices. Fix 1 ≤ t < d, then f is, by construction, alternating separately in
the (row) vector variables xi1 , . . . , xit and xjt , . . . , xjd .

Given σ ∈ Sd+1, note that σ shuffles the indicees i1, . . . , it and jt, . . . , jd.
Denote by iσ and jσ the d-tuples

(σ−1(i1), . . . , σ
−1(it), it+1, . . . , id)

and
(j1, . . . , jt−1, σ

−1(jt), . . . , σ
−1(jd)).

Recall that the function sgn(σ)(σf), σ ∈ Sd+1/St ×Sd+1−t, is independent
of the choice of a representative for σ. The function we get by alternating
f = pipj is:

Alt{i1,...,it},{jt,...,jd}(pipj) =
∑

σ∈Sd+1/St×Sd+1−t

sgn(σ)piσpjσ .

Lemma 5.8.1 Suppose n ≥ 2d. Let i, j be two d-tuples, 1 ≤ ik, jl ≤ n, such
that the entries are all distinct. Fix 1 ≤ t < d, the homogeneous polynomial
Alt{i1,...,it},{jt,...,jd}(pipj) ∈ k[ΛdV ] vanishes on Gd,n ⊂ P[ΛdV ].

Proof. By composing the function with the exterior product map, we see
that the quadratic polynomial vanishes on Gd,n if and only if, viewed as a sum
of products of minors, the function vanishes on Mn,d(C). But this function
is multilinear and alternating in the d + 1 row vector variables xi1 , . . . , xit ,
xjt , . . . , xjd . The space of the row vectors is of dimension d, so this function
vanishes on Mn,d(C). •

To weaken the condition that all indices have to be different, consider two
arbitrary d-tuples i and j, 1 ≤ ik, jl ≤ n. We will now define a new pair i′, j′

such that all entries are different. Set

i′k = ik +mn where m = ]{` | ` < k, ik = i`}
j′k = jk +mn where m = ]{` | jk = i`}+ ]{` | ` < k, jk = j`}
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For example, suppose i1, i2, j1, j2 are pairwise different, then this procedure
applied to the pair

i = (i1, i2, i1, i1, i2) j = (j1, i2, i1, j1, j2)
↓

i′ = (i1, i2, i1 + n, i1 + 2n, i2 + n) j′ = (j1, i2 + 2n, i1 + 3n, j1 + n, j2)

provides a new pair (i′, j′) such that all entries are different. So we can
formally define the quadratic polynomial (in a larger ring with more vector
variables)

Alt{i′1,...,i′t},{j′t,...,j′d}(pi′pj′). (5.17)

We define the polynomial (which is either zero or a quadratic polynomial)

Alt(i1,...,it),(jt,...,jd)(pipj)

now as the function obtained from (5.17) by replacing in the Plücker coor-
dinates all indices i′k, j

′
` by the original indices, i.e. all indices i′k, j

′
` > n are

replaced by i′k (mod n) respectively j′` (mod n).

Example 5.8.3 Suppose n = 5, d = 3 and i = (2, 1, 5) and j = (1, 3, 4).
Then i′ = i and j′ = (6, 3, 4). For t = 1 we haveM1 = {2}, M2 = {6, 3, 4} and
M = M1 ∪M2. For the permutation groups we have SM1 ' S1, SM2 ' S3,
SM ' S4 and SM/(SM1 ×SM2) ' S4/(S1 ×S3). Denote by s1, s2, s3 the
simple transpositions of S4. The elements id, s1, s2s1, s3s2s1 form a system
of representatives for the cosets in S4/S1 ×S3 and we get

Alt{2},{6,3,4}(pi′pj′) = p2,1,5p6,3,4 − p6,1,5p2,3,4 + p3,1,5p2,6,4 − p4,1,5p2,6,3

After specializing (i.e. replacing 6 back by 1) we get

Alt(2),(1,3,4)(pipj) = p2,1,5p1,3,4 − p1,1,5p2,3,4 + p3,1,5p2,1,4 − p4,1,5p2,1,3
= −p1,2,5p1,3,4 + p1,3,5p1,2,4 − p1,4,5p1,2,3

Theorem 5.8.1 Let i and j, 1 ≤ ik, jl ≤ n, be two arbitrary d-tuples. For all
1 ≤ t < d, the polynomial Alt(i1,...,it),(jt...,jd)(pipj) vanishes on the Graßmann
variety Gd,n.

Proof. Suppose the polynomial is different from zero. As above, by compos-
ing the function with the exterior product map, one sees that this quadratic
polynomial vanishes on Gd,n if and only if, viewed as a sum of products of
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minors, the function vanishes on Mn,d(C). If the entries in i and j are all
different, then this is Lemma 5.8.1. Otherwise consider first the multilinear
function Alt(i′1,...,i′t),(j′t...,j′d)(pi′pj′) defined in (5.17), this function is defined on
the space M2dn,d(C) of 2dn × d matrices, and vanishes identically since it is
multilinear and alternating in d+ 1 of the vector variables.

The original space Mn,d(C) can be seen as a subspace of M2dn,d(C) by
identifying a n×d-matrix A with the 2dn×d-matrix obtained by putting 2d
copies of A on the top of each other. By construction we have then

Alt(i1,...,it),(jt...,jd)(pipj) = Alt(i′1,...,i′t),(j′t...,j′d)(pi′pj′)|Mn,d(C) ≡ 0.

•

Definition 5.8.1 If Alt(i1,...,it),(jt...,jd)(pipj) is not the zero polynomial in k[ΛdV ],
then this quadratic polynomial is called a shuffle relation or a Plücker rela-
tion.

Shuffles.

We will describe how to obtain shuffles or coset representatives. Fix 1 ≤ t ≤
d, we want to describe a special set of coset representatives of Sd+1/St ×
Sd+1−t. Let Sd+1 act on the set {1, . . . , d+ 1}. Then a coset σ ∈ Sd+1/St×
Sd+1−t is identified by the relative position of the first t and the second
d + 1 − t elements. Expressed in a pictorial way: suppose we are given a
configuration of t-balls and d+ 1− t triangles:

©©4©444© . . .

If we fill the balls with any permutation of {1, . . . , t} and the triangles with
any permutation of {t+ 1, . . . , d+ 1}, we always get a permutation which is
an element of the same coset.

A canonical representative of such a coset is hence obtained by putting
1, 2, . . . , t in order in the balls and t+ 1, . . . , d + 1 in order in the triangles.
Such a representative is called a t-shuffle.

Example 5.8.4 To determine the set of all 2-shuffles in S4 consider first
the set of all configuration of 2-balls and 2 triangles:

©©44, ©4©4, 4©©4, ©44©, 4©4©, 44©©.
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The 2-shuffles and the decomposition of the inverse are given by:

σ =

(
1234
1234

)
,

(
1234
1324

)
,

(
1234
3124

)
,

(
1234
1342

)
,

(
1234
3142

)
,

(
1234
3412

)
σ−1 = id, s2, s2s1, s2s3, s2s1s3, s2s1s3s2

Example 5.8.5 Let n = 5, d = 3, i = (2, 3, 4), j = (1, 4, 5), t = 2. By the
example above we have

Alt(2,3)(4,5)pipj = p2,3,4p1,4,5 − p2,4,4p1,3,5 + p3,4,4p1,2,5
+p2,5,4p1,3,4 − p3,5,4p1,2,4 + p4,5,4p1,2,3

= p2,3,4p1,4,5 − p2,4,5p1,3,4 + p3,4,5p1,2,4

Closed embedding.

Next we will see that one can identify Gd,n with is a closed subset of P(ΛdV ),
i.e. the Graßmann variety is naturally endowed with the structure of a pro-
jective variety.

Theorem 5.8.2 The Graßmann variety Gd,n ⊂ P(ΛdV ) is the zero set of
the homogeneous ideal generated by the following polynomials:

d+1∑
l=1

(−1)lpi1,...,îl,...,id+1
pj1,...,jd−1,il , (5.18)

where i1, . . . , id+1 and j1, . . . , jd−1 are any numbers between 1 and n.

Proof. The relation in (5.18) is a special case of the shuffle relations (see
Theorem 5.8.1, t = d), so Gd,n is contained in the zero set of the homogeneous
ideal generated by these equations.

Conversely, let y = [
∑

i∈Id,n yiei] satisfy the equations in (5.18). Suppose

yl1,...,ld 6= 0 for some ` = (l1, . . . , ld) ∈ Id,n, without loss of generality we may
(and will) assume yl1,...,ld = 1. For 1 ≤ i ≤ n, 1 ≤ j ≤ d, set

aij = yl1,...,lj−1,i,lj+1,...,ld .

We apply the usual rules as in (5.15): yl1,...,lj−1,i,lj+1,...,ld is zero if two indices
are equal etc. Let A be the n × d matrix A = (aij). By construction
Al1,...,ld = Id because alj ,j = yl1,...,ld = 1 for j = 1, . . . , d and for i 6= j we
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have alj ,i = yl1,...,li−1,lj ,li+1,...,ld = 0. Clearly rankA = d, let U be the d-
dimensional subspace spanned by the columns of A. We have to show that
π(U) = [

∑
i∈Id,n pi(A)ei] = [

∑
i∈Id,n yiei] = y and hence y ∈ Gd,n.

For two d-tuples κ, κ′ denote by ]{κ∩κ′} the number of common entries.
We will show pj(A) = yj by decreasing induction on ]{` ∩ j}. We know
already that p`(A) = 1 = y`. For j = (l1, . . . , lj−1, i, lj+1, . . . , ld) we have
pj(A) = ai,j = yj by the definition of A, so this proves the claim if ]{`∩ j} ≥
d− 1.

Let j be arbitrary such that ]{` ∩ j} < d− 1. There exists an entry in j
which is not an entry in `. Without loss of generality (i.e., after permuting
the entries if necessary) we assume that jd has this property. Now y satisfies
all the relations in (5.18), so the coordinates y` and yj satisfy a relation of the

form above: y`yj +
∑
±y`′yj′ = 0, where `′ differs from ` in just one place.

Further, if y`′yj′ 6= 0, then ]{j′ ∩ `} > ]{j ∩ `} since jd has been replaced by
an element in `. Thus we know by induction y`′ = p`′(A), yj′ = pj′(A).

By Theorem 5.8.1, the d-minors of A satisfy the relations in (5.18), so
p`(A)pj(A) +

∑
±p`′(A)pj′(A) = 0. Now p`(A) = y` = 1, so pj(A) =

−
∑
±p`′(A)pj′(A) = −

∑
±y`′yj′ = yj. •
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