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Introduction

The note is organized as follows. Chapter 1 and part of Chapter 2 are standard material in
pluripotential theory about subharmonic functions in complex plane and psh functions.
The presentation for these parts is based on [13, 9, 24, 28, 31]. Chapter 3 deals with
a main object in the intersection of (1, 1)-currents: Monge-Ampère operators and its
continuity. ....????? Most of results presented in the note already appear in published
papers. Nevertheless there are seemingly some new ones. The note is incomplete. More
references need to be added.
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Chapter 1

Subharmonic functions on the complex
plane

1.1 Harmonic functions on the complex plane

Let (x, y) be the standard coordinates on C and z := x + iy. Let Ω be a connected open
subset of C. Such a subset Ω is called a domain. Let u : Ω→ R be a function. We say that
u is harmonic if u ∈ C 2(Ω) and ∆u = 0, where ∆ := ∂2/∂2x + ∂2/∂2y is the Laplacian
operator.

Theorem 1.1.1. (i) Let f be a holomorphic function on Ω. Then Re f is a harmonic func-
tion.

(ii) Let u be a harmonic function on Ω. If Ω is simple connected (a disk for example),
then u = Re f for some holomorphic function f on Ω; moreover such f is unique up to a
constant. In particular every harmonic function is smooth.

Proof. We prove (i). Write f = u + iv. The Cauchy-Riemann equations give ∂xu = ∂yv

and ∂yu = −∂xv. Thus

∆u = ∂2
xu+ ∂2

yu = ∂x∂yv − ∂y∂xv = 0.

As to (ii), we first check the uniqueness of f . Suppose that f is a holomorphic function
such that Re f = u. Compute

∂xf = ∂xu+ i∂xv = ∂xu− i∂yu, ∂yf = ∂yu+ i∂yv = ∂yu+ i∂xu.

Thus,
∂zf = 1/2(∂xf − i∂yf) = ∂xu− i∂yu

Hence the derivative of f depends only on u. It follows that f is unique up to a constant.
We now prove the existence of f . Let g := ∂xu− i∂yu. Observe g ∈ C 1(Ω) and g satisfies
the Cauchy-Riemann equations. Consequently, g is holomorphic. Let z0 ∈ Ω. Put

f(z) = u(z0) +

∫ z

z0

g(z)dz,

3
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where the integral is taken over any smooth path joining z0 and z. The value f(z) is
independent of the chosen path because g is holomorphic and Ω is simple connected. We
can check that Re f = u. This finishes the proof.

Let D be the unit disk in C. We denote by D(w, r) the disk centered at w and of radius
r in C.

Corollary 1.1.2. (i) (mean-value property) For every harmonic function u on Ω and every
disk D(w, r) b Ω, we have

u(w) =
1

2π

∫ 2π

0

u(w + reiθ)dθ

(ii) (maximum principle) Let Ω be a bounded domain and u be a harmonic function on
Ω. Then if u attains a local maximum then it is constant. Consequently, if lim supx→∂Ω u(x) ≤
0, then u ≤ 0 on Ω.

Proof. By Theorem 1.1.1, we can write u = Re f on an open neighborhood of D(w, r),
where f is holomorphic. Recall

f(w) =
1

2πi

∫
∂D(w,r)

f(z)

w − z
dz =

1

2π

∫ 2π

0

f(w + reiθ)dθ.

Taking the real parts of both sides gives the mean-valued property (i). The desired
assertion in (ii) is a direct consequence of (i).

Theorem 1.1.3. (Poisson’s formula) (i) Let f be a continuous function on ∂D. Then

P (f) :=
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2
f(eiθ)dθ

is a harmonic function on D which is continuous on D and P (f) = f on ∂D.
(ii) Let u be a harmonic function on an open neighborhood of D. Then, we have

u(z) =
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2
u(eiθ)dθ

for every z ∈ D.

Proof. First observe that for ξ ∈ ∂D, we have

1− |z|2

|ξ − z|2
= Re

(
ξ + z

ξ − z

)
which is the real part of a holomorphic function in z (for ξ fixed). Hence ũ is harmonic
by Theorem 1.1.1. We leave an exercise to verify that P (f) is continuous up to boundary
and equal to f on ∂D (see [31, Theorem 1.2.4]).

To get (ii), just observe that for f := u|∂D, we have u = P (f) on ∂D. This together
with the maximum principle gives u = P (f) on D.
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1.2 Upper semi-continuity

Denote [−∞,∞) := R ∪ {−∞}. We recall rules to work with −∞. For every a ∈ R, one
has

−∞ < a, −∞+ a = −∞, −∞+−∞ = −∞,

and

(−∞) · a =


−∞ if a > 0

0 if a = 0

∞ if a < 0

and (−∞) · (−∞) = ∞. We don’t define the quotient (−∞/(−∞). The rules have been
made so that for every sequence (bj)j ⊂ R converging to −∞, there holds

−∞+ a = lim
n→∞

(bj + a), −∞ · a = lim
j→∞

bj · a.

Let m ≥ 2 be an integer. We denote R≥0 := {x ∈ R : x ≥ 0}, and R>0 := {x ∈ R : x >

0}. The notations R≤0 and R<0 are defined similarly. For every x ∈ Rm and r ∈ R≤0, let
B(x, r) be the ball centered at x of radius r (with respect to the Euclidean distance).

Let Ω be an open subset of Rm. Let u : Ω → [−∞,∞). We say the u is upper semi-
continuous if for every a ∈ R, the set {x ∈ Ω : u(x) < a} is open in Ω. Observe that u is
upper semi-continuous if and only if for every x ∈ Ω, we have

lim sup
y→x

u(y) = u(x),

where
lim sup
y→x

u(y) := lim
ε→0

sup
y∈B(x,ε)

u(y)

Every continuous function is upper semi-continuous.

Lemma 1.2.1. Let (uα)α∈A be a sequence of upper semi-continuous functions. Then u :=

infα∈A uα is upper semi-continuous.

Proof. Observe
{x : u(x) < a} = ∩α∈A{x : uα(x) < a}

which is open. This finishes the proof.

Lemma 1.2.2. Let u be an upper semi-continuous function on Ω. Let K be a compact subset
of Ω. Then there exists x0 ∈ K such that u(x0) = supx∈K u(x).

This means that every upper semi-continuous u is locally bounded from above on Ω,
e.g. for every x ∈ Ω, there exists a small open ball U containing x such that supx∈U u(x) <

∞.

Proof. Put b := supx∈K u(x). Let (xj)j be a sequence of points in K such that u(xj) → b

as j →∞.
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Lemma 1.2.3. Let u : Ω → [−∞,∞) be upper semi-continuous. Then there exists a de-
creasing sequence (uj)j of continuous functions (uj continuous and uj ≥ uj+1 for every j)
such that u(x) = limj→∞ uj(x) for every x ∈ Ω.

Proof. If u = −∞, then it is clear: just take uj := −j. Assume u 6≡ −∞. Put

uj(x) := sup
y∈Ω

(
u(y)− j|x− y|

)
.

We can check that uj decreases to u and satisfies

|uj(x)− uj(x′)| ≤ j|x− x′|.

Hence uj is continuous.

Let u : Ω → [−∞,∞) be a function which is locally bounded from above. The upper
semi-continuous regularization u∗ of u is given by

u∗(x) := lim sup
y→x

u(y) = lim
ε→0

sup
y∈B(x,ε)

u(y).

Note that if u is upper semi-continuous, then u∗ = u.

Lemma 1.2.4. The function u∗ is upper semi-continuous and u∗ ≥ u.

Proof. The inequality u∗ ≥ u is clear. We prove the first desired assertion. By the defini-
tion of u∗, one sees that u∗(x) < a if there exists an ε > 0 such that u(y) < a for every
y ∈ B(x, ε). Let a ∈ R and x ∈ Ω such that u∗(x) < a. We need to check that u∗(y) < a

for y closed enough to x. By definition, we get

sup
y∈B(x,ε′)

u(y) < a

for ε′ > 0 small enough. Hence by the above observation, u∗(y) < a for every y ∈ B(x, ε′).
This finishes the proof.

Lemma 1.2.5. (Choquet’s lemma) Let (uα)α∈A be a family of functions from Ω→ [−∞,∞).
Assume that the family (uα)α is locally bounded from above (i.e, for every x ∈ Ω, there exists
a ball U in Ω containing x such that supα∈A supx∈U u < ∞). Then there exists a countable
subset B of A such that

(sup
α∈A

uα)∗ = (sup
α∈B

uα)∗.

Proof. See [13, Page 38]. Idea: there exists a countable basis for the metric topology in
Ω.
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1.3 Subharmonic functions on the complex plane

Definition 1.3.1. A function u : Ω → [−∞,∞) is said to be subharmonic if u 6≡ −∞ on
every connected component of Ω, and u is upper semi-continuous and for every z ∈ Ω, there
exists a constant rz > 0 small enough such that {z′ : |z′ − z| < rz} b Ω and the submean
inequality

u(z) ≤ 1

2π

∫ 2π

0

u(z + reiθ)dθ

holds for every 0 < r ≤ r′.

Note that by definition, being subharmonic is a local property. One can define u to be
subharmonic on an arbitrary open subset Ω in C by asking that u is so on every connected
open component of Ω. From now on, we only consider the setting where Ω is a domain.

Lemma 1.3.2. Every subharmonic function is locally integrable.

Proof. Let u be a subharmonic function on Ω. Let A be the set of z ∈ Ω such that u
is locally integrable in an open neighborhood of z. Since u 6≡ −∞ on Ω, there exists
z0 ∈ Ω such that u(z0) > −∞. This combined with the submean inequality gives that u
is integrable in a small disk centered at z0. Thus, A is non-empty. Moreover A is open
by its definition. We check that A is closed. Let z1 ∈ ∂A. Let z′1 ∈ A be close enough
to z1 such that there is a disk D(z′1, r) b Ω such that z1 ∈ D(z′1, r/10). Since u is locally
integrable around z′1, there exists z′′1 ∈ D(z′1, r/10) such that u(z′′1 ) > −∞. By previous
arguments, we know that u is integrable on D(z′′1 , r/2) which contains z1. Hence z1 ∈ A.
In other words, A is closed and open. The connectedness of Ω yields A = Ω. This ends
the proof.

Theorem 1.3.3. (maximum principle) Let Ω be a bounded domain and u be a subharmonic
function on Ω. Then if u attains a local maximum then it is constant. Moreover for every
harmonic function h on an open neighborhood of Ω such that lim supx→x0∈∂Ω u(x) ≤ h(x0)

for every x0 ∈ ∂Ω, then u ≤ h on Ω.

Proof. The proof is similar to the case of harmonic function.

Corollary 1.3.4. For every disk D(w, r) b Ω, we have

u(z) ≤ 1

2π

∫ 2π

0

r2 − |z − w|2

|reiθ − (z − w)|2
u(w + reiθ)dθ (1.3.1)

(in particular the submean inequality holds for every relatively compact disk inside Ω).
Hence the function

Mu(w, r) :=
1

2π

∫ 2π

0

u(w + reiθ)dθ

is increasing in r (r small).
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Proof. Let (uj)j be a sequence of continuous function decreasing to u; see Lemma 1.2.3.
Combining Theorems 1.3.3 and 1.1.3 gives

u(w) ≤ 1

2π

∫ 2π

0

1− |(z − w)/r|2

|eiθ − (z − w)/r|2
uj(w + reiθ)dθ

because the right-hand side is a subharmonic function which is equal to uj ≥ u on
∂D(w, r). Letting j → ∞ gives the first desired inequality. Let 0 < r′ < r be a constant.
Integrating the just-obtained submean inequality over z ∈ ∂D(w, r′) gives

Mu(w, r
′) ≤ 1

2π

∫ 2π

0

dθ′
1

2π

∫ 2π

0

r2 − r′2

|reiθ − r′eiθ′ |2
u(w + reiθ)dθ (1.3.2)

≤ 1

2π

∫ 2π

0

u(w + reiθ)dθ
1

2π

∫ 2π

0

dθ′
r2 − r′2

|reiθ − r′eiθ′|2

By using a change of variable, one see that the number∫ 2π

0

dθ′
r2 − r′2

|reiθ − r′eiθ′ |2

is independent of θ, and must be equal to 1 (otherwise we get a contradiction in (1.3.2)
by putting u := ±1). Hence Mu(w, r) is increasing in r. This finishes the proof.

Let χ ≥ 0 be a smooth radial function with support in D such that
∫
C χdLeb = 1,

where Leb is the Lebesgue measure on C. Here being radial means χ(z) = χ(|z|) for
every z ∈ C. For every constant ε > 0, put

χε(z) := ε−2χ(z/ε), uε(z) :=

∫
C
u(z − w)χε(w)dLeb .

Note that the function uε is well-defined on the set Ωε which consists of z ∈ Ω of distance
at least ε to Ω.

Theorem 1.3.5. (regularisation of subharmonic functions) The function uε is a smooth
subharmonic function and uε decreases to u as ε→ 0.

Proof. The smoothness is clear because uε is a convolution:

uε(z) =

∫
C
u(w)χε(z − w)dLeb .

Using the submean inequality for u gives

1

2π

∫ 2π

0

uε(z + reiθ)dθ =
1

2π

∫ 2π

0

dθ

∫
Ω

u(z + reiθ − w)χε(w)dLeb(w)

=

∫
Ω

(
1

2π

∫ 2π

0

u(z + reiθ − w)dθ

)
χε(w)dLeb(w)

≥
∫

Ω

u(z − w)χε(w)dLeb(w) = uε(r).



CHAPTER 1. SUBHARMONIC FUNCTIONS ON THE COMPLEX PLANE 9

Hence uε is smooth and subharmonic. Let 0 < ε′ < ε be a constant. Now using the fact
that χ is radial and the polar coordinates gives

uε(z) =

∫ ∞
0

rχε(r)dr

∫ 2π

0

u(z − reiθ)dθ

=

∫ ∞
0

rχ(r)dr

∫ 2π

0

u(z − εreiθ)dθ

≥
∫ ∞

0

rχ(r)dr

∫ 2π

0

u(z − ε′reiθ)dθu(z) ≥ 2πu(z)

∫ ∞
0

rχ(r)dr = u(z)

by Corollary 1.3.4 and the submean inequality. By the last inequality and the fact that
Suppχε ∈ D(ε), we also get

uε(z) ≤
∫ ∞

0

(
sup
D(z,ε)

u(w)
)
rχε(r)dr.

Letting ε→ 0 and using the upper semi-continuity of u yield that lim supε→0 uε(z) ≤ u(z).
This combined with the fact that uε decreases as ε → 0 gives the desired assertion. This
finishes the proof.

We call uε standard regularisation of u.

Lemma 1.3.6. Let u ∈ C 2(Ω). Then u is subharmonic if and only if ∆u ≥ 0.

Proof. We assume u is subharmonic. Without loss of generality, we can suppose 0 ∈ Ω. It
suffices to check ∆u(0) ≥ 0. By Taylor’s expansion, we have

u(x+ iy) = u(0)+x∂xu(0)+y∂yu(0)+
1

2

(
x2∂2

xu(0)+y2∂2
yu(0)

)
+xy∂x∂yu(0)+o(|x|2 + |y|2).

Integrating the last inequality over ∂D(r) gives

Mu(r) = u(0) + cr2∆u(0) + o(|r|2),

for some constant c > 0. Hence if ∆u(0) < 0, then we would get Mu(r) < u(0) for r small
enough. This is a contradiction. Hence ∆u(0) ≥ 0.

Now consider u ∈ C 2(Ω) with ∆u ≥ 0. In order to get the desired assertion, it suffices
to check the sub-mean inequality. Let D(w, r) be a small disk in Ω. Let h be a harmonic
function on D(w, r) which is continuous up to the boundary such that u ≤ h on ∂D(r).
We choose h later. We will verify that u ≤ h on D(w, r). Let ε > 0 be a constant. Put
v := u− h+ ε|z−w|2. Since ∆v = ∆u+ ε > 0, we see that v cannot have local maximum
in D(w, r) (by Taylor’s expansion as above). Hence

v ≤ lim sup
z→∂D(w,r)

v(z) ≤ εr2.

It follows that u ≤ h + εr2 for every constant ε > 0. Hence u ≤ h on D(w, r). Now
we choose h to be the function in the right-hand side of (1.3.1). The desired submean
inequality hence follows. This finishes the proof.
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Lemma 1.3.7. Let Ω = U + iV , where U, V are open subsets in R. Let u be a subharmonic
function on Ω such that u(z) depends only on Re z. Then the function u(x) with x ∈ U is
convex.

Proof. By regularisation of u (which depends also only on Re z), we can assume u ∈ C 2.
In this case, we have 0 ≤ ∆u(x) = ∂2

xu(x). Hence u is convex.

Lemma 1.3.8. Let f : Ω′ → Ω be a holomorphic function. Let u be subharmonic on Ω.
Then u ◦ f is subharmonic.

Proof. By regularisation, it suffices to check the desired assertion for u smooth. Put
∂z := 1/2(∂x − i∂y) and ∂z̄ := 1/2(∂x + i∂y). We have ∂z∂z̄ = 1/4∆. Using this formula
and the fact that ∂z̄f = 0, one can check that

∆(u ◦ f) = |f ′|2(∆u ◦ f) ≥ 0.

This finishes the proof.

Theorem 1.3.9. Let w ∈ Ω. The function

Mu(r) :=
1

2π

∫ 2π

0

u(w + reiθ)dθ

is an increasing convex function in log r (r small).

Proof. We have already known that Mu(r) is increasing. Consider the function

Mu(z) :=
1

2π

∫ 2π

0

u(w + ezeiθ)dθ

which is subharmonic by Lemma 1.3.8. This function depends only on Re z. Hence
applying Lemma 1.3.7 to Mu(z) implies that Mu(r) is convex.

1.4 Construction of subharmonic functions

Lemma 1.4.1. Let χ : Rm → R be a convex function such that χ(t1, . . . , tm) is increasing
in each variable tj, and χ can be extended continuously to be a function from [−∞,∞)m

to [−∞,∞). Let u1, . . . , um be subharmonic functions on Ω. Then χ(u1, . . . , um) is also
subharmonic. In particular, the functions u1 + · · · + um, max{u1, . . . , um}, and log(eu1 +

. . .+ eum) are subharmonic.

Proof. Let uj,ε be a sequence of subharmonic function decreasing to uj as ε → 0. By
continuity of χ, we see that the continuous function χ(u1,ε, . . . , um,ε) decreases to u :=

χ(u1, . . . , um). Hence u is upper semi-continuous. We need to check the submean in-
equality. To this end, by regularisation, we can assume that uj is smooth for every j. Let
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w ∈ Ω and D(w, r) b Ω. For every k ∈ N, let (t1, . . . , tk) be points equidistributed in
∂D(w, r). Since uj is continuous, we obtain that

ajk :=
1

k

k∑
s=1

uj(ts)→Muj(w, r)

as k →∞. Put bs :=
(
u1(ts), . . . , um(ts)

)
for 1 ≤ s ≤ m. Observe that

χ(a1k, . . . , amk) = χ
(1

k
b1 + · · ·+ 1

k
bk
)
≤ 1

k

k∑
s=1

χ(bj)

which converges to

1

2π

∫ 2π

0

χ
(
u1(w + reiθ), . . . , um(w + reiθ)

)
dθ = Mu(w, r)

as k →∞ because of the continuity of χ and the choice of t1, . . . , tk. On the other hand,
since χ is increasing in each variable, we have

u(w) ≤ χ
(
Mu1(w, r), . . . ,Mum(w, r)

)
= lim

k→∞
χ(a1k, . . . , amk) ≤Mu(w, r).

This finishes the proof.

Lemma 1.4.2. Let f be a holomorphic function on Ω. Then log |f | is subharmonic on Ω.

Proof. Firstly u := log |f | is upper semi-continuous. Observe that u is smooth on Ω\{f =

0}, and on the last open set we have

∆u = 2∂z∂z̄ log |f |2 = ∂z
(
f̄−1∂z̄f̄

)
= 0.

Hence u is harmonic on Ω′ := Ω\{f = 0}. In particular the submean inequality holds
for every z ∈ Ω′ and for every small enough disk centered at z. Consider z0 ∈ {f = 0}.
Since u(z0) = −∞, it is clear that the submean inequality holds for z0. This finishes the
proof.

Corollary 1.4.3. Let f1, . . . , fm be holomorphic functions. Then for every positive constant
a1, . . . , am, we have that log(|f1|a1 + . . .+ |fm|am) is subharmonic.

Lemma 1.4.4. Let (uj)j∈J be a family of subharmonic function which is locally bounded
from above uniformly. Then (supj∈J uj)

∗ is also subharmonic.

Proof. The first desired assertion is direct from the definition of subharmonic functions.

Lemma 1.4.5. The limit of a decreasing sequence of subharmonic functions is either identi-
cally equal to −∞ or a subharmonic function.

Proof. It is clear from the definition.
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Theorem 1.4.6. Let u be a subharmonic function on Ω. Let U be an open subset of Ω and v
be a subharmonic function on U . Assume that lim supz′→z v(z′) ≤ u(z) for every z ∈ ∂U ∩Ω.
Then the function

w =

{
max{u, v} on U,

u on Ω\U

is subharmonic on Ω.

Proof. We can check easily that w is upper semi-continuous. The submean inequality is
also immediate from the hypothesis.

Lemma 1.4.7. (strong upper semi-continuity) Let u be a subharmonic function on Ω. Let
B be a set of zero Lebesgue measure on Ω. Then for every z ∈ Ω, we have

lim sup
z′ 6∈B→z

u(z′) = u(z).

Proof. This is a direct consequence of the upper semi-continuity property and submean
inequality. Indeed, by the submean inequality and the polar coordinates, we get

u(z) ≤
∫
D(z,ε)

u(z)dLeb =

∫
D(z,ε)\B

u(z)dLeb ≤ sup
z′∈D(z,ε)\B

u(z′).

Letting ε → 0 gives lim supz′ 6∈B→z u(z′) ≥ u(z). The converse inequality follows from the
upper semi-continuity.

Theorem 1.4.8. Let A be a closed subset in C such that A = {v = −∞} for some sub-
harmonic function v on Ω. Let u be a subharmonic function on Ω\A such that for every
compact subset K on Ω, the function u is bounded from above on K\A. Then u can be
extended uniquely to be a subharmonic function ũ on Ω.

Proof. We check the uniqueness of ũ. Now observe that A is of zero Lebesgue measure
in Ω because v is locally integrable. Hence, using Lemma 1.4.7, for z ∈ A, we have

ũ(z) = lim sup
z′ 6∈A→z

ũ(z′) = lim sup
z′ 6∈A→z

u(z′).

In other words, ũ is unique, if it exists.
We now prove the existence. Since the problem is local, we can assume v < 0. Define

uε := u + εv on Ω\A and uε := −∞ on A. One can see that uε is upper semi-continuous,
and satisfies the submean inequality. Hence, uε is subharmonic. Hence by Lemma 1.4.4,
the function (supε>0 uε)

∗ is a subharmonic function on Ω which is equal to u on Ω\A. This
finishes the proof.
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1.5 Laplacian of subharmonic functions

We know that if a C 2 function is subharmonic, then its Laplacian is positive. We explain
in this section how to extend the last property to all subharmonic functions.

Recall that a distribution T on Ω is a continuous linear functional from C∞c (Ω) to
C. Here C∞c (Ω) denotes the set of smooth functions with compact support in Ω, and
by continuity we mean that for every sequence (fj)j∈N ⊂ C∞c (Ω) such that there exists a
compact K ⊂ Ω satisfying Suppfj ⊂ K for every j and fj converges to some f∞ ∈ C∞c (Ω)

in C∞ topology, we have 〈T, fj〉 → 〈T, f∞〉 as j →∞.

Lemma 1.5.1. A linear functional T : C∞c (Ω) → C is continuous if and only if for every
compact K ⊂ Ω, there exist an integer k ∈ N and a constant C > 0 such that

〈T, f〉 ≤ C‖f‖C k(Ω),

for every smooth f with compact support in K.

Proof. Straightforward.

Every locally integrable function g on C can be viewed as a distribution Tg by putting

〈Tg, f〉 :=

∫
C
gf dLeb .

One can check that Tg is linear and continuous in the above sense. In practice we usually
identify Tg with g, and use the same notation g to denote Tg. Every (positive) Radon
measure is also a distribution by integration functions against it. Here we recall that a
Radon measure on a topological space X is a (Borel) measure µ on X such that µ(K) <

∞ for every compact subset K in X.
Let (Tj)j∈N be a sequence of distribution on Ω. We say that Tj converges weakly to T if

〈Tj, f〉 → 〈T, f〉

as j → ∞ for every f ∈ C∞c (Ω). If (uj)k∈N is a sequence of locally integrable functions
converges in L1

loc to a function u, then uj → u as j →∞ in the sense of distributions.
Let T be a distribution on Ω. We can define partial derivatives ∂xT and ∂yT by the

following formula
〈∂xT, f〉 := −〈T, ∂xf〉

for every f ∈ C∞c (Ω), and similarly for ∂yT . By integration by parts formula, these
operators extend the usual partial derivatives of C 1 functions. We say that T is positive
and write T ≥ 0 if 〈T, f〉 ≥ 0 for every f ∈ C∞c (Ω) with f ≥ 0. For distributions T1, T2,
we write T1 ≥ T2 of T1 − T2 ≥ 0. Recall the following fundamental fact.

Theorem 1.5.2. ([32, Theorem 2.14]) Let X be a locally compact Hausdorff space, and let
Λ be a positive linear functional on the space Cc(X) of continuous functions with compact
support in X. Then there exists a Radon measure µ on X representing Λ, i.e,

〈Λ, f〉 =

∫
X

fdµ

for every f ∈ Cc(X).
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When X is a locally compact Hausdorff space in which every open subset can be
written as a countable union of compact subsets, every Radon measure is regular (see
[32, Theorem 2.18]), i.e for every Borel set E in X, we have

µ(E) = inf{µ(V ) : E ⊂ V, V open} = sup{µ(K) : K ⊂ E, K compact}.

In particular every Radon measure on Rm is regular.

Corollary 1.5.3. Every positive distribution is a positive Radon measure.

By the last result, for every positive distribution T , we can define 〈T, f〉 for every con-
tinuous function f with compact support, or more generally for every bounded (Borel)
measurable function f on X. Note by Lebesgue’s dominate convergence theorem, for ev-
ery sequence (fj)j of uniformly bounded smooth functions supported in a fixed compact
subset in Ω such that fj converges pointwise to some function f as j →∞, then we have
〈T, fj〉 → 〈T, f〉 as j →∞. The following is fundamental in the theory of distributions.

Theorem 1.5.4. Let (Tj)j is a sequence of distributions such that the sequence 〈Tj, f〉 is
bounded for every f ∈ C∞c (Ω). Then for every compact K in Ω, there exist an integer k ≥ 0

and a constant C > 0 such that

|〈Tj, f〉| ≤ C‖f‖C k(Ω), (1.5.1)

for every j and every smooth f with compact support in K. Consequently, if the limit
〈T, f〉 := limj→∞〈Tj, f〉 exists for every f ∈ C∞c (Ω), then T is a distribution and Tj con-
verges weakly to T as j →∞.

Proof. The second desired assertion follows directly from the first one. We check the first
one. It is a consequence of the Banach-Steinhaus theorem in functional analysis (see [33,
Theorem 2.6]). Let K be a compact subset in Ω, and C∞(K,Ω) be the set of f ∈ C∞c (Ω)

such that Suppf ⊂ K. Observe that C∞(K,Ω) with the topology induced by that of
C∞c (Ω) (here fj → f in C∞(K,Ω) if ‖fj − f‖C k(Ω) → 0 as j → ∞ for every k ∈ N) is
naturally endowed with a metric which makes it to be a complete metric space.

By Lemma 1.5.1, every distribution S induces naturally a continuous linear functional
SK on C∞(K,Ω). Hence we obtain continuous functionals Tj,K : C∞(K,Ω)→ C induced
by Tj. By hypothesis, 〈Tj,K , f〉 is bounded uniformly in j for every f ∈ C∞(K,Ω). This
combined with the Banach-Steinhaus theorem applied to (Tj,K)j gives (1.5.1). This fin-
ishes the proof.

Let T be a distribution and let g be a smooth function with compact support in Ω. The
convolution of T with g is defined by

T ∗ g(x) := 〈T (·), g(x− ·)〉,

for x ∈ Ω such that the distance from x to ∂Ω is greater than the diameter of the support
of g.
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Lemma 1.5.5. The following statements are true:
(i) the convolution T ∗ g is smooth, and

Dα(T ∗ g) = (DαT ) ∗ g = T ∗Dαg,

(ii) for every smooth f with compact support in Ω,

〈T ∗ g, f〉 = 〈T, f ∗ g1〉,

where g1(z) := g(−z),
(iii) let χ be a smooth radial function with compact support in Ω such that

∫
Ω
χdLeb = 1

and χε(z) := ε−2χ(z/ε), then T ∗ χε converges weakly to T as ε→ 0,

(iv) if (Tj)j is a sequence of distributions converging to a distribution T then Tj∗g → T ∗g
in C∞ topology.

Proof. We check (i). It suffices to do it for α = 1. Using linearity of T gives

D(T ∗ g)(x) = lim
h→0

h−1
(
T ∗ g(x+ h)− T ∗ g(x)

)
= lim

h→0
〈T, h−1(g(x+ h− ·)− g(x− ·))〉.

Put gx(y) := g(x− y). Observe now that

h−1(g(x+ h− y)− g(x− y)) = h−1(gx(y − h)− gx(y))

converges to −Dgx(y) in C∞ topology as h → 0 (x fixed). Hence by continuity of T , we
get

D(T ∗ g)(x) = 〈T,−Dgx〉 = 〈DT, gx〉.

Since Dgx(y) = −Dg(x− y), we also obtain

D(T ∗ g)(x) = 〈T,−Dgx〉 = 〈T,Dg〉.

We check (ii). Since T ∗ g is smooth, we can decompose the following integral into
Riemann sum:

〈T ∗ g, f〉 =

∫
C
T ∗ g(x)f(x) = π−1 lim

ε→0
ε−2

∑
j∈Aε

T ∗ g(xj)f(xj),

where we decompose C into squares of size ε indexed by a countable family Aε and
choose xj to be the center of the squares. Observe that

Dα
(
π−1ε−2

∑
j∈Aε

g(xj − y)f(xj)
)

= π−1ε−2
∑
j∈Aε

−Dαg(xj − y)f(xj)
)

which converges uniformly in y to∫
C
−Dαg(x− y)f(x)dLeb(x)
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as ε→ 0 for every α. This combined with the continuity of T gives

〈T ∗ g, f〉 = 〈T, f ∗ g1〉.

The desired assertion (iii) is a direct consequence of (ii) and the fact that f ∗ χε → f as
ε→ 0 in C∞ topology.

It remains to verify (iv). Firstly we have

DαTj ∗ g(x) = Tj ∗Dαg(x)→ T ∗Dαg(x) = DαT ∗ (x)

as j → ∞ for every x by the weak convergence of Tj. The pointwise convergence of
DαTj ∗ g is actually uniform thanks to Theorem 1.5.4. Thus, we obtain the C∞ conver-
gence of Tj ∗ g to T ∗ g. This finishes the proof.

Remark 1.5.6. All of above properties of distributions have direct analogues for distribu-
tions in a domain in Rn.

We come back to subharmonic functions.

Theorem 1.5.7. Let u be a subharmonic function on Ω. Then ∆u is a positive measure.

Proof. Let (uε)ε be a regularisation of u. We have ∆uε → ∆u as ε → 0 in the sense of
distributions. This combined with the fact that ∆uε ≥ 0 implies that ∆u is a positive
distribution. By this and Corollary 1.5.3, we obtain the desired assertion.

Theorem 1.5.8. Let u be a distribution on Ω such that ∆u ≥ 0. Then there exists a
subharmonic function u′ on Ω such that u = u′ (that means u is the distribution induced by
u′).

Proof. Let uε := u ∗ χε be standard regularisation of u. We have ∆uε = (∆u) ∗ χε ≥ 0.
Hence uε is subharmonic. We check that uε decreases as ε→ 0. To this end, we consider

uε,δ := uε ∗ χδ

which converges weakly to uδ as ε → 0 because uε → u weakly. Since uε,δ is decreasing
in δ because it is a standard convolution of uε which is a subharmonic function. Letting
ε→ 0 and using the above observation implies that uδ is decreasing in δ as distributions.
Hence uδ is decreasing in δ as functions because they are smooth. By this and Lemma
1.4.5, the pointwise limit of (uε)ε is either identically equal to −∞ (in this case uε → −∞
in L1

loc by Lebesgue’s monotone convergence theorem) or a subharmonic function. The
former case cannot happen because uε → u as distributions. We infer that uε decreases
to a subharmonic function u′ which is equal to u almost everywhere. This finishes the
proof.

Corollary 1.5.9. Let (uj)j∈J be a family of subharmonic function which is locally bounded
from above uniformly. Then the set of z ∈ Ω such that (supj∈J uj)

∗(z) > (supj∈J uj)(z) is of
zero Lebesgue measure.
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Proof. Let u := (supj∈J uj). We know that ∆u ≥ 0 as distributions. Let uε be standard
regularisation of u. By the proof of Theorem 1.5.8, the sequence (uε)ε is decreasing.
Hence uε decreases to a subharmonic function u′. We get u′ = u as distribution. Since
both functions are locally integrable, we see that they are equal almost everywhere. On
the other hand, by the upper semi-continuity, we have u ≤ u∗ ≤ uε. It follows that
u∗ ≤ u′. Since u′ = u almost everywhere, we deduce that u′ = u∗ almost everywhere.

The set of x such that (supj∈J uj)
∗(z) > (supj∈J uj)(z) is called a negligible set. By the

above result, every negligible set is of zero Lebesgue measure. We will see later that a
much deeper property holds: every negligible set is (pluri)polar.

Corollary 1.5.10. Let u be a distribution on Ω such that ∆u = 0. Then there exists a
harmonic function u′ on Ω such that u = u′.

Proof. It suffices to apply Theorem 1.5.8 to u and −u.

Lemma 1.5.11. We have
∆ log |z| = 2πδ0,

where δ0 is the Dirac mass at 0.

Proof. Let f ∈ C∞c (C). We compute

〈∆ log |z|, f〉 = 〈log |z|,∆f〉

=
1

2
lim
ε→0

∫
C

log(|z|2 + ε)∆f dLeb =
1

2
lim
ε→0

∫
C

∆ log(|z|2 + ε)f dLeb .

Note that
∆ log(|z|2 + ε) = 4∂z∂z̄ log(|z|2 + ε) =

4ε

(|z|2 + ε)2
·

Using this and the polar coordinates gives∫
C

∆ log(|z|2 + ε)f dLeb = 2π

∫ ∞
0

4εrf(reiθ)dθ

(r2 + ε)2
dr

= 4πf(0)

∫ ∞
0

2εrdθ

(r2 + ε)2
dr + 2π

∫ ∞
0

4εrO(r))dθ

(r2 + ε)2
dr,

where we decomposed f(reiθ) = f(0) + O(r) as r small. Direct computations show that
the first integral converges to 4πf(0) as ε→ 0, whereas the second one converges to 0 as
ε→ 0. We infer that 〈∆ log |z|, f〉 = 2πf(0). This finishes the proof.

The following result tells us that every measure with compact support in C is indeed
the Laplacian of some subharmonic function on C.

Theorem 1.5.12. Let µ be a measure with compact support in C. The function

uµ(z) :=

∫
w∈C

log |z − w|dµ(w)

is subharmonic on C, and ∆uµ = 2πµ.
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Proof. For every constant ε > 0, put

uε :=

∫
w∈C

log(|z − w|+ ε)dµ(w).

Observe that uε is continuous. Since log(|z − w|+ ε) is subharmonic and continuous, we
see that uε is an average of subharmonic functions. Hence uε is subharmonic. Note that
uε decreases to uµ as ε→ 0. Hence uµ is either − ≡ −∞ or subharmonic. For z 6∈ Suppµ,
we have uµ(z) > −∞. Hence u 6≡ −∞. We deduce that uµ is subharmonic.

It remains to check that ∆uµ = µ. Let f ∈ C∞c (C). We compute

〈∆u, f〉 = 〈u,∆f〉 =

∫
z∈C

∆f(z)dLeb

∫
C

log |z − w|dµ(w)

=

∫
w∈C

dµ(w)

∫
z∈C

∆f(z) log |z − w|dLeb

=

∫
w∈C

dµ(w)

∫
z∈C

f(z)∆ log |z − w|dLeb =

∫
C
fdµ

by Lemma 1.5.11. Hence ∆uµ = µ. This ends the proof.

Theorem 1.5.13. (Riesz’s representation formula) Let u be a subharmonic function on an
open neighborhood of D. Then we have

2πu(z) =

∫
D

log

∣∣∣∣ z − ξ1− zξ̄

∣∣∣∣∆u+

∫ 2π

0

1− |z|2

|eiθ − z|2
u(eiθ)dθ,

where ∆u is identified with a measure.

Proof. As the first step, we assume u smooth and prove the desired formula. Let v1, v2

be the first and second integral in the sum on the right-hand side of the desired formula.
For a fixed ξ ∈ D and z ∈ D, note that 1− zξ̄ has no zero in D. Hence ∆ log |1− zξ̄| = 0

on D. It follows that
∆w = ∆ log |z − ξ| = 2πδξ,

where w := log

∣∣∣∣ z−ξ1−zξ̄

∣∣∣∣. Note also that ew is continuous. Hence w is subharmonic. Since

w = 0 on ∂D, we get w ≤ 0 on D by the maximum principle. Hence v1 is a subharmonic
function whose Laplacian is equal to 2π∆u. On the other hand, for every z0 ∈ ∂D,
since ∆u is smooth, we have limz→z0 v1(z) = 0. In other words, v1 can be extended
continuously up to boundary and equal to 0 on the boundary. On the other hand, v2 is
subharmonic and equal to 2πu on ∂D. We deduce that v1 + v2 is subharmonic and equal
to 2πu on ∂D, and ∆(v1 + v2) = 2π∆u. Hence v1 + v2 − 2πu is harmonic on D and equal
to 0 on ∂D. It follows that v1 + v2 − 2πu ≡ 0 by the maximum principle.

Now consider the general case. Since u is defined on an open neighborhood of D,
we can construct a sequence of smooth subharmonic functions (uε)ε defined on an open
neighborhood of D such that uε decreases to u. By the first part of the proof, we have the
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Riesz representation formula for uε. In order to obtain that for u, we just need to check
that

v1,ε(z) :=

∫
D
w∆uε → v1(z) =

∫
D

log

∣∣∣∣ z − ξ1− zξ̄

∣∣∣∣∆u (1.5.2)

as ε → 0 for every z ∈ D. Let w′ := w on D and w′ := 0 on C\D. As observed above,
w′ is subharmonic on D and w′ ≤ 0. Let χ be a radial function used to defined the
regularisation uε, and define χε as usual. For every We have

〈∆uε, w′〉 = 〈∆(u ∗ χε), w′〉 = 〈∆u,w′ ∗ χε〉.

The function w′ ∗ χε decreases to w on D as ε → 0 (recall w = 0 on ∂D), and to 0 on
C\D. Hence (1.5.2) follows by Lebesgue’s monotone convergence theorem. The proof is
finished.

1.6 Compactness properties

We start with the following result suggesting that the singularity of subharmonic func-
tions in C is ”not much worse” than that of the logarithmic function.

Theorem 1.6.1. Let u be a subharmonic function defined on an open neighborhood of 2D
such that ‖u‖L1(2D) ≤ 1. Let K be a compact subset of D. Then there exist constants C, α > 0

independent of u such that ∫
K

e−αudLeb ≤ C.

In particular the Lp norm of u on K is uniformly bound.

Proof. Using partition of unity, it suffices to prove the desired assertion for K := 1/4D.
Suppose that there exists z0 ∈ 3/2D such that u(z0) ≥ 10 then by the submean inequality,
we get

‖u‖L1(2D) ≥
∫
D(z0,1)

|u|dLeb ≥ 1/2u(z0) = 9/8 > 1.

This is a contradiction. Hence u ≤ 10 on D1. By similar arguments, we also see that there
exists a z1 ∈ 1/8D such that u(z1) ≥ −C0 for some constant C0 > 0 independent of u.
By considering 1/(10 + C0)(u(· − z1) + C0) instead of u, we reduce the question to the
following statement: for a subharmonic function u defined on D such that u(0) ≥ 0 and
u ≤ 1 on D, then there exist constants α,C > 0 both independent of u such that∫

D 1
2

e−αudLeb ≤ C.

We check it now. Let α be a small strictly positive constant to be chosen later. By max-
imum principle, u ≤ 1 on D. By Riesz representation formula applied to (u − 1) in
Theorem 1.5.13, we get

u(z)− 1 =
1

2π

∫
D

log

∣∣∣∣ z − ξ1− zξ̄

∣∣∣∣∆u+
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2
(u(eiθ)− 1)dθ.
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Let u1(z), u2(z) be the first term and the second term in the right-hand side of the last
equality.

We use the letter C to denote a general positive constant independent of u, although
its value can vary line from line. Note that u1 ≤ 0 (see the proof of Theorem 1.5.13). We
also have u2 ≤ 0 because u ≤ 1 on ∂D. Using the equality −1 = u1(0) + u2(0) (let z = 0

in the Riesz representation formula) yields that

−1 ≤ u1(0) ≤ 0, −1 ≤ u2(0) ≤ 0.

Observe that there exists a constant C > 0 such that

|u2(z)| ≤ C
1

2π

∫ 2π

0

−(u(eiθ)− 1)dθ = −Cu2(0) ≤ C

for every |z| ≤ 1/2. We deduce that∫
D1/2

e−αudLeb ≤ Cα

∫
D1/2

e−αu1dLeb .

It remains to estimate the last integral for suitable small α.
Since u1(0) = 1

2π

∫
D log |ξ|∆u, we infer that A := ∆u(D 1

2
) ≤ C for some constant

C independent of u. Since et is convex and µ(∂D) ≤, by Jensen’s inequality, for every
constant α > 0, one obtains

e−αu1(z) .
∫
ξ∈D

∣∣∣∣ z − ξ1− zξ̄

∣∣∣∣−Aα(∆u/A) . ∫
ξ∈D
|z − ξ|−Aα

(
∆u/A

)
.

Integrating over z ∈ D1/2 and noting that
∫
D1/2
|z − ξ|−Aα < ∞ if α < 2/A ≤ 2/C, we

obtain ∫
D1/2

e−αu1(z) .
∫
ξ∈D

(∆u/A) = 1.

This ends the proof.

We recall the following standard fact.

Lemma 1.6.2. Let X be a metric space which is a countable union of compact subsets. Let
(µj)j be a sequence of measures on X of mass bounded uniformly on compact subsets on
X. Then there exists a subsequence (µj′)j′ of (µj)j such that µj′ converges weakly to some
measure µ∞.

Note here the weak convergence of measures seen as distributions coincides with the
usual notion of converges of measures.

Proof. By a diagonal argument, we can assume X is compact. We will only use this result
for X is an open subset of Rm. So we give here a proof for this case. The general case
is done similarly. The space C 0(X) of continuous functions with the supnorm on X is
separable. This means that it has a countable dense subset. Let A = {f1, f2, . . .} be such
a dense subset. By a diagonal argument and the fact that µj(X) ≤ M for some constant
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M independent of j, we can extract a subsequence (µj′)j′ such that 〈µj′ , fk〉 is convergent
as j →∞ for every k. Define µ∞ as follows. Put

〈µ∞, fk〉 := lim
j′→∞
〈µj′ , fk〉.

Since A is dense, for every continuous function f on X, we can find a sequence (fsk)k
converging to f in the supnorm. Since

|〈µ∞, fsk − fsk′ 〉| = lim
j′→∞

|〈µj′ , fsk − fsk′ 〉| ≤M‖fsk − fsk′‖,

we infer that the sequence 〈µ∞, fsk〉 is convergent. Hence we can put

〈µ∞, f〉 := lim
k→∞
〈µ∞, fsk〉.

By similar reasoning, one can check that this definition is independent of the choice of
(fsk)k. Hence we obtain a function µ∞ : C 0(X)→ R which is linear and positive. Hence
by Theorem 1.5.2, µ∞ is a measure. We leave the readers to check that µj → µ∞.

Lemma 1.6.3. Let (uj)j be a sequence of functions on Ω which are of L1-norm locally
bounded uniformly in j, i.e, for every compact K in Ω, there exists a constant MK such that
‖uj‖L1(K) ≤MK (L1-norm is computed with respect to Lebesgue measure on C). Then there
exists a sequence (jj)k ⊂ N such that ujk (considered as a distribution) converges weakly to
some distribution on Ω as j →∞.

Proof. Let u+
j := max{uj, 0} and u−j := −min{uj, 0}. We have u±j ≥ 0 and uj = u+

j − u−j .
Since ∫

K

|uj|dLeb =

∫
K

|u+
j |dLeb +

∫
K

|u−j |dLeb,

we infer that u±j is of L1-norm locally bounded uniformly in j. Since u±j is non-negative,
we can view them as positive distribution (hence measures). Now one just applies
Lemma 1.6.2 to u±j to obtain the desired assertion.

The following is fundamental in pluripotential theory.

Theorem 1.6.4. (i) Let (uj)j be a sequence of subharmonic functions converging weakly to
some distribution u∞ on Ω. Then u∞ is also a subharmonic function and uj → u∞ in Lploc
for every constant 0 < p < ∞. Furthermore for every compact subset K in Ω and every
continuous function f on K, we have

lim sup
j→∞

sup
K

(uj − f) ≤ sup
K

(u− f). (1.6.1)

(ii) Let (uj)j be a sequence of subharmonic functions uniformly locally bounded from
above defined on Ω. Then either uj converges uniformly on compact subsets in Ω to −∞ as
j →∞ or there exists a subsequence (uj′)j′ which converges in Lp to a subharmonic function
u∞ for every real number 0 < p <∞.
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Proof. Since ∆u∞ = limj→∞∆uj ≥ 0, by Theorem 1.5.8, u∞ is a subharmonic function.
As the next step, we verify that uj → u∞ in L1

loc.
Let uj,ε, u∞,ε be standard regularisation of uj, u∞ respectively defined using the same

cut-off function χ. Let χε be the function induced by χ and ε as usual. By the first part of
the proof, the sequence uj is of L1-norm locally bounded uniformly. We have

uj,ε(z) =

∫
Ω

χε(z − x)uj(x)dLeb(x).

Since uj → u∞ as distributions, using Lemma 1.5.5 (iv), we see that uj,ε is equicontin-
uous in j for ε fixed. This together with the fact that uj,ε converges pointwise to u∞,ε
yields that the convergence uj,ε → u∞,ε is uniformly on compact subsets, for ε fixed. By
subharmonicity, we have

uj ≤ uj,ε, u∞ ≤ u∞,ε.

Let δ > 0 be a constant. We estimate

uj − u∞,ε − δ ≤ uj − u∞ ≤ uj,ε − u∞ + δ.

Since uj,ε → u∞,ε ≥ u∞ uniformly, we infer that uj,ε − u∞ + δ ≥ 0 if j is large enough.
Likewise

uj − u∞,ε − δ ≤ uj,ε − u∞,ε − δ ≤ 0

for j big enough. Hence

‖uj − u∞‖L1(K) ≤
∫
K

max{uj,ε − u∞ + δ, u∞,ε − uj + δ}dLeb

≤
∫

Ω

f(uj,ε − u∞ + δ + u∞,ε − uj + δ)dLeb

where f is a nonnegative smooth function with compact support which is equal to 1 on
K. Letting j →∞ in the last inequality gives

lim sup
j→∞

‖uj − u∞‖L1(K) ≤
∫

Ω

f(2u∞,ε − 2u∞ + 2δ)dLeb .

Letting ε, δ → 0 implies that uj → u∞ in L1
loc. We check (1.6.1). Let f be a continuous

function ≥ 0 on K. By above arguments (the fact that uj,ε → u∞,ε uniformly on compact
subsets),

lim sup
j→∞

sup
K

(uj − f) ≤ lim sup
j→∞

sup
K

(uj,ε − f) = sup
K

(u∞,ε − f)

for every constant ε > 0. Put M := supK(u − f). Observe that the continuous func-
tion max{u∞,ε − f,M} decreases pointwise to the constant function M as ε0. Hence by
Dini’s theorem, max{u∞,ε − f,M} converges uniformly to M as ε → 0. We infer that
supK(u∞,ε − f)→M as ε→ 0. Thus (1.6.1) follows.

Since (uj)j is uniformly locally bounded from above and the problem is local, we can
assume that uj ≤ 0 on Ω for every j. Assume that uj does not converge uniformly on
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compact subsets in Ω to −∞ as j → ∞. This means that there exists a compact subset
K ⊂ Ω and zj ∈ K such that uj(zj) ≥ −C for every j ∈ N some constant C independent
of j. We need to prove that there exists a subsequence of (uj)j converging in Lp for every
1 ≤ p <∞.

By considering a subsequence of (zj)j, we can assume that zj converges to z∞ ∈ K.
Since uj(zj) > −C and zj close to z∞ as j big, using the submean inequality implies that
‖uj‖L1(B) is uniformly bounded for some small ball B centered at z∞. Let A be the set
of z ∈ Ω such that there exists a small ball B containing z and ‖uj‖L1(B) is uniformly
bounded. We have just seen that A is non empty. Moreover A is open because of its
definition. By an argument similar to those in the proof of Lemma 1.3.2, we can prove
that A is also closed. Hence A = Ω (we always assume Ω is connected). In other words,
the sequence (uj)j is of L1 norm locally bounded uniformly in j. Hence, by extracting a
subsequence, we can assume that uj converges weakly to a distribution u∞ as j → ∞.
By Part (i), uj converges to u∞ in L1

loc.
Consider now p ≥ 1. By Hölder’s inequality, we have

‖uj − u∞‖pLp(K) =

∫
K

|uj − u∞|1/2|uj − u∞|p−1/2dLeb

≤
(∫

K

|uj − u∞|dLeb

)2(∫
K

|uj − u∞|2p−1dLeb

)2

.

The second integral in the right-hand side of the last inequality is bounded uniformly in
j by Theorem 1.6.1. Whereas the first one converges to 0 by the previous part of the
proof. This finishes the proof.

Corollary 1.6.5. (i) Let (uj)j be a sequence of subharmonic functions converging weakly to
some distribution u on Ω. Let ϕj := supk≥j uk. Then the upper semi-continuity regularisa-
tion ϕ∗j of ϕj decreases to u.

(ii) Let χ be as in Lemma 1.4.1. For 1 ≤ k ≤ m, let ujk be subharmonic function such
that ujk converges in L1

loc to uk as j → ∞. Then we also have χ(uj1, . . . , ujm) converges in
L1
loc to χ(u1, . . . , um) (hence in Lploc for every p > 0).

Proof. We check (i). By Theorem 1.6.4, (uj)j is uniformly locally bounded from above.
Hence ϕ∗j is a well-defined subharmonic function. Since (ϕ∗j)j is decreasing sequence and
ϕ∗j ≥ uj → u as distributions, we get that ϕ∗j decreases to a subharmonic function u′, and
u′ ≥ u. By Theorem 1.6.4 and extracting a subsequence if necessary, we can assume that
uj → u in L1

loc and uj(x) → u(x) for almost everywhere x ∈ Ω. Hence ϕj(x) → u(x) for
almost everywhere x. This combined with the fact that

{x : ϕ∗j(x) > ϕj(x)}

is of zero Lebesgue measure (Corollary 1.5.9) implies that ϕ∗j(x) → u(x) for almost
everywhere x. We infer that u′(x) = u(x) for a.e. x. Hence u′ = u by the strong upper
semi-continuity of u′ and u.

It remains to check (ii). It suffices to prove the desired assertion for a subsequence of
(χ(uj1, . . . , ujm))j. By extracting a subsequence if necessary, using Theorem 1.6.4 yields
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that χ(uj1, . . . , ujm) is locally bounded uniformly in j and χ(uj1, . . . , ujm) converges in L1
loc

to some harmonic function v as j → ∞. On the other hand, Theorem 1.6.4 again, ujk
converges pointwise almost everywhere to uk as j → ∞, for 1 ≤ k ≤ m (after again ex-
tracting a subsequence). Hence χ(uj1, . . . , ujm) converges pointwise almost everywhere
to χ(u1, . . . , um). It follows that χ(u1, . . . , um) = v. This finishes the proof.

Corollary 1.6.6. Let (uj)j be a sequence of harmonic functions converging weakly to a
harmonic function u on Ω. Then uj converges to u in C∞ topology in Ω.

Proof. By Theorem 1.6.4, we have uj → u in L1
loc. Let D(w, r1) b D(w, r2) b Ω be two

disks. Using the Poisson formula, we obtain that

u(z) =

∫
D(w,r2)\D(w,r1)

K(z, z′)u(z′)dLeb,

for z ∈ D(w.r1/2), where K(z, z′) is some smooth function on (z, z′) in some open neigh-
borhood of the closure of D(w, r1/2)× D(w, r2)\D(w, r1). Hence

Dαu(z) =

∫
D(w,r2)\D(w,r1)

Dα
zK(z, z′)u(z′)dLeb .

We also have similar equality for uj. Combining this with the L1
loc convergence of (uj)j

yields that

sup
D(w.r1/2)

|Dαuj −Dαu| .
∫
D(w,r2)\D(w,r1)

|uj − u| → 0

as j →∞. Hence the desired assertion follows.

Remark 1.6.7. The notions of harmonic functions and subharmonic functions can be ex-
tended to the case of Rm by using the Laplacian in Rm. The (sub)harmonic functions on
open subsets in Rm shares many similar properties as in the case of R2 ≈ C. However they
are not the main object of the course. We will see, in the next chapter, a more refined gener-
alization of subharmonic functions on C which is the notion of so-called plurisubharmonic
functions.

Notes. All of results presented in this chapter are classical, except possibly the notion of
strong upper semi-continuity which was introduced in [17]. The presentation is based
on [13, 24, 28, 31].



Chapter 2

Plurisubharmonic functions

2.1 Plurisubharmonic functions

Let Ω be a domain in Cn.

Definition 2.1.1. A function u : Ω → [−∞,∞) is said to be plurisubharmonic (psh) if
u 6≡ −∞ on Ω, and u is upper semi-continuous and for x ∈ Ω and every complex line L
passing through x, the restriction u|L∩Ω of u to L ∩ Ω is either ≡ −∞ or a subharmonic
function on a small neighborhood of x in L ∩ Ω.

Recall that a complex line is an affine complex vector subspace of dimension 1 in
Cn. We identified L ∩ Ω with an open subset in C. Let z = (z1, . . . , zn) ∈ Ω and r =

(r1, . . . , rn) ∈ Rn
≥0. Denote D(z, r) := D(z1, r1)× · · · × D(zn, rn), and

∂D(z, r) := ∂D(z1, r1)× · · · × ∂D(zn, rn)

which is a proper subset of the Euclidean topological boundary of D(r, z). This set can
be identified with [0, 2π)n.

Lemma 2.1.2. Let u be a psh function on Ω. Then for every polydisk D(z, r) b Ω, we have

u(z) ≤ 1

(2π)n

∫
∂D(z,r)

u(z1 + r1e
iθ1 , . . . , zn + rne

iθn)dθ1 · · · dθn.

Proof. Apply consecutively the submean inequality to u(z1, . . . , zj−1, ·, zj+1, . . . , zn) on
D(zj, rj), where zj′ fixed for j′ 6= j.

We now present basic properties of psh functions. Some results are given without
proofs if they are either deduced directly from the 1-dimensional case or can be proved
in a similar ways as their analogue in the 1-dimensional case.

Lemma 2.1.3. Every psh function is locally integrable.

Theorem 2.1.4. (maximum principle) Let Ω be a bounded domain and u be a psh function
on Ω. Then if u attains a local maximum then it is constant. Consequently,

sup
x∈Ω

u(x) = sup
x0∈∂Ω

lim sup
x→x0∈∂Ω

u(x)

.

25
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Corollary 2.1.5. For every polydisk D(w, r) b Ω, we have

u(z) ≤ 1

(2π)n

∫
∂D(w,r)

n∏
j=1

r2
j − |zj − wj|2

|reiθj − (zj − wj)|2
u(w1 + r1e

iθ1 , . . . , wn + rne
iθn)dθ1 · · · dθn

(2.1.1)

Hence the function

Mu(w, r1, . . . , rn) :=
1

2π

∫ 2π

0

u(w1 + r1e
iθ1 , . . . , wn + rne

iθn)dθ1 . . . dθn

is increasing in each variable rj for 1 ≤ j ≤ n.

Let χ1, . . . , χn ≥ 0 be smooth radial functions with compact support in D such that∫
C χjdLeb = 1 for 1 ≤ j ≤ n. Put χ(z1, . . . , zn) = χ1(z1) . . . χn(zn). For every constant
ε > 0, put

χε(z) := ε−2nχ(z/ε), uε(z) :=

∫
Cn
u(z − w)χε(w)dLeb .

Note that the function uε is well-defined on the set Ωε which consists of z ∈ Ω of distance
at least ε to Ω.

Theorem 2.1.6. (regularisation of psh functions) The function uε is a smooth psh function
and uε decreasing pointwise to u as ε→ 0.

Proof. The smoothness is clear. Let L be a complex line intersecting Ω. Using the equality
uε(z) =

∫
Ω
u(z−w)χε(w)dLeb(w), one see that the restriction uε|L of uε to L is an average

of subharmonic function on L. Thus uε|L is itself subharmonic. Hence uε is subharmonic.
Let

u(ε1, . . . , εn, z) :=

∫
Ω

u(z − w)(χ1)ε1(w1) · · · (χn)εn(wn)dLeb(w),

where εj is a small positive constant for 1 ≤ j ≤ n. Observe that uε(z) = u(ε, . . . , ε, z).
Put z′ = (z2, . . . , zn) and w′ = (w2, . . . , wn). By Fubini’s theorem,

u(ε1, . . . , εn, z) :=

∫
w2,...,wn

(χ2)ε2(w2) · · · (χn)εn(wn)dLeb×∫
w1

u(z1 − w1, z
′ − w′)(χ1)ε1(w1)dLeb,

here it is not important to specify the open subsets over which the integrals are taken.
Since u(z1 − w1, z

′ − w′) is either subharmonic or ≡ −∞ on an open subset in C, using
Theorem 1.3.5 implies that u(ε1, . . . , εn, z) is increasing in ε1. Similarly, we also obtain
that u(ε1, . . . , εn, z) is increasing in every εj for 1 ≤ j ≤ n. On the other hand, by
Lemma 2.1.2, u(ε1, . . . , εn, z) ≥ u. By this, in order to get u(ε1, . . . , εn, z) decreases to u as
(ε1, . . . , εn) → 0, one just needs to use the upper semi-continuity of u as in the proof of
Theorem 1.3.5.
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We call uε standard regularisation of u. Recall some basic on differential forms on
Rm, where m is a positive integer. For every subset I = {i1, . . . , ik} ⊂ {1, . . . ,m} (here
i1 < . . . < ik), denote dxI := dxi1 ∧ · · · ∧ dxik . Every differential k-form Φ on Rn can be
written uniquely as

Φ =
∑
I

fI(x)dxI ,

where I runs over every subset of {1, . . . ,m} of cardinality k. We say Φ ∈ C s if fI is so
for every I. A k-form is said to be real if its coefficients are real. Let Dk be the set of
smooth k-form with compact support in Ω.

Let f(x1, . . . , xm) be a C 1 function on Rm. The exterior differential operator d acting
on differential forms is computed as follows. We have

df(x1, . . . , xm) =
m∑
j=1

∂xjf(x1, . . . , xm)dxj.

More generally for every differential k-form Φ =
∑

I fI(x)dxI , recall

dΦ =
∑
I

dfI ∧ dxI

which is a (k + 1)-form.
Let z = (z1, . . . , zn) be the standard complex coordinates in Cn. For j = 1, . . . , n, put

zj = xj + iyj. We identify Cn with R2n by sending (z1, . . . , zn) to (x1, y1, . . . , xn, yn). Set
dzj := dxj + idyj and dz̄j := dxj − idyj. Similarly as above, we put

dzI = dzi1 ∧ · · · ∧ dzik , dz̄I = dz̄i1 ∧ · · · ∧ dz̄ik .

Observe dxj = 1/2(dzj + dz̄j) and dyj = 1/(2i)(dzj − dz̄j). Using these formulae, we can
decompose Φ uniquely as

Φ =
∑
I,J

fIJdzI ∧ dz̄J ,

where I, J run overs non-empty subsets of {1, . . . ,m}. Let Φ :=
∑

I,J f I,Jdz̄I ∧ dzJ . We
say that Φ is of bi-degree (p, q) (and say Φ is a (p, q)-form or a form of bi-degree (p, q)) if
fIJ = 0 for every (I, J) such that either |I| 6= p or |J | 6= q. Denote by Dp,q(Ω) the set of
smooth (p, q)-forms with compact support in Ω. We have seen that

Dk(Ω) = ⊕p+q=kDp,q(Ω). (2.1.2)

Using this decomposition, we see that d = ∂+ ∂̄, where for every (p, q)-form Φ, we define
∂Φ to be the (p+1, q)-form in the decomposition of dΦ given by (2.1.2). Analogously, ∂̄Φ

is the (p, q+ 1)-form in the last decomposition of dΦ. The operators ∂, ∂̄ act on Dk(Ω) by
using (2.1.2). Since d2 = 0, using bi-degree decomposition, we get

∂2 = ∂
2

= 0, ∂∂ + ∂∂ = 0.

Put ∂zj := 1/2(∂xj − i∂yj) and ∂z̄j := 1/2(∂xj + i∂yj) for 1 ≤ j ≤ n. For Φ = fIJdzI ∧ dz̄J ,

∂Φ = ∂zjfIJdzj ∧ dzI ∧ dz̄J , ∂Φ = ∂z̄jfIJdz̄j ∧ dzI ∧ dz̄J .

Put dc := i/(2π)(∂−∂). Hence ddc = i/π∂∂̄. When n = 1, the operator ddcu = c0∆u(idz∧
dz̄), where c0 > 0 is a constant.
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Lemma 2.1.7. (i) Let Φ =
∑

I,J fIJdzI ∧dz̄J be a form. Then Φ is real if and only if Φ = Φ,
or equivalently fIJ = (−1)|I||J |fJI for every I, J .

(ii) Let Φ be a real form, then ddcΦ is real as well, in other words, ddc is a real operator.

Proof. Consider a form Φ formally as a polynomial of real variables dxj, dyj for 1 ≤ j ≤ n

with complex coefficients. Then Φ is simply the complex conjugate of the polynomial Φ.
Hence (i) follows. The (ii) is deduced by similar reasons.

Lemma 2.1.8. Let g : Ω′ → Ω be a holomorphic map. Let Φ be a form. Then g∗∂Φ = ∂g∗Φ,
and a similar equality for ∂̄ also holds. Moreover if Φ is of bi-degree (p, q) then g∗Φ is so.

Proof. Since f ∗ and ∂ are linear, it suffices to check the desired equality for Φ of bi-degree
(p, q). Since dg∗Φ = g∗dΦ, and g∗ preserves the bi-degree, we get the desired equality.

Lemma 2.1.9. Let u ∈ C 2(Ω). Then u is psh if and only if ddcu ≥ 0, i.e, the matrix of
coefficients of −iddcu is positive semidefinite.

Proof. Let z ∈ Ω and v = (v1, . . . , vn) ∈ Cn. Let L := z + Cv which is a complex line
passing through z. Put uL(t) := u(x+ tv) which is the restriction of u to L. We have

ddcu(z) = i/π
∑

1≤j,k≤n

∂2
zj z̄k

f(z)dzj ∧ dz̄k.

Using Lemma 2.1.8, we compute

c0∆u(idt ∧ dt̄) = ddcuL(t) = (ddcu)|L
= i/π∂2

zj z̄k
f(z + tv)d(zj + vjt) ∧ d(zk + vjt)

=

( ∑
1≤j,k≤n

∂2
zj z̄k

f(z + tv)vj v̄k

)
i/πdt ∧ dt̄.

It follows that u is psh if and only if
∑

1≤j,k≤n ∂
2
zj z̄k

f(z)vj v̄k ≥ 0 for every v ∈ Cn. This
finishes the proof.

Lemma 2.1.10. Let Ω = U+ iV , where U, V are open subsets in Rn. Let u be a psh function
on Ω such that u(z) depends only on Re z. Then the function u(x) with x ∈ U is convex.

Proof. By regularisation of u (which depends also only on Re z), we can assume u ∈ C 2.
In this case, we have 0 ≤ ddcu(x) = Hxu(x) (Hessian of u(x)). Hence u is convex.

Lemma 2.1.11. Let f : Ω′ → Ω be a holomorphic function. Let u be psh on Ω. Then u ◦ f
is also psh.

Proof. By regularisation, it suffices to check the desired assertion for u smooth. To check
u ◦ f is psh, we need to restrict it to a complex line L′ in Ω′. Hence without loss of
generality, we can assume that Ω′ is in C. Let t0 ∈ Ω′ ⊂ C. We need to check that
ddc(u◦f)(t0) ≥ 0. Locally near t0, we have f(t0 +t) = f(z0)+vt+O(t2). Now we compute
ddc(u◦f)(t0) as in the proof of Lemma 2.1.9 to obtain the positivity of ddc(u◦f)(t0). This
finishes the proof.
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Theorem 2.1.12. Let w ∈ Ω. The function

Mu(w; r1, . . . , rn) :=
1

(2π)n

∫
∂D(z,r)

u(w1 + r1e
iθ1 , . . . , wn + rne

iθn)dθ1 · · · dθn

is a convex function in (log r1, . . . , log rn) which is increasing in each variable rj for 1 ≤ j ≤
n.

Proof. We have already known that Mu(r) is increasing in each variable rj. Consider the
function

Mu(z) :=
1

(2π)n

∫
∂D(z,r)

u(z1 + ez1eiθ1 , . . . , zn + ezneiθn)dθ1 · · · dθn

which is psh by Lemma 2.1.11. This function depends only on Re z. Hence applying
Lemma 2.1.10 to Mu(z) implies that Mu(r) is convex in (log r1, . . . , log rn).

Corollary 2.1.13. For every z ∈ Ω, the limit

ν(u, z) := lim
r→0

Mu(z; r, . . . , r)

log r
≥ 0

exists and we have

u(z′) ≤ ν(u, z) log
max{|z′1 − z1|, . . . , |z′n − zn|}

r
+Mu(z; log r, . . . , log r) (2.1.3)

for every z′ ∈ D(z1, r)× · · · × D(zn, r).

Proof. Let f(t) := Mu(z; et, . . . , et) for −∞ < t ≤ 0. By Theorem 2.1.12, we infer that
f(t) is a convex increasing function in t. It follows that the function

f(t)− f(t0)

t− t0
≥ 0

is increasing in t for t0 fixed. Thus f(t)/t is convergent as t → −∞. The first desired
assertion follows. We check the second one. Since

ν(u, z) = lim
t→−∞

f(t)/t = lim
t→−∞

f(t)− f(t0)

t− t0
,

using the increasing property of the function in the limit, we get

f(t) ≤ ν(u, z)(t− t0) + f(t0)

for every t ≤ t0. This combined with the fact that u(z′) ≤ f(t) if z′ ∈ D(z1, e
t) × · · · ×

D(zn, e
t) gives the second desired assertion.

The nonnegative number ν(u, z) is called the Lelong number of u at z. Bounded psh
functions have zero Lelong number everywhere. However the converse is far from being
true. For example, the function u(z) = −

√
− log z (for ‖z‖ < 1) is psh by Lemma 2.2.1

below, and it has zero Lelong number everywhere (by (2.1.3)). Observe that for u ≤ v

psh functions, then ν(u, z) ≥ ν(v, z) for every z because Mu ≤ Mv. The Lelong numbers
is a simple and important object measuring the singularity of psh functions.
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2.2 Construction of plurisubharmonic functions

Lemma 2.2.1. Let χ : Rm → R be a convex function such that χ(t1, . . . , tm) is increasing
in each variable tj, and χ can be extended continuously to be a function from [−∞,∞)m

to [−∞,∞). Let u1, . . . , um be psh functions on Ω. Then χ(u1, . . . , um) is also psh. In
particular, the functions u1 + · · ·+ um, max{u1, . . . , um}, and log(eu1 + . . .+ eum) are psh.

A function f on Ω is said to be holomorphic if for every z0 ∈ Ω, there exists a small
open neighborhood U of z0 such that

f(z1, . . . , zn) = f(z0) +
∞∑
k=1

∑
|I|=k

aI(z − z0)I

which is an absolutely convergent series for z ∈ U , where aI ∈ C, I = (i1, . . . , in) ⊂∈ Nn,
|I| := i1 + · · ·+ in and zI := zi11 · · · zinn .

Lemma 2.2.2. Let f be a holomorphic function on Ω. Then log |f | is psh on Ω.

Corollary 2.2.3. Let f1, . . . , fm be holomorphic functions. Then for every positive constant
a1, . . . , am, we have that log(|f1|a1 + . . .+ |fm|am) is psh.

By the last result, the function log max{|z′1 − z1|, . . . , |z′n − zn| is psh. This combined
with (2.1.3) shows that the Lelong number ν(u, z) of a given psh function u at z is the
largest constant λ such that

u(z′) ≤ λ log max{|z′1 − z1|, . . . , |z′n − zn|}+O(1)

for z′ in a small polydisk around z. Moreover using the fact that

(D(z, r/n))n ⊂ B(z, r) ⊂ (D(z, r))n

(B(z, r) is the ball of radius r centered at z), we also see that ν(u, z) is the largest constant
λ such that

u(z′) ≤ λ log ‖z′ − z‖+O(1)

for z′ in a small ball around z.

Lemma 2.2.4. Let (uj)j∈J be a family of psh function which is locally bounded from above
uniformly. Then (supj∈J uj)

∗ is also psh.

Lemma 2.2.5. The limit of a decreasing sequence of psh functions is either identically equal
to −∞ or a psh function.

Theorem 2.2.6. Let u be a psh function on Ω. Let U be an open subset of Ω and v be a
psh function on U . Assume that lim supz′→z v(z′) ≤ u(z) for every z ∈ ∂U ∩ Ω. Then the
function

w =

{
max{u, v} on U,

u on Ω\U

is psh on Ω.
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Lemma 2.2.7. (strong upper semi-continuity) Let u be a psh function on Ω. Let B be a set
of zero Lebesgue measure on Ω. Then for every z ∈ Ω, we have

lim sup
z′ 6∈B→z

u(z′) = u(z).

Theorem 2.2.8. Let A be a closed subset in C such that A = {v = −∞} for some psh
function v on Ω. Let u be a psh function on Ω\A such that for every compact subset K on
Ω, the function u is bounded from above on K\A. Then u can be extended uniquely to be a
psh function ũ on Ω.

A C 2 function u is said to be pluriharmonic if ddcu = 0.

Lemma 2.2.9. Let u be pluriharmonic. For every polydisk D(w, r) b Ω, we have

u(z) =
1

(2π)n

∫
∂D(w,r)

n∏
j=1

r2
j − |zj − wj|2

|reiθj − (zj − wj)|2
u(w1 + r1e

iθ1 , . . . , wn + rne
iθn)dθ1 · · · dθn.

In particular u is smooth.

A higher dimensional analogue of Theorem 1.1.1 also holds: u is pluriharmonic if
and only if it is locally the real part of a holomorphic function. We refer to [13, Page 42]
for a proof.

2.3 Complex Hessian of psh functions

Let (z1, . . . , zn) be the standard coordinates on Cn. We orient Cn by using the standard
volume form voln := (i/2dz1 ∧ dz̄1) ∧ · · · ∧ (i/2dzn ∧ dz̄n).

A k-current on Ω is a continuous linear functional T from Dn−k(Ω) to C. Here
D2n−k(Ω) denotes the set of smooth (2n − k)-forms with compact support in Ω, and
by continuity we mean that for every sequence (Φj)j∈N ⊂ D2n−k(Ω) such that there ex-
ists a compact K ⊂ Ω satisfying SuppΦj ⊂ K for every j and Φj converges to some
Φ∞ ∈ Dn−k(Ω) in C∞ topology, we have 〈T,Φj〉 → 〈T,Φ∞〉 as j →∞. Every k-form with
locally integrable coefficients Ψ on C can be viewed as a distribution TΨ by putting

〈TΨ,Φ〉 :=

∫
Ω

Ψ ∧ Φ.

In practice we usually identify TΨ with Ψ, and use the same notation Ψ to denote TΨ.
More generally, every k-form whose coefficients are Randon measures is a k-current.

Let (Tj)j∈N be a sequence of k-current on Ω. Let T be a k-current on Ω. We say that
Tj converges weakly to T if

〈Tj,Φ〉 → 〈T,Φ〉

as j →∞ for every Φ ∈ C∞c (Ω). For I, J ⊂ {1, . . . , n} and f ∈ C∞c (Ω) put

〈TIJ , f〉 := 〈T, δIJfdzIc ∧ dz̄Jc〉,
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where δIJ is defined by the equality

dzI ∧ dz̄J ∧ dzIc ∧ dz̄Jc = δIJ(i/2dz1 ∧ dz̄1) ∧ · · · ∧ (i/2dzn ∧ dz̄n).

We infer that TIJ are distributions on Ω and

T =
∑
I,J

TIJdzI ∧ dz̄J .

Every distribution T on Ω can be naturally identified with a 2n-current by identifying T
with T voln.

Lemma 2.3.1. A linear functional T : D2n−k(Ω) → C is a current if and only if for every
compact K ⊂ Ω, there exist an integer s ∈ N and a constant C > 0 such that

〈T,Φ〉 ≤ C‖Φ‖C s(Ω), (2.3.1)

for every smooth f with compact support in K.

Proof. Straightforward.

When (2.3.1) holds for s = 0 for every K, we say that T is of order 0. The following
is a generalization of Theorem 1.5.2.

Theorem 2.3.2. ([32, Theorem 2.14]) Let X be a compact Hausdorff space, and let Λ be
a bounded linear functional on the space C (X) of continuous functions in X. Then there
exists a complex Radon measure µ on X representing Λ, i.e,

〈Λ, f〉 =

∫
X

fdµ

for every f ∈ C (X).

Consequently, we get

Corollary 2.3.3. Every current of order 0 is a differential form whose coefficients are com-
plex Radon measures.

Let T be a k-current on Ω. We define the exterior differential dT of T to be the (k+ 1)-
current given by

〈T,Φ〉 = (−1)k+1〈T, dΦ〉

for every Φ ∈ D2n−k(Ω). We say that T is of bi-degree (p, q) or of bi-dimension (n−p, n−q)
if 〈T,Φ〉 = 0 for every (p′, q′)-form Φ with (p′.q′) 6= (n− p, n− q). By decomposing forms
into sums of (p, q)-forms, we see that every k-current can be decomposed uniquely as the
sum of (p, q)-currents. For a (p, q)-current T and (p′, q′)-form Φ, put

〈∂T,Φ〉 := (−1)p+q+1〈T, ∂Φ〉

if (p′, q′) = (n−p−1, q), and 〈∂T,Φ〉 = 0 otherwise. By linearity, we obtain a well-defined
(p + 1, q)-current ∂T . We define ∂T similarly. Note that d = ∂ + ∂. When T is smooth,
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∂T and ∂T coincide with the definition in the smooth case. We say that T is closed (or
d-closed) if dT = 0, we define similarly ∂-closedness, and ∂-closedness.

A simple positive continuous (p, p)-form is (iγ1 ∧ γ1) ∧ · · · ∧ (iγp ∧ γp), where γ1, . . . , γp
are (1, 0)-form (with complex coefficients). Every simple positive form is real. Positivity
of forms are preserved under holomorphic maps.

Lemma 2.3.4. Every constant (p, p)-form can be written as a linear combination (with
functions coefficients) of constant simple positive forms.

Proof. For the first desired assertion, it suffices to use the formula

4dzj ∧ dz̄k = (dzj + dzk) ∧ (dzj + dzk)− (dzj − dzk) ∧ (dzj − dzk)
+ i(dzj + idzk) ∧ (dzj + idzk)− i(dzj − idzk) ∧ (dzj − idzk).

A real (1, 1)-current T is said to be positive (and write T ≥ 0) if 〈T, α〉 ≥ 0 for every
simple positive form α with compact support. Since simple positive form are preserved
under holomorphic maps, the positivity is independent of the Euclidean coordinates on
Cn.

Lemma 2.3.5. Let α = i
∑

j,k ajkdzj ∧ dz̄k be a real continuous (1, 1)-form. Then α ≥ 0 if
and only if the Hermitian matrix [ajk]1≤j,k≤n is positive semidefinite. In particular, for every
C 2 function u, then u is psh if and only if ddcu is a closed positive form.

Proof. the second desired assertion follows from the first one and Lemma 2.1.9. We
check the first one. We assume first that the Hermitian matrix [ajk]1≤j,k≤n is positive
semidefinite. Note that for a Hermitian matrix, being positive semidefinite is preserved
under an C-linear change of coordinates in Cn. Let β be a simple (n− 1, n− 1)-form. Fix
z0 ∈ Ω. By a C-linear change of coordinates, we can assume that β(z0) = c(idz2 ∧ dz̄2) ∧
· · · ∧ (idzn ∧ dz̄n), where c is a positive constant. Now we compute

α(z0) ∧ β(z0) = a11(z0) voln ≥ 0

because a11 ≥ 0. Thus α ≥ 0. Conversely, assume α ≥ 0. Let t = (t1, . . . , tn) ∈ Cn\{0}.
Let (t, z′2, . . . , z

′
n) be new orthogonal coordinates on Cn. Let vol′n be the canonical volume

form in Cn induced by these new coordinates. Compute

0 ≤ α ∧ (idz′2 ∧ dz̄′2) ∧ · · · ∧ (idz′n ∧ dz̄′n) =

( ∑
1≤j,k≤n

ajktj t̄k

)
vol′n.

Since vol′n ≥ 0, we get
∑

1≤j,k≤n ajktj t̄k ≥ 0. The desired assertion follows.

Lemma 2.3.6. Every positive (1, 1)-current T has measures coefficients.

Proof. Let α be a constant simple positive (n − 1, n − 1)-form. By positivity, T ∧ α is a
positive (n, n)-current. Hence it is a measure. By Lemma 2.3.4, every coefficient TIJ can
be written as a linear combination of some T ∧ α. Hence TIJ is a complex measure.
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Theorem 2.3.7. Let u be a psh function on Ω. Then ddcu is a closed positive current.

Proof. Let (uε)ε be a regularisation of u. We have ddcuε → ddcu as ε → 0 in the sense
of distributions. On the other hand by Lemma 2.3.5, we get ddcuε ≥ 0. It follows that
ddcu ≥ 0. The closedness is clear because d(ddcu) = 0.

Theorem 2.3.8. Let u be a distribution on Ω such that ddcu ≥ 0. Then there exists a psh
function u′ on Ω such that u = u′.

Corollary 2.3.9. Let (uj)j∈J be a family of psh function which is locally bounded from
above uniformly. Then the set of z ∈ Ω such that (supj∈J uj)

∗(z) > (supj∈J uj)(z) is of zero
Lebesgue measure.

The set of x such that (supj∈J uj)
∗(z) > (supj∈J uj)(z) is called a negligible set. By

the above result, every negligible set is of zero Lebesgue measure. We will see later
that a much deeper property holds: every negligible set is pluripolar (i.e, contained in
{u = −∞} for some psh function u on Ω or even in Cn).

Corollary 2.3.10. Let u be a distribution on Ω such that ddcu = 0. Then there exists a
pluriharmonic function u′ on Ω such that u = u′.

Proof. It suffices to apply Theorem 2.3.8 to u and −u and use the mean equality.

We admit the following important result.

Theorem 2.3.11. ([13, Page 135]) Let T be a closed positive (1, 1)-current. Then T is
locally equal to ddcu for some psh function u.

2.4 Compactness properties

Recall Ω is a domain in Cn.

Theorem 2.4.1. Let u be a negative psh function on Ω such that ‖u‖L1(Ω) ≤ 1. Let K be a
compact subset of Ω. Then there exist constants C, α > 0 independent of u such that∫

K

e−αudLeb ≤ C.

In particular the Lp norm of u on K is uniformly bound.

Proof. Without loss of generality we can assume that u ≤ 1 on Ω. By using a partition
of unity, we can assume that K ⊂ (D1/2)n and Ω = Dn. Since ‖u‖L1(Ω) ≤ 1, there exists
z0 ∈ (D1/2)n, such that u(z0) ≥ −M , where M > 0 is a constant independent of u. We
can assume z0 = 0. For 1 ≤ j ≤ n, let Fj : D× Dn−1 → Cn be given by

F (t, z′1, . . . , z
′
n−1) = t(z′1, . . . , z

′
j−1, 1, z

′
j+1, . . . , z

′
n−1).

For z = (z1, . . . , zn) ∈ Dn, there exists j such that |zj′| ≤ |zj| for every j′ 6= j. Hence
such z belongs to the image of Fj. We deduce that the images of Fj ’s cover the polydisk
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Dn. Moreover since Fj is 1− 1 almost everywhere, using change of variables formula, we
obtain ∫

K

e−αudLeb .
n∑
j=1

∫
Dn
e−αu◦FdLeb .

It remains to estimate

Aj :=

∫
Dn
e−αu◦FdLeb =

∫
Dn−1

dLebCn−1

∫
D
e−αu◦FdLebC .

Consider the function v := u ◦ F (·, z′) for fixed z′. We have v ≤ 1 on D and v(0) ≥ −M
and v is subharmonic on an open neighborhood of D. Thus applying Theorem 1.6.1 to v
implies that ∫

D
e−αu◦FdLebC . 1

uniformly in z′. This implies that Aj . 1. The proof is finished.

The following is fundamental in pluripotential theory.

Theorem 2.4.2. (i) (Hartogs’ lemma) Let (uj)j be a sequence of psh functions converging
weakly to some distribution u∞ on Ω. Then u∞ is also a psh function and uj → u∞ in Lploc
for every constant 0 < p < ∞. Furthermore for every compact subset K in Ω and every
continuous function f on K, we have

lim sup
j→∞

sup
K

(uj − f) ≤ sup
K

(u− f). (2.4.1)

(ii) Let (uj)j be a sequence of psh functions uniformly locally bounded from above defined
on Ω. Then either uj converges uniformly on compact subsets in Ω to −∞ as j →∞ or there
exists a subsequence (uj′)j′ which converges in Lp to a psh function u∞ for every real number
0 < p <∞.

Proof. We argue verbatim as in the proof of Theorem 1.6.4.

Corollary 2.4.3. (i) Let (uj)j be a sequence of psh functions converging weakly to some
distribution u on Ω. Let ϕj := supk≥j uk. Then the upper semi-continuity regularisation ϕ∗j
of ϕj decreases to u.

(ii) Let χ be as in Lemma 1.4.1. For 1 ≤ k ≤ m, let ujk be psh function such that ujk
converges in L1

loc to uk as j → ∞. Then we also have χ(uj1, . . . , ujm) converges in L1
loc to

χ(u1, . . . , um) (hence in Lploc for every p > 0).

Corollary 2.4.4. Let (uj)j be a sequence of pluriharmonic functions converging weakly to a
harmonic function u on Ω. Then uj converges to u in C∞ topology in Ω.
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2.5 Quasi-plurisubharmonic functions

Let X be a complex manifold (a differentiable manifold of even real dimension equipped
with a C∞ atlats whose transition functions are holomorphic). The notion of bidegree
(p, q) is independent of local coordinates by Lemma 2.1.8. The operators ∂, ∂ hence
extends globally to X. Likewise the notion of positivity for real (1, 1)-currents are also
naturally extended.

A function u on X is said to be psh if it is locally psh, i.e, for every x ∈ X, there
exists a biholomorphic map f (hence for such every f by Lemma 2.1.11) from an open
neighborhood of x to an open subset Cn such that u◦f−1 is psh on f(U). By the maximum
principle, we have the following.

Lemma 2.5.1. There is no non-constant psh function on compact complex manifold.

This is the reason to introduce the notion of quasi-plurisubharmonicity for functions
on compact complex manifolds.

Let X be a complex manifold of dimension n. A function from X to [−∞,∞) is said to
be quasi-plurisubharmonic (quasi-psh for short) if it can be written locally as the sum of
a psh function and a smooth one. Obviously every smooth function on X is quasi-psh. A
bit more elaborated example is as follows. Let Br be the ball centered at 0 in Cn of radius
r. Let U be a local chart in X biholomorphic to the unit ball in Cn, let χ be a smooth
function on X supported on B2/3 ⊂ U and χ = 1 on B1/2, then u := χ(x) log ‖x‖ is a well-
defined quasi-psh function on X and {u = −∞} is non-empty. Put dc := i/(2π)(∂ − ∂).

Lemma 2.5.2. For every quasi-psh function u on a complex manifold X, there exist a
smooth (1, 1)-form η such that ddcu+ η ≥ 0.

Proof. Let (χj)j be a partition of unity subordinated to some locally finite covering (Uj)j
on X. Let u = uj + fj on Uj where uj is psh on Uj and fj is smooth on Uj. Thus we get
ddcu = ddcuj + ddcfj ≥ ddcfj on Uj. It follows that

ddcu =
∑
j

χjdd
cu ≥

∑
j

χjdd
cfj =: η

which is a smooth (1, 1)-form on X. This finishes the proof.

For a continuous real (1, 1)-form η, a quasi-psh function u is said to be η-psh if ddcu+

η ≥ 0 in the sense of currents.

Lemma 2.5.3. Let T be a closed positive (1, 1)-current on X. Then there exist a smooth
closed (1, 1)-form η on X and an η-psh function u such that T = ddcu+ η.

Proof. Let (χj)j be a partition of unity subordinated to some locally finite covering (Uj)j
on X. We choose elements Uj of that covering to be relatively compact small enough
local charts so that T = ddcuj on Uj where uj is psh on Uj (see Lemma 2.3.11). On
Uj ∩ Uj′, we have ddc(uj − uj′) = 0. Hence by Corollary 2.3.10, uj − uj′ is smooth. Put

u :=
∑
j

χjuj.
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We compute ddcu on Uj0. Let x0 ∈ Uj0. Let J0 be the set of j such that x0 ∈ Uj. Observe
that J0 is finite because our covering is locally finite. Let W be a small neighborhood of
x0 such that W ∩ U j = ∅ for j 6∈ J0. For x ∈ W we have

u(x) =
∑
j∈J0

χj(x)uj(x)

=
(∑
j∈J0

χj(x)
)
uj0(x) +

∑
j∈J0

χj(x)(uj(x)− uj0(x))

= uj0(x) +
∑
j∈J0

χj(x)(uj(x)− uj0(x)).

Since the second term is smooth, we see that ddcu = ddcuj0 + η = T + η on W for some
smooth form η. Hence the desired assertion follows.

Proposition 2.5.4. (the Lelong-Jensen formula) Let u be a psh function on an open subset
Ω in C. The for every disk D(z, r1) b D(z, r2) b Ω, we have

1

2π

∫ 2π

0

u(z + r2e
iθ)− 1

2π

∫ 2π

0

u(z + r1e
iθ) =

∫ r2

r1

dr

r

∫
Dr
ddcu. (2.5.1)

In particular,

u(z) =
1

2π

∫ 2π

0

u(z + r2e
iθ)−

∫ r2

0

dr

r

∫
Dr
ddcu.

Proof. Firstly notice that (2.5.1) holds for every smooth function in place of u. This can
be seen by a direct computation using integration by parts. We leave it to readers. We
explain how to get it for psh functions.

Let (uε)ε be a standard regularisation of u. Since uε is smooth, as observed above, we
get

1

2π

∫ 2π

0

uε(z + r2e
iθ)− 1

2π

∫ 2π

0

uε(z + r1e
iθ) =

∫ r2

r1

dr

r

∫
Dr
ddcuε. (2.5.2)

When ε→ 0 the left-hand side tends to that of (2.5.1). We deal with the right-hand side.
Since ∆uε → ∆u weakly, for every r so that ddcu has no mass on ∂Dr, we have∫

Dr
ddcuε →

∫
Dr
ddcu (2.5.3)

as ε → 0. Since ddcu is a Radon measure, there are at most a countable number of
0 < r ≤ r2 such that ddcu has mass on ∂Dr. It follows that (2.5.3) holds for almost
everywhere r. We infer that the right-hand side of (2.5.2) tends to that of (2.5.1) as
ε → 0. Thus we get (2.5.1). The second desired equality follows by taking r1 → 0. The
proof is finished.

We have the following characterization of quasi-psh functions in terms of submean-
type inequalities.
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Proposition 2.5.5. Let U be an open subset of Cn and η a continuous real (1, 1)-form on
U. A function u : U → [−∞,∞) is η-psh if and only if it is upper semi-continuous, not
identically −∞ and for every x ∈ U and every complex line Lv := {x+ tv : t ∈ C}, for some
v ∈ Ck\{0}, passing through x, we have

u(x) ≤ 1

2π

∫ 2π

0

u(x+ εeiθv)dθ +

∫ ε

0

dt

t

∫
{|s|≤t}

ηv, (2.5.4)

for every constant ε > 0 small enough, where ηv(t) is the restriction of η to Lv which is
identified with C via t 7−→ x+ tv.

Proof. Consider an η-psh function u. We need to verify (2.5.4). Let χ be a usual cut-off
function used to define standard regularisation of u and let χr be the associated cut-off
function for every constant r > 0. Recall

ur(x) :=

∫
Cn
u(x− y)χr(y)dLeb(y)

which is smooth (we change a bit the notation for the standard regularisation here). We
have ur → u pointwise as r → 0 because u can be written as the sum of a psh function
and a smooth one. Denote by

ηr(x) :=

∫
Cn
η(x− y)χr(y) vol(y)

which converges uniformly to η as r → 0 because η is continuous. We deduce that
ddcu+ η ≥ 0 if ddcur + ηr ≥ 0 for every r small. On the other hand, we have

ddcur + ηr =

∫
Cn

[ddcu(· − y) + η(· − y)]χr(y) vol(y)

which is the convolution of the (1, 1)-current (ddcu + η) with χr. Thus ddcur + ηr ≥ 0 if
ddcu + η ≥ 0. Similarly, (2.5.4) holds if it holds for (ur, ηr) in place of (u, η) for every
small r. It follows that it suffices to prove (2.5.4) for smooth u and smooth η.

Hence we can assume u, η are smooth and follow standard arguments in [24]. Let
v ∈ Ck and x ∈ U. Put uv(t) := u(x + tv). We get ddcuv + ηv ≥ 0. The Lelong-Jensen
formula for uv(t) gives

Mε,v −Mε′,v =

∫ ε

ε′

dt

t

∫
{|s|≤t}

ddcuv,

where ε > ε′ are positive constants and

Ms,v :=
1

2π

∫ 2π

0

uv(εe
iθ)dθ

for every constant s > 0. It follows that

Mε′,v ≤Mε,v +

∫ ε

ε′

dt

t

∫
{|s|≤t}

ηv.
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Letting ε′ → 0 in the last inequality gives (2.5.4) because uv is continuous at 0.
Assume now (2.5.4). This combined with the hypothesis that u 6= −∞ implies u ∈

L1
loc. Moreover, as in the case of psh functions, since u is upper semi-continuous, (2.5.4)

also tells us that u is strongly upper semi-continuous in the sense that for every Borel
subset A of U whose complement in U is of zero Lebesgue measure, we have

lim sup
y∈A→x

u(y) = u(x). (2.5.5)

Indeed, by the upper semi-continuity of u, we have lim supy∈A→x u(y) ≤ u(x). We only
need to check the inverse inequality. Since the problem is local, we can assume η is
bounded. Integrating (2.5.4) with respect to ε, we get

u(x) ≤ 1

πε2

∫
{|t|≤ε}

u(x+ tv)(
i

2
dt ∧ dt̄) + ‖η‖L∞O(ε2),

for every ε small enough. Letting ε→ 0 in the last inequality gives

u(x) ≤ lim sup
ε→0

1

πε2

∫
{|t|≤ε}

u(x+ tv)(
i

2
dt ∧ dt̄). (2.5.6)

Let δ be a strictly positive constant. There exists a constant δ1 > 0 such that

u(y′) ≤ lim sup
y∈A→x

u(y) + δ, (2.5.7)

for every y′ ∈ A such that ‖y′ − x‖ ≤ δ1. Since the Lebesgue measure of U\A is zero, by
Fubini’s theorem, for almost everywhere v ∈ Ck\{0}, the set (U\A) ∩ Lv is of Lebesgue
measure zero in Lv. Using this, (2.5.6) and (2.5.7), we see that for almost everywhere
v ∈ Ck\{0} and Av := {t : (x+ tv) ∈ A ∩ Lv},

u(x) ≤ lim sup
ε→0

1

πε2

∫
{|t|≤ε, t∈Av}

u(x+ tv)(
i

2
dt ∧ dt̄) ≤ lim sup

y∈A→x
u(y) + δ

for every constant δ > 0. Letting δ → 0 in the last inequality implies

u(x) ≤ lim sup
y∈A→x

u(y).

Thus (2.5.5) follows.
Consider first the case where u ∈ C 2. Direct computations show

ε−2
(
Mε,v − uv(0)

)
→ πddcuv(0)/2

as ε → 0. Applying this to (2.5.4) gives ddcuv(0) + ηv(0) ≥ 0. In other words, we get
ddcu+ η ≥ 0.

In general, let ur, ηr be as above. Since u ∈ L1
loc, u

r → u in L1
loc. We see easily that

(2.5.4) also holds for (ur, ηr) in place of (u, η). By the above arguments, ddcur + ηr ≥ 0.

Letting r → 0 gives ddcu+ η ≥ 0.

It remains to check that u is the sum of a psh function and a smooth one. To this end,
we only need to work locally. Thus, we can assume there is a smooth function ψ on U
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with ddcψ ≥ η. We deduce ddcu1 ≥ 0 for u1 := u + ψ which is also strongly semi-upper
continuous in the above sense. Let ur1 be the regularisation of u1 defined in the same way
as ur. Notice that ur1 → u1 in L1

loc and ur1 is psh and decreasing to some psh function u′1.

Hence, u1 = u′1 almost everywhere. Using this and (2.5.5) for u1 in place of u yield that
u1 = u′1 everywhere. In other words, u is quasi-psh. This ends the proof.

The following extension result generalizes the similar property for psh functions.

Lemma 2.5.6. Let U be an open subset in a complex manifold Y . Let η be a continuous real
(1, 1)-form on Y. Let ψ1 be an η-psh function on U and ψ2 an η-p.s.h function on Y such that
lim supy→x ψ1(y) ≤ ψ2(x) for every x ∈ ∂U . Define ψ := max{ψ1, ψ2} on U and ψ := ψ2 on
Y \U. Then ψ is an η-psh function.

Proof. This is a direct consequence of Proposition 2.5.5.

Let η be a continuous real (1, 1)-form. Denote by PSH(X, η) the set of η-psh functions
on X. Let ω be a Hermitian metric on X, i.e, ω is a smooth real (1, 1)-form on X such
that ω can be written locally as

ω = i
∑

1≤j,k≤n

ajkdzj ∧ dz̄k,

where [ajk]j,k is a positive definite Hermitian matrix. Since

ωn = | det[ajk]j,k|2 voln

in the local coordinates (z1, . . . , zn). The (n, n)-form ωn defines a smooth volume form on
X. In what follows we will use Lp-norms on X which are computed with respect to ωn.

Proposition 2.5.7. (Compactness for quasi-psh functions) Assume that X is compact. Let
A1, A2, A3 be the subset of PSH(X, η) consisting of u such that ‖u‖L1(X) ≤ 1, supX u = 0,
and

∫
X
uωn = 0 respectively. Then Aj is compact in the L1-topology (hence Lp-topology for

every p ≥ 1) for 1 ≤ j ≤ 3.

Proof. The fact that A1 is compact follows directly from Theorem 2.4.2 and the com-
pactness of X. We consider now A2. Suppose that there exists a sequence (uj)j ⊂ A2

such that ‖uj‖L1(X) → ∞ as j → ∞. Since (uj)j is uniformly bounded from above, by
Theorem 2.4.2 and extracting a subsequence if necessary, we get that either uj converges
uniformly to −∞, or uj converges in L1 to some quasi-psh function. The second possibil-
ity cannot occur because ‖uj‖L1(X) →∞. So uj converges uniformly to −∞. Let xj ∈ X
such that u(xj) = 0. We can assume xj → x∞ as j →∞. Consider a local chart U around
x∞ and j big enough so that xj ∈ U . By shrinking U , we can find a smooth psh function
ψ on U such that ddcψ ≥ η. Hence uj + ψ is psh on U . This combined with the submean
inequality implies

uj(xj) + ψ(xj) ≤ 1/vol(Dj)

∫
Dj

(uj(x) + ψ(xj))dLeb,
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where Dj b U is a small polydisk around xj. Since f is smooth, we infer

0 ≤ uj(xj) ≤ C

∫
U

ujdLeb +C

for some constant C independent of j. Letting j → ∞ gives a contradiction because the
right-hand side tends to −∞. Thus there exists a constant C such that ‖u‖L1(X) ≤ C for
every u ∈ A2. Consequently A2 is relatively compact. To see why A2 is indeed compact,
consider (uj)j ⊂ A2 such that uj → u in L1. Since uj ≤ 0 for every j, and uj → u almost
everywhere (a subsequence), we obtain u ≤ 0 on X. On the other hand, by (2.4.1), we
have supX u ≥ 0. Hence u ∈ A2, in other words, A2 is compact.

We deal with A3. It suffices to check that supX u is bounded uniformly for u ∈ A3.
In this case the compactness of A3 follows from that of A2. Let (uj)j ⊂ A3, and vj :=

uj − supX uj which belongs to A2. Hence by extracting a subsequence, we can assume
vj → v ∈ A2 in L1. It follows that∫

X

vωn = lim
j→∞

∫
X

vjω
n = − lim

j→∞
sup
X
uj

∫
X

ωn.

Hence supX uj is uniformly bounded in j. This finishes the proof.

The following is a nice application of the convexity of psh functions.

Lemma 2.5.8. Let u be a psh function on an open subset Ω in Cn. Let Mu(z, r1, . . . , rn) be
the function defined in Theorem 2.1.12. Then Mu(z, r1, . . . , rn) is a continuous psh function
in z for r1, . . . , rn fixed.

Proof. It suffices to check that Mu(z, r1, . . . , rn) is continuous psh on every relatively com-
pact subset U of Ω. Let U be such a set. Let r0 > 0 be such that for every z ∈ U , the
polydisk (D(z, r0))n b Ω. Without loss of generality we can assume r0 = 1.

By considering a sequence of smooth psh functions decreasing to u, we see that
Mu(z, r1, . . . , rn) is the limit of some decreasing sequence of psh functions. Hence it
is psh (hence upper semi-continuous). It remains to check that it is also lower semi-
continuous. By Theorem 2.1.12, Mu(z, r1, . . . , rn) is convex in (log r1, . . . , log rn) for z
fixed. Thus for λ ∈ (0, 1) we have

Mu(z, r1, . . . , rn) ≤ (1− λ)Mu(z, r
(1−λ)−1

1 , . . . , r(1−λ)−1

n ) + λMu(z, 1, . . . , 1). (2.5.8)

Fix λ small enough. Let z = (z1, . . . , zn). We see that if z′ = (z′1, . . . , z
′
n) is closed enough

to z, then

D(z1, r
(1−λ)−1

1 )× · · · × D(zn, r
(1−λ)−1

n ) b D(z′1, r1)× · · · × D(z′n, rn).

Thus by the submean inequality we get

Mu(z, r
(1−λ)−1

1 , . . . , r(1−λ)−1

n ) ≤Mu(z
′, r1, . . . , rn)

provided that z′ is closed enough to z. Letting z′ → z gives

Mu(z, r
(1−λ)−1

1 , . . . , r(1−λ)−1

n ) ≤ lim inf
z′→z

Mu(z
′, r1, . . . , rn).



CHAPTER 2. PLURISUBHARMONIC FUNCTIONS 42

This combined with (2.5.8) yields

Mu(z, r1, . . . , rn) ≤ (1− λ) lim inf
z′→z

Mu(z
′, r1, . . . , rn) + λMu(z, 1, . . . , 1).

Letting λ→ 0 in the last inequality gives the desired lower semi-continuity. This finishes
the proof.

Lemma 2.5.9. Let f : U → V be a biholomorphism between to open subsets in Cn. Let u be
a psh function with zero Lelong number everywhere on V . Then uε− (u◦f)ε ◦f−1 converges
uniformly on compact subsets in U to 0 as ε→ 0.

Here uε and (u ◦ f)ε denote the standard regularisations of u and u ◦ f by using the
same cut-off function.

Proof. It suffices to work on relatively compact subsets of V as in the proof of Lemma
2.5.8. Consider z ∈ K b V . Note that

uε(z) =

∫
[0,1]n

Mu(z, εr1, . . . , εrn)χ1(r1) · · ·χn(rn)dr1 · · · drn,

where
∫

[0,1]
χj(r)dr = 1 for 1 ≤ j ≤ n. Put

uε(z, r1, . . . , rj) =

∫
[0,1]n−j

Mu(z, εr1, . . . , εrn)χj+1(rj+1) · · ·χn(rn)drj+1 · · · drn.

We claim that

Claim. For every 1 ≤ j ≤ n, uε(z, r1, . . . , rj)− uε(z, r1, . . . , rj+1) converges uniformly to 0

as ε→ 0.

We prove Claim. We present the proof when n = 1. The general case is similar: we
only have to write more cumbersome formulae. Write χ for χ1 and r for r1. Fix r0 > 0

a constant such that D(z, r0) b Ω. As usual we can assume r0 = 1. By convexity for
0 < r ≤ 1,

Mu(z, ε)−Mu(z, εr) ≤
log ε− log(εr)

log 1− log(εr)
(Mu(z, 1)−Mu(z, εr)) (2.5.9)

=
− log r

log 1− log(εr)
(Mu(z, 1)−Mu(z, εr)).

Integrating the last inequality against χ(r)dr over [0, 1] gives

Mu(z, ε)− uε(z) ≤
∫ 1

0

− log r
Mu(z, 1)−Mu(z, εr)

− log ε− log r
χ(r)dr.

Since
Mu(z, 1)−Mu(z, εr)

− log ε− log r
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decreases to ν(u, z) = 0 everywhere. This convergence is uniform by Dini’s theorem. This
combined with Lebesgue’s dominated convergence theorem shows that Mu(z, ε) − uε(z)

converges uniformly to 0 as ε→ 0. The Claim is proved. Letting ε→ 0 in (2.5.9), we also
obtain that

Mu(z, ε, . . . , ε)−Mu(z, εr, . . . , εr)→ 0 (2.5.10)

uniformly in z ∈ K as ε→ 0.
By Claim for 1 ≤ j ≤ n, we see that uε −Mu(·, ε, . . . , ε) converges uniformly to 0 as

ε→ 0. Now since f is diffeomorphism, there exists a constant C > 0 such that

f
(
Dn(z, εn)

)
b Dn(f(z), Cε), Dn(z, ε) b f

(
Dn(f(z), Cε)

)
for every z. Using this and the maximum principle, we obtain

Mu◦f (z, ε, . . . , ε) ≤Mu(·, Cε, . . . , Cε) ◦ f(z).

Consequently,

lim sup
ε→0

sup
K

((u ◦ f)ε ◦ f−1 − uε) = lim sup
ε→0

sup
K

(Mu◦f (·, ε, . . . , ε) ◦ f−1 − uε)

which is
≤ lim sup

ε→0
sup
K

(
Mu(·, Cε, . . . , Cε)−Mu(·, ε, . . . , ε)

)
= 0

by (2.5.10). Similarly by considering f−1 instead of f we can show that

lim sup
ε→0

sup
K

(uε − (u ◦ f)ε ◦ f−1) = 0.

Hence the desired assertion follows. The proof is finished.

Theorem 2.5.10. (Regularisation of quasi-psh functions) Let X be a complex manifold.
Let X ′ be a relatively compact open subset on X. Let ω be a Hermitian metric on X,
and η be a continuous real (1, 1)-form on X. Let u be an η-psh function on X such that
the Lelong numbers of u are all zero. Then there exist (εj)j ⊂ R≥0 converging to 0 and
uj ∈ PSH(X ′, η + εjω) ∩ C∞(X ′) such that uj decreases to u on X ′.

Proof. Fix a constant δ > 0. Cover X
′

by a finite number of local charts U1, . . . , Um
biholomorphic to Dn. Let fj : Dn → Uj be the biholomorphism defining the local chart
Uj. Let U ′j b U ′′j b Uj be open subsets in X such that (U ′j)j covers X. By dividing Uj into
smaller similar local charts and the continuity of η, we can assume that there is a smooth
psh function ψj on Uj such that

0 ≤ ddcψj − η ≤ δω

on Uj. Put
vj := u ◦ fj + ψj ◦ fj

which is psh on Dn. Let vj,ε be the standard regularisation of vj (using the same cut off
function χ for every j). We need to glue vj,ε to obtain a global quasi-psh function. Let wj
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be a smooth nonpositive function on X such that wj = −1 outside U ′′j and wj = 0 on U ′j,
and ddcwj ≥ Cf ∗j ω on Uj for some constant C > 0. Let

uε := max
1≤j≤m

1Uj
(
vj,ε ◦ f−1

j − ψj + δwj/C
)

We have that uε decreases to u as ε → 0 (using w = 0 on U ′j and X = ∪jU ′j). Consider
1 ≤ j1, j2 ≤ m. Let τ := f−1

j2
◦ fj1 which is a biholomorphic from f−1

j1
(Uj1 ∩ Uj2) onto its

image in 2Dn and

ϕε := vj1,ε − vj2,ε ◦ τ = vj1 ∗ χε −
(

(vj1 ◦ τ−1) ∗ χε
)
◦ τ +

(
(ψj1 ◦ fj2 − ψj1 ◦ fj2) ∗ χε

)
◦ τ.

The third term tends uniformly to (ψj1 ◦fj1−ψj1 ◦fj1) as ε→ 0. Whereas the difference of
the first two terms converges uniformly to 0 by Lemma 2.5.9. Hence we deduce that for
every 1 ≤ j1, j2 ≤ m, the function vj1,ε ◦ f−1

j − vj2,ε ◦ f−1
j2

converges uniformly to ψj1 − ψj2
as ε→ 0 on Uj1 ∩ Uj2.

Let x0 ∈ X. Let J0 the set of 1 ≤ j ≤ m such that x0 ∈ ∂Uj. Let W be a small open
neighborhood of x0 such that W ∩U ′′j = ∅ for every j ∈ J0. By the above arguments and
the fact that wj = −1 outside U ′′j b Uj, if ε is small enough, then

uε := max
j 6∈J0

1Uj
(
vj,ε ◦ f−1

j − ψj + δwj/C
)

on a small open neighborhood W of x0. For j ∈ J0, on W , we have

1Uj
(
vj,ε ◦ f−1

j − ψj + δwj/C
)

= vj,ε ◦ f−1
j − ψj + δwj/C

which is (η + εω)-psh. Hence uε is (η + εω)-psh on W , and hence on X because x0 is
arbitrary. The above arguments also show that uε is continuous. To get uε smooth, one
just need to use a regularisation of the max function to replace the max function in the
definition of uε. One can see [13, Page 43] for a specific construction: the function

G(t1, . . . , tm) := max{t1, . . . , tm}

is convex and increasing in each variables, so the standard regularisation Gδ of G by a
separate-variable cut-off function as we do before for psh function is also convex and
increasing in each variable; put

u′ε := Gε

(
1Uj
(
v1,ε ◦ f−1

1 − ψ1 + δw1/C
)
, . . . ,1Um

(
vm,ε ◦ f−1

m − ψm + δwm/C
))

We leave it as an exercise to the readers to check that u′ε is a smooth (η+εω)-psh function
decreasing to u This finishes the proof.

Corollary 2.5.11. Let X be a compact complex manifold and ω be a Hermitian metric on
X. Let u be an ω-psh function on X. Then there exist uj ∈ PSH(X,ω) ∩ C∞(X) such that
uj decreases to u on X.
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Proof. Assume for the moment u is bounded. Applying Theorem 2.5.10 to X ′ = X and u,
we obtain a sequence of smooth (1+εj)ω-psh (uj)j decreasing to u, where εj decreases to
0. Using Proposition 2.5.7, and subtracting a big constant from uj and u, we can assume
uj ≤ 0 and u ≤ 0. Hence uj/(1 + εj) ≥ uj+1/(1 + εj+1) which decreases to u. So the
desired assertion holds if u is bounded.

Consider now the general case. Let uk := max{u,−k}. Observe uk bounded and
decreases to u as k → ∞. By the first part of the proof, we can find a sequence (ukj)j
of smooth ω-psh functions decreasing to uk as j → ∞. Put u(1) := u11. We define u(k)

inductively as follows. By Theorem 2.4.2 applied to uk, ukj (locally), we get

lim sup
j→∞

sup
X

(ukj − u(k−1)) ≤ sup
X

(uk − u(k−1)) ≤ sup
X

(uk − uk−1) ≤ 0.

Hence ukj ≤ u(k−1) + 1/k2 for j ≥ jk. Put u(k) := ukjk . We see that the sequence

u′(k) := u(k) −
k∑
j=1

1/j2 +
∞∑
j=1

1/j2

is decreasing and converges to u as k →∞. This finishes the proof.

Notes. Lemma 2.5.3 is from [14]. Proposition 2.5.5 was proved in [37]. Theorem
2.5.10, Corollary 2.5.11 and their proof are taken from [10]. The other results are all
standard; see [13, 24, 28].



Chapter 3

Monge-Ampère operators

3.1 Closed positive currents

Let (z1, . . . , zn) be the standard coordinates on Cn. We orient Cn by using the standard
volume form voln := (i/2dz1 ∧ dz̄1) ∧ · · · ∧ (i/2dzn ∧ dz̄n). Let Ω be an open subset in Cn.
Recall that a simple positive continuous (p, p)-form on Ω is (iγ1∧γ1)∧· · ·∧(iγp∧γp), where
γ1, . . . , γp are (1, 0)-form (with complex coefficients) on Ω. Every simple positive form is
real. A positive continuous (p, p)-form is a form which is locally the limit of a sequence
of linear combinations with nonnegative coefficients of simple positive continuous (p, p)-
forms in C 0 topology.

A continuous real (p, p)-form Ψ is said to be weakly positive if

〈Ψ,Φ〉 ≥ 0

for every positive continuous (n−p, n−p)-form Φ with compact support in Ω. In standard
literature on complex geometry, the notion of positivity corresponds to our weakly positivity,
whereas strong positivity corresponds to our positivity. The choice of terminology in the
lecture is consistent with the literature in complex dynamics.

Note that weakly positive (n, n)-form is indeed positive by a bi-degree reason. And
the positivity in this case means that for every real (n, n)-form Φ on Ω, Φ is positive if
and only if for x ∈ Ω, we have Φ(x) ≥ 0, i.e, Φ(x) = cvoln for some constant c ≥ 0.

Lemma 3.1.1. Positive forms are weakly positive. The wedge products of positive forms are
positive, the wedge product of a weakly positive form with a positive form is weakly positive.

Note that the wedge product of weakly positive forms may fail to be weakly positive;
see [13, Page 132].

Proof. It suffices to check that for every simple positive (n, n)-form α with compact sup-
port, we have

∫
Cn α ≥ 0. Write

α = (iγ1 ∧ γ1) ∧ · · · ∧ (iγn ∧ γn),

where γ1, . . . , γn are (1, 0)-form; γj =
∑n

k=1 ajkdzk. Let Sn be the set of permutations of
{1, . . . , n}. For σ ∈ Sn, put aσ := aσ(1) · · · aσ(n), and āσ is the complex conjugate of aσ.

46
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Direct computations show that

α =

( ∑
1≤k,l≤n

a1kā1ldzk ∧ dz̄l
)
∧ · · · ∧

( ∑
1≤k,l≤n

ankānldzk ∧ dz̄l
)

=
∑
σ,τ∈Sn

aσāτ (idzσ(1) ∧ dz̄τ(1)) ∧ · · · ∧ (idzσ(n) ∧ dz̄τ(n))

=
∑
σ,τ∈Sn

aσāτ (−1)n(n−1)/2indzσ(1) ∧ · · · dzσ(n) ∧ dz̄τ(1) ∧ · · · ∧ dz̄τ(n)

=
∑
σ,τ∈Sn

sign(σ)sign(τ)aσāτ (−1)n(n−1)/2indz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

=
∣∣ det[ajk]1≤j,k≤n

∣∣2 voln ≥ 0.

The desired assertion follows.

The notions of weak positivity and positivity are dual as shown by the following
lemma.

Lemma 3.1.2. Let Ψ be a continuous (p, p)-form. Then the following two conditions are
equivalent:

(i) We have
〈Ψ,Φ〉 ≥ 0

for every weakly continuous (n− p, n− p)-form Φ with compact support on Ω,
(ii) We have

Ψ(z) ∧ Φ(z) ≥ 0

for every z ∈ Ω and every weakly continuous (n− p, n− p)-form Φ on Ω.
We also have similar statement by exchanging ”weakly positivity” with ”positivity” in the

above statements. In particular, if Ψ satisfies the condition (i) or (ii), then Ψ is positive.

Proof. Clearly (ii) implies (i). We prove the converse assertion. Without loss of gener-
ality, we can assume z = 0. Let χ be the standard cut-off function and χε as usual. Put
Ψ(z) ∧ Φ(z) = f(z) voln. Observe that

0 ≤ 〈Ψ, χε(x)Φ〉 =

∫
Ω

f(z)χε(z) voln → f(0)

as z → ∞ because of the continuity of f . Hence f(0) ≥ 0. This shows the equivalence
between (i) and (ii).

We check the last desired assertion: if Ψ satisfies (ii), then it is positive. Assume Ψ

satisfies (ii). Let z0 ∈ Ω. Let Ap be the real vector space of constant real (p, p)-forms in
Cn. For every differential (p, p)-form Φ on Ω, then Φ(z0) belongs to Ap. Note that Ap is a
real vector space of finite dimension.

Let C be the set of constant weakly positive continuous (n− p, n− p)-form. Let C ′ be
the set of constant positive (p, p)-forms in Cn. Observe that C and C ′ are closed convex
sets, and C ′ is the closure of the convex hull of constant simple positive forms.
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We note here a fact that we will not use that every element in C ′ can be written as
a linear combination with nonnegative coefficients of constant simple positive forms (by
Carathéodory’s theorem on the convex hulls in finite dimensional Euclidean spaces).

Observe Ap and An−p are dual vector spaces by the scalar product

〈α, β〉 := α ∧ β/voln.

By the equivalence between (i) and (ii), for every α ∈ C and β ∈ C ′ we have 〈α, β〉 ≥ 0,
and

C = {α ∈ An−p : 〈α, β〉 ≥ 0, ∀β ∈ Ap}.

Thus by the Hahn-Banach theorem,

C ′ = {β ∈ Ap : 〈α, β〉 ≥ 0, ∀α ∈ An−p}.

It follows that Ψ(z) ∈ C ′ for every z ∈ Ω. Combining this with an argument of partition
of unity yields that Ψ is approximated by linearly combinations with nonnegative coeffi-
cients of simple positive forms in C 0 topology. In other words, Ψ is positive. This finishes
the proof.

Corollary 3.1.3. Let Ψ be a real continuous (p, p)-form. Then Ψ is positive if and only if for
every constant weakly positive (n−p, n−p)-form Φ we have Ψ(x)∧Φ(x) ≥ 0 for every x ∈ Ω.
Similarly Ψ is weakly positive if and only if for every constant positive (n− p, n− p)-form Φ

we have Ψ(x) ∧ Φ(x) ≥ 0 for every x ∈ Ω.

Proof. Follow directly from Lemma 3.1.2.

Lemma 3.1.4. (i) Let β be a continuous (p, 0)-form. Then the form (ip
2
β ∧ β̄) is weakly

positive.
(ii) Let α = i

∑
j,k ajkdzj ∧ dz̄k be a real (1, 1)-form. Then α is weakly positive if and

only if the Hermitian matrix [ajk]1≤j,k≤n is positive semidefinite. The last condition is also
equivalent to the statement that α is positive. In particular, the notions of weak positivity
and positivity coincide for forms of bidegree (1, 1) and (n− 1, n− 1).

Proof. We prove (i). Let α be a simple positive (n − p, n − p)-form. By Lemma 3.1.2,
we need to check that ipβ ∧ β̄ ∧ α ≥ 0 at each point in Ω. Hence we can assume α is a
constant form. By using a linear change of variables, we can assume that

α = (idz1 ∧ dz̄1) ∧ · · · ∧ (idzn−p ∧ dz̄n−p).

Write β =
∑

I:|I|=p aIdzI . Thus for I0 := {n− p+ 1, . . . , n}, we have

ip
2

β ∧ β̄ ∧ α = ip
2|aI0|2dzI0 ∧ dz̄I0 ∧ (idz1 ∧ dz̄1) ∧ · · · ∧ (idzn−p ∧ dz̄n−p)

which is equal to
|aI0 |2 voln ≥ 0.

Hence we get (i).
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Let α be a real (1, 1)-form. By similar arguments, we can check that α is weakly
positive if and only if the Hermitian matrix A := [ajk]1≤j,k≤n is positive semidefinite. To
see why this means also that α is positive, we use the fact that every Hermitian matrix
can be diagonalizable. Let (λj)1≤j≤n be eigenvalues of A. Since A is positive semidefinite,
its eigenvalues λj are all nonnegative. Hence there exists a unitary matrix U = [bjl]1≤j,l≤n

(UUT = Id and U = U
T
) such that UAUT is the diagonal matrix whose diagonal is

[λ1, . . . , λn]. Let UT = [btjl]j,l. We have bjl = btlj and bjl = b̄lj. Put zj =
∑n

l=1 bjlz
′
l for

1 ≤ j ≤ n. We obtain new coordinates (z′1, . . . , z
′
n) on Cn. Direct computations give

α =
∑
j,k

∑
l,s

ajkbjlb̄ksdz
′
l ∧ dz̄′s =

∑
j,k

∑
l,s

ajkb
t
lj b̄skdz

′
l ∧ dz̄′s

=
∑
l,s

∑
k

(∑
j

ajkb
t
lj

)
b̄skdz

′
l ∧ dz̄′s =

n∑
s=1

λsdz
′
s ∧ dz̄′s

because UAUT is the diagonal matrix whose diagonal is [λ1, . . . , λn]. So the notion of
positivity and weak positivity coincide for (1, 1)-forms, this is also the case for (n−1, n−1)

forms because of duality (Corollary 3.1.3). This finishes the proof.

Lemma 3.1.5. Let f : Ω′ → Ω be a holomorphic map. Let Φ be a (weakly) positive
continuous (p, p)-form. Then f ∗Φ is also (weakly) positive.

Proof. When Φ is positive, the positivity of its pull-back by f is clear. We consider Φ

weakly positive. By Corollary 3.1.3, it suffices to check that the constant form f ∗Φ(z) is
weakly positive for every z ∈ Ω′. Fix z0 ∈ Ω. By the formula f ∗Φ(z0) = (df(z0))∗Φ, the
question is reduced to the case where f is linear.

As the next step, we use the following criteria: a constant real (p, p)-form is weakly
positive if its restriction to every complex vector p-dimensional subspaces of Cn is so
(proved by direct arguments from definition). This allows us to reduces the question to
the case where Ω′ is a vector space of dimension p and f is linear. In this case note that
f(Ω′) is a complex vector space of dimension at most p. If L := f(Ω′) is of dimension
< p, then since f ∗Φ = f ∗(Φ|L), we get f ∗Φ = 0 because Φ|L = 0. If dimL = p, then Φ|L is
a weakly positive form of maximal bi-degree, hence Φ is positive. The desired assertion
follows.

Let T be a real current of bi-degree (p, p). We say that T is positive if 〈T,Φ〉 ≥ 0 for
every weakly positive smooth (n− p, n− p)-form Φ. This extends the notion of positivity
to currents by Lemma 3.1.2. Le g be a smooth function with compact support in Ω. The
convolution of T with g is defined by

T ∗ g :=
∑
I,J

(TIJ ∗ g)dzI ∧ dz̄J .

Let (Tj)j be a sequence of currents, and T is a current. We say that Tj → T weakly if
〈Tj,Φ〉 → 〈T,Φ〉 for every smooth Φ with compact support.
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Lemma 3.1.6. The following statements are true:
(i) the convolution T ∗ g is smooth, and

d(T ∗ g) = (dT ) ∗ g,

(ii) for every smooth Φ with compact support in Ω,

〈T ∗ g,Φ〉 = 〈T,Φ ∗ g1〉,

where g1(z) := g(−z),
(iii) let χ be a smooth function with compact support in

∫
Cn χ voln = 1 and χε(z) :=

ε−2nχ(z/ε), then T ∗ χε converges weakly to T as ε → 0 and if T is (weakly) positive, then
T ∗ χε is so,

(iv) if (Tj)j is a sequence of currents converging weakly to T as j →∞, then Tj∗g → T ∗g
in C∞ topology.

Proof. Everything follows from Lemma 1.5.5 except the positivity in (iii). To check it we
argue as follows. By Corollary 3.1.3, if Φ is (weakly) positive, then Φ ∗ g is so. Hence if
T is positive, then T ∗ g is also so because (ii).

Lemma 3.1.7. T is positive if and only if T ∧ Φ is a positive distribution (hence a positive
measure) for every constant weakly positive (n− p, n− p)-form Φ.

Proof. The implication ⇒ is clear. We check the converse one. Let Tε be as in Lemma
3.1.6. We see from the proof of the last lemma that Tε∧Φ is positive form for every every
constant weakly positive (n− p, n− p)-form Φ. By Corollary 3.1.3, Tε is positive. Letting
ε→ 0 implies the desired assertion.

We define weakly positive currents similarly, and a similar version of Lemma 3.1.7
also holds for weakly positive currents. Let ω :=

∑n
j=1 idzj ∧ dz̄j.

Lemma 3.1.8. For every constant simple (p, p)-form α, there exists a constant c > 0 such
that cωp − α is positive.

Proof. Let α := (iγ1 ∧ γ1) ∧ · · · ∧ (iγp ∧ γp). Since γj has constant coefficients, and the
form ω is strictly positive (in the sense that its coefficient matrix is positive definite),
using Lemma 3.1.4, we infer that cω − iγj ∧ γj is positive for some big enough constant
c. Hence (cω − iγj ∧ γj) ∧ (cω − iγj ∧ γj) is again positive by Lemma 3.1.1. This finishes
the proof.

For every (p, p)-current T of order 0, and a compact K b Ω, we define

‖T‖K := sup
Φ
〈T,Φ〉

for every Borel (n− p, n− p)-form Φ whose coefficients are ≤ 1 and supported on K.

Proposition 3.1.9. Every weakly positive (p, p)-current T is of order 0, hence is a form with
measure coefficients. Moreover, for every compact K in Ω, there is a constant C > 0 such
that

‖TIJ‖K ≤ C‖T ∧ ωn−p‖K .
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We call T ∧ ωn−p the trace measure of T .

Proof. By Lemma 2.3.4, we can fix a basis of the space of constant (n − p, n − p)-forms
which consists of constant simple positive (n − 1, n − 1)-forms α1, . . . , αM . By rescaling
and Lemma 3.1.8, we can assume that αj ≤ ωn−p for every j. By positivity, T ∧ αj is a
positive measure. By writing dzI ∧ dz̄J as a linear combination of these constant simple
positive forms, we see that TIJ can be written as a linear combination of T ∧αj. It follows
that for every function f , we get∣∣〈TIJ , f〉∣∣ .∑

j

〈T ∧ αj, |f |〉 . 〈T ∧ ωn−p, |f |〉.

Consequently, TIJ are Radon measures and the desired inequality follows. This ends the
proof.

By the last result, for every positive current T , we can define 〈T,Φ〉 for every con-
tinuous function Φ with compact support, or more generally for every bounded (Borel)
measurable form Φ on Ω. The following result is simple but fundamental.

Lemma 3.1.10. (Compactness of the space of positive currents) Let (Tk)k be a sequence
of weakly positive currents of mass on compact subsets bounded uniformly. Then we can
extract a subsequence (Tjk)k of (Tk)k such that Tjk converges weakly to some current T as
k →∞.

Proof. The proof is a direct consequence of Proposition 3.1.9 and Lemma 1.6.2.

Here are some basic operations on currents.

Lemma 3.1.11. Let f : X → Y be a proper holomorphic map between complex manifolds.
Let T be a current of bi-dimension (p, p) on X. Put

〈f∗T,Φ〉 := 〈T, f ∗Φ〉

for every smooth form Φ with compact support in Y . Then f∗T is also a current of bi-
dimension (p, p) which is (weakly) positive if T is so and f∗ commutes with d, ∂, ∂.

Proof. Direct. We leave it to readers.

Lemma 3.1.12. Let f : X → Y be a holomorphic submersion between complex manifolds.
Let T be a (p, p)-current on Y . Put

〈f ∗T,Φ〉 := 〈T, f∗Φ〉

for every smooth form Φ with compact support in X. Then f ∗T is also a (p, p)-current
which is (weakly) positive if T is so and f∗ commutes with d, ∂, ∂. Moreover f ∗ is the usual
pull-back operator if acting on smooth forms.

Here f∗Φ is defined by integrating Φ along fibers of f .

Proof. It suffices to check that f∗Φ is well-defined and commute with d, ∂, ∂. This can be
directly seen by using partition of unity.
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We admit the following important results. Let X be a complex manifold. A subset A
in X is said to be pluripolar if A ⊂ {u = −∞} for some quasi-psh function u on X. Such
a set A is complete pluripolar if A = {u = −∞} for some quasi-psh function u on X.

Theorem 3.1.13. Let A be a complete pluripolar subset in X. The following statements are
true:

(i) For every closed (weakly) positive current T on X, the currents 1AT and 1X\AT are
closed positive,

(ii) Assume that A is closed. Let T be a closed (weakly) positive current on X\A. Then T
has locally finite mass around every point in A, and hence extends trivially through A to be
a closed positive current on X. To be precise, for every smooth form Φ with compact support
on X, put

〈T ′,Φ〉 := 〈T,1X\AΦ〉.

Then T ′ is a well-defined closed positive current on X.

We refer to [13, 34] for proofs and historical works. We knew that for every psh
function u then ddcu is closed positive. Another important source of closed positive
currents are currents of integration along analytic subsets defined as follows. We admit
basic properties of analytic sets. Let Ω be an open subset in Cn. Recall that a subset A in Ω

is an analytic subset in Ω if for every x ∈ Ω there exists a small neighborhood Ux of x and
a collection of holomorphic functions (fj)j∈J defined on Ux such that A∩Ux = ∩j∈J{fj =

0}. An analytic subset A in Ω is said to be irreducible if there exist no non-empty analytic
subsets A1, A2 in Ω such that A = A1 ∪ A2.

Proposition 3.1.14. (i) Let A be an analytic subset in Ω. Then A = ∪j∈JAj, where Aj is
an irreducible analytic subset in Ω and the family (Aj)j∈J is locally finite.

(ii) Let A be an irreducible analytic subset in Ω. Then there exists an analytic subset
Sing(A) in Ω such that Sing(A) is a proper subset of A and for every x ∈ Reg(A) :=

A\Sing(A), there exists a small open neighborhood Ux of x in Ω satisfying that A ∩ Ux is a
submanifold of dimension k independent of k in Ux.

We call Sing(A) in (ii) the singular part of A, and Reg(A) the regular part of A. The
number k is called the dimension of A. The notion of analytic sets and Proposition 3.1.14
are obviously extended to the setting where Ω is replaced by a complex manifold.

The support of a current T on X is the smallest closed subset B on X such that for
〈T,Φ〉 = 0 for every Φ compactly supported on X\B. We will not use the following result
in the next two chapters.

Theorem 3.1.15. Let A be an irreducible analytic subset in X.
(i) If dimA < p, then every closed positive current of bi-dimension (p, p) has no mass on

A.
(i)′ If the support of a closed positive current of bi-dimension (p, p) is of zero 2p-dimensional

Hausdorff measure then this current is zero.
(ii) If dimA < p − 1, then every closed positive current of bi-dimension (p, p) on X\A

can be extended trivially through A to be a closed positive current on X.
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(iii) for every closed positive current T of bi-dimension (p, p) on X, if T is supported
on A, then T is a current on A, that means there exists a closed positive current T ′ of
bi-dimension (p, p) on A, and for i : A→ X the natural inclusion, we have i∗T ′ = T .

We need to do a bit more to define currents on analytic subsets. But we ignore this
detail here. In the lecture we only use Theorem 3.1.15 (iii) when A is smooth. We refer
to [2, 5] for a proof of Theorem 3.1.15 and information about historical works.

Theorem 3.1.16. ([8, 23, 39]) (Hironaka’s desingularisation of analytic sets) Let X be
a complex manifold and A an analytic subset in X. Then there exist a complex manifold
X ′ of dimension dimX, and a surjective proper holomorphic map p : X ′ → X and a
simple normal crossing hypersurface E in X ′ such that p is biholomorphic on X ′\E, and
Reg(A) ∩ p(E) = ∅, and the Euclidean topological closure of p−1(A\p(E)) is a smooth
complex submanifold of X ′.

Let A be an irreducible analytic subset of dimension k in X. For every smooth 2k-form
Φ with compact support in X, we put

〈[A],Φ〉 :=

∫
RegA

Φ.

Corollary 3.1.17. (Lelong) [A] is a well-defined positive closed (k, k)-current.

Proof. Assume for the moment A is smooth. By Stokes’ theorem, [A] is a closed current.
Since the weak positivity is preserved by holomorphic maps, we get the positivity of
[A]. Consider now the general case. Let p : X ′ → X be a map as in Theorem 3.1.16
desingularizing A. Put A′ := p−1(A\p(E)) which is a smooth submanifold of X ′. Since p
is isomorphic outside E and Reg(A) ∩ p(E) = ∅, we see that

〈[A],Φ〉 :=

∫
p−1(RegA)

p∗Φ =

∫
A′
p∗Φ = 〈[A′], p∗Φ〉.

Thus the desired assertion follows.

We call [A] the current of integration along A.

3.2 Monge-Ampère of bounded psh functions

Let T be a closed positive current on an open subset Ω in Cn. Let u be a psh function on
Ω. Our goal is to study situations in which the product ddcu ∧ T can be defined.

Let σT be the trace measure of T . Let K be a compact subset on Ω. Since σT is of
finite mass on K and u is bounded from above on K (and is a Borel function defined
everywhere on Ω), the Lebesgue integral

∫
K
uσT is well-defined but it can be equal to

−∞. When u is locally integrable with respect to σT (that means
∫
K
uσT > −∞ for

every K b Ω), the current uT is well-defined because every coefficients of T are (signed)
measures whose variations are bounded by a constant times σT . Hence in this case we
can put

ddcu ∧ T := ddc(uT ).
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Lemma 3.2.1. Let (µk)k be a sequence of Radon measures converging weakly to a Radon
measure µ in Ω. Let u be a psh function and (uk)k be a sequence of psh functions converging
to u in L1

loc in Ω. Let µ′ be the limit of a convergent subsequence (ukµk)k as k → ∞. Then
we have µ′ ≤ uµ. If additionally uk ≥ u and µk ≤ µ for every k, then ukµk → uµ as k →∞.

Here we view (positive) measures as functionals from the space of continuous func-
tions with compact support in Ω to [0,∞] (in particular the functional identically equal
to∞ is also considered as a measure).

Proof. Without loss of generality we can assume ukµk → µ′ as k → ∞. Let uεk, u
ε are

standard regularisations of uk, u respectively. Observe that uεk → uε uniformly on compact
subsets in Ω as k →∞ and ε fixed. Moreover we have uk ≤ uεk and u ≤ uε. Hence

µ′ = lim
k→∞

ukµk ≤ lim
k→∞

uεkµk = uεµ.

Letting ε → 0 gives the desired inequality. Now if we have uk ≥ u and µk ≤ µ, then (we
can assume uk ≤ 0 by using Hartog’s lemma)

uµ ≤ ukµ ≤ ukµk → µ′.

Thus µ′ = uµ for every limit measure µ′ of the sequence (ukµk)k. Hence ukµk → uµ as
k →∞. This finishes the proof.

Corollary 3.2.2. Let (Tk)k be a sequence of closed positive (p, p)-currents converging weakly
to a current T and Tk ≤ T for every k. Let u be a psh function locally integrable with respect
to the trace measure of T . Let (uk)k be a sequence of psh functions converging weakly to u
in L1

loc as k →∞ and uk ≥ u for every k. Then ukTk → uT as k →∞.

Proof. Let ω be the standard Kähler form in Cn. By Hartogs’ lemma and the local nature
of the question, we can assume uk, u are negative. Since 0 ≥ uk ≥ u and Tk ≤ T , we
get |uk|Tk ≤ |u|T . Hence the sequence (ukTk)k is of mass bounded uniformly in compact
subsets in Ω. Let T ′ is a limit current of the sequence (ukTk)k (the limit of a convergent
subsequence of (ukTk)k). Arguing as in the proof of Lemma 3.2.1, we obtain T ′ ≤ uT .
Let µk := Tk ∧ ωn−p and µ := T ∧ ωn−p. Applying Lemma 3.2.1 to uk, u, µk, µ gives
T ′ ∧ ωn−p = uT ∧ ωn−p. Hence T ′ = uT . It follows that ukTk → uT as k →∞.

Lemma 3.2.3. Assume that u is locally integrable with respect to the trace measure of T .
Then ddcu∧T is a closed positive current of bi-degree (p+ 1, p+ 1) and it coincides with the
usual wedge products of continuous forms with currents when u is C 2. Moreover if (uk)k is
a sequence of psh function converging to u in L1

loc and uk ≥ u, then we have

ddcuk ∧ T → ddcu ∧ T

weakly as k →∞.

Proof. The first desired assertion is a direct consequence of the second one and the stan-
dard regularisation of psh functions. By Corollary 3.2.2, we get ukT → uT as k → ∞.
We leave details for readers.
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Lemma 3.2.4. Let u, v be psh functions which are locally integrable with respect to the trace
measure of T . Assume that u = v on an open subset U in Ω. Then ddcu ∧ T = ddcv ∧ T on
U .

Proof. Using regularisation uε, vε of u, v by using the same convolution. Let U1 b U be an
open subset. Observe that uε = vε on U1 if ε is small enough. Hence ddcuε∧T = ddcvε∧T
on U1. Letting ε→ 0 gives the desired assertion.

Now consider the following problem: let u1, . . . , um be psh functions such that uj is
locally integrable with respect to ddcuj−1 ∧ · · · ∧ ddcu1 ∧ T , and ujk a sequence of psh
functions as in Lemma 3.2.3, is ddcum ∧ · · · ∧ ddcu1 ∧ T (which is defined inductively)
symmetric and continuous under (ujk)k? What follows will give us some partial answer
to this question.

Here is the first main result in this section.

Theorem 3.2.5. Let S be a closed positive current on Ω. Let v be a psh function on Ω such
that v is locally integrable with respect to the trace measure of S and (vk)k a sequence of psh
functions on Ω such that vk → v in L1

loc as k →∞ and vk ≥ v for every k. Let T := ddcv∧S
and Tk := ddcvk ∧ S. Let uj be a bounded psh function on Ω for 1 ≤ j ≤ m. Let (ujk)k∈N
be a sequence of uniformly bounded psh functions such that ujk → uj in L1

loc as k →∞ and
ujk ≥ uj for every j, k. Then we have

u1kdd
cu2k ∧ · · · ∧ ddcumk ∧ Tk → u1dd

cu2 ∧ · · · ∧ ddcum ∧ T (3.2.1)

as k →∞.

The above result was proved in [38]. It is a slightly more general version of a well-
known convergence theorem in [6] when vk, v are locally bounded.

Proof. By Hartog’s lemma, vk, ujk are uniformly bounded from above in k on compact
subsets of Ω for every j. Since the problem is local, we can assume that Ω is relatively
compact open set with smooth boundary in Cn, every psh function in questions is defined
on an open neighborhood of Ω, vk, v ≤ 0 on U for every k and ujk, uj are all equal to a
smooth psh function ψ outside some fixed compact subset of Ω such that ψ = 0 on ∂Ω.
To be more precise, we do it as follows.

Let B be the unit ball in Cn and z the standard coordinate system in Cn. We can
assume Ω = B1/2 the ball of radius 1/2 centered at 0 in Cn and −2 ≤ ujk, uj ≤ −1 are
defined on an open neighborhood of B, put

u′jk := max{ujk,M(‖z‖2 − 1)}, u′j := max{uj,M(‖z‖2 − 1)},

where M is a big enough constant such that M(‖z‖2 − 1) ≤ −3 on B1/2. We see that

u′jk = ujk

on B1/2 and u′jk = M‖z‖2 on a small neighborhood of ∂B (because ‖z‖2 − 1 = 0 on ∂B).
Using Lemma 3.2.4 inductively, we obtain

u1kdd
cu2k ∧ · · · ∧ ddcumk ∧ Tk = u′1kdd

cu′2k ∧ · · · ∧ ddcu′mk ∧ Tk
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on B1/2 and similarly

u1dd
cu2 ∧ · · · ∧ ddcum ∧ T = u′1dd

cu′2 ∧ · · · ∧ ddcu′m ∧ T

on B1/2. So we can reduce the setting to the case where we describe in the beginning of
the proof. We claim that

Qk := vkdd
cu1k ∧ · · · ∧ ddcumk ∧ S → vddcu1 ∧ · · · ∧ ddcum ∧ S (3.2.2)

as k → ∞. In particular, this implies that v is locally integrable with respect to ddcu1 ∧
· · · ∧ ddcum ∧ S. We will prove (3.2.1) and (3.2.2) simultaneously by induction on m.
When m = 0, this is a direct consequence of Lemma 3.2.1. Assume that (3.2.1) and
(3.2.2) hold for (m− 1) in place of m. Let

Rj,k := ddcujk ∧ · · · ∧ ddcumk ∧ Tk

for 1 ≤ j ≤ m. By induction hypothesis, we have

Rj,k → Rj := ddcuj ∧ · · · ∧ ddcum ∧ T

for j ≥ 2. Since u1k is uniformly bounded on Ω, the family u1kR2,k is of uniformly
bounded mass. Let R∞ be a limit current of the last family. Without loss of generality, we
can assume R∞ = limk→∞ u1kR2,k and S is of bi-degree (n−m,n−m). By Lemma 3.2.1,
we have R∞ ≤ u1R2. Thus, in order to have R∞ = u1R2, we just need to check that∫

Ω

R∞ ≥
∫

Ω

u1R2 (3.2.3)

(both sides are finite because of the assumption we made at the beginning of the proof).
Since ψ = 0 on ∂Ω and u1k = ψ on outside a compact of Ω, we have∫

Ω

u1kR2,k →
∫

Ω

R∞,

∫
Ω

ψR2,k →
∫

Ω

ψR2. (3.2.4)

Let uεjk, ψ
ε be standard regularisations of ujk, ψ respectively. Since ujk = ψ outside some

compact of Ω, we have uεjk = ψε outside some compact K of Ω, for ε small enough and
K independent of j, k, ε. Consequently, uεjk − ψε is supported in K b Ω. Note that since
ψ is smooth, ψε → ψ in C∞- topology. By integration by parts and the fact that ujk ≥ uj
for j = 1, 2, we have∫

Ω

(u1 − ψ)R2 ≤ lim
ε→0

∫
Ω

(uε1k − ψε)R2 = lim
ε→0

∫
Ω

u2dd
c(uε1k − ψε)R3

≤ lim
ε→0

∫
Ω

uε2kdd
c(uε1k − ψε)R3 + lim

ε→0

∫
Ω

(uε2k − u2)ddcψε ∧R3

= lim
ε→0

∫
Ω

(uε1k − ψε)ddcuε2k ∧R3 + ok→∞(1)
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by induction hypothesis for (m− 1) of (3.2.1) and the fact that ‖ddcψε− ddcψ‖C 0 = O(ε).
We now apply similar arguments to u3k in place of u2k. Precisely, as above we have∫

Ω

(uε1k − ψε)ddcuε2k ∧R3 =

∫
Ω

u3dd
c(uε1k − ψε) ∧ ddcuε2k ∧R4

≤
∫

Ω

uε3kdd
c(uε1k − ψε) ∧ ddcuε2k ∧R4

+

∫
Ω

(uε3k − u3)ddcψε ∧ ddcuε2k ∧R4.

Letting ε→ 0 and applying the induction hypothesis to the second term in the right-hand
side of the last inequality (noticing again that ‖ddcψε − ddcψ‖C 0 = O(ε)), we obtain

lim
ε→0

∫
Ω

(uε1k − ψε)ddcuε2k ∧R3 ≤ lim
ε→0

∫
Ω

uε3kdd
c(uε1k − ψε) ∧ ddcuε2k ∧R4 + ok→∞(1)

≤ lim
ε→0

∫
Ω

(uε1k − ψε) ∧ ddcuε2k ∧ ddcuε3k ∧R4 + ok→∞(1).

Put R′ε2,k := ddcuε2k∧· · ·∧ddcuεmk. Repeating the above arguments for every ujk (j ≥ 2)
and v, vk gives∫

Ω

(u1 − ψ)R2 ≤ lim
ε→0

∫
Ω

(uε1k − ψε)R′ε2,k ∧ ddcv ∧ S + ok→∞(1)

≤ lim
ε→0

∫
Ω

vddc(uε1k − ψε) ∧R′ε2,k ∧ S + ok→∞(1)

≤ lim
ε→0

∫
Ω

vkdd
c(uε1k − ψε) ∧R′ε2,k ∧ S+

+ lim
ε→0

∫
Ω

(vk − v)ddcψε ∧R′ε2,k ∧ S + ok→∞(1)

= lim
ε→0

∫
Ω

(uε1k − ψε) ∧R′ε2,k ∧ ddcvk ∧ S + ok→∞(1)

=

∫
Ω

(u1k − ψ) ∧R2,k + ok→∞(1)

by (3.2.2) for (m − 1) and the usual convergence of Monge-Ampère operators. Letting
k →∞ in the last inequality and using (3.2.4) give (3.2.3). Hence (3.2.1) for m follows.

It remains to prove (3.2.2) for m. Put R′2,k := ddcu2k ∧ · · · ∧ ddcumk and R′2 :=

ddcu2 ∧ · · · ∧ ddcum. We check that Qk is of uniformly bounded mass. Decompose

Qk = vkdd
c(u1k − ψ) ∧R′2,k ∧ S + vkdd

cψ ∧R′2,k ∧ S.

The second term converges to vddcψ ∧ R′2 ∧ S as k → ∞ by induction hypothesis for
(m − 1). Denote by Qk,1 the first term. Let vεk be standard regularizations of vk. By
integration by parts, we have∫

Ω

Qε
k,1 :=

∫
U

vεkdd
c(u1k − ψ) ∧R′2,k ∧ S

=

∫
Ω

(u1k − ψ)ddcvεk ∧R′2,k ∧ S = (u1k − ψ)R′2,k ∧ ddcvεk ∧ S
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which converges to
∫

Ω
(u1k − ψ)R′2,k ∧ ddcvk ∧ S as ε→ 0 by (3.2.1) for m. Thus,∫

Ω

Qk,1 =

∫
U

(u1k − ψ)R′2,k ∧ ddcvk ∧ S.

This combined with (3.2.1) for m again implies that
∫

Ω
Qk,1 →

∫
U

(u1 − ψ)R′2 ∧ ddcv ∧ S
as k → ∞. The last limit is equal to

∫
Ω
vddc(u1 − ψ) ∧ R′2 by integration by parts which

can be performed thanks to (3.2.1) for m. Thus, we have proved that Qk is of uniformly
bounded mass and ∫

Ω

Qk →
∫
U

vR1

as k →∞. This combined with the fact that vR1 ≥ Q∞ for every limit current Q∞ of the
family (Qk)k gives the desired assertion (3.2.2) for m. This finishes the proof.

The following two corollaries follow from the proof of Theorem 3.2.5.

Corollary 3.2.6. Let S be a closed positive current on Ω. Let u1, . . . , um be psh function on
Ω such that uj is locally bounded for every 1 ≤ j ≤ m except possibly for one index. Then
the current ddcu1 ∧ · · · ∧ ddcum ∧S, which is defined inductively as usual, is symmetric with
respect to u1, . . . , um and satisfies the convergence under decreasing sequences.

Corollary 3.2.7. Let S be a closed positive current on Ω. Let u1, . . . , um be psh function on
U such that uj is locally bounded for every 1 ≤ j ≤ m except possibly for one index. Let u0

be another psh function locally integrable with respect to S such that u0 is locally bounded if
there is an index 1 ≤ j ≤ m so that uj is not locally bounded. Then u0dd

cu1∧· · ·∧ddcum∧S
is convergent under decreasing sequences and for every compact K in Ω, if we have 0 ≤
u1, . . . , um ≤ 1, then

‖u0dd
cu1 ∧ · · · ∧ ddcum ∧ S‖K ≤ C‖u0S‖Ω (3.2.5)

(Chern-Levine-Nirenberg inequality) for some constant C independent of u0, . . . , um, S, in
particular, in this case

‖ddcu1 ∧ · · · ∧ ddcum ∧ S‖K∩{u0≤−M} ≤ C/M‖u0S‖Ω (3.2.6)

for every constant M > 0.

Proof. Everything follows from the proof of Theorem 3.2.5 except (3.2.6). To see why
(3.2.6) is true, one just notices that

‖ddcu1 ∧ · · · ∧ ddcum ∧ S‖K∩{u0≤−M} ≤M−1‖u0dd
cu1 ∧ · · · ∧ ddcum ∧ S‖K

which is ≤ C/M‖u0S‖Ω by (3.2.5).

Note that the usual Chern-Levine-Nirenberg inequality ([11]) was stated for u0 ≡ 1.
The inequality (3.2.5) was proved in [13] and [29].

Lemma 3.2.8. (Cauchy-Schwarz inequality) Let η1, η2 be continuous (1, 0)-form on Ω. Let
T be positive current of bi-dimension (1, 1) with compact support on Ω. Then we have∫

Ω

η1 ∧ η2 ∧ T ≤
(∫

Ω

η1 ∧ η1 ∧ T
)1/2(∫

Ω

η2 ∧ η2 ∧ T
)1/2

.
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Proof. Consider the following positive semi-definite Hermitian form on the space of con-
tinuous (1, 0)-forms on Ω:

〈η1, η2〉 :=

∫
Ω

η1 ∧ η2 ∧ T.

The desired inequality follows from the Cauchy-Schwarz inequality for the last Hermitian
form.

Let u be locally bounded psh and T be a closed positive current. We define (as in [6])

du ∧ dcu ∧ T := ddcu2 ∧ T − uddcu ∧ T.

Note that since u is locally bounded, u2 is the difference of two locally bounded psh
functions (write u2 = (u+M)2−2Mu−M2, where M is a constant such that u+M ≥ 0).
Hence ddcu2 ∧ T is well-defined in the above sense. Let w be another locally bounded
psh function. When T is of bi-dimension (1, 1) we define

2du∧ dcw ∧ T := ddc(u+w)2 ∧ T − (u+w)ddc(u+w)∧ T − du∧ dcu∧ T − dw ∧ dcw ∧ T.

One can see that the above definitions agree with the smooth case.

Lemma 3.2.9. (i) The current du ∧ dcu ∧ T is positive, and if psh functions uj decreases to
u then duj ∧ dcuj ∧T → du∧ dcu∧T as j →∞. We also have a similar continuity property
for du ∧ dcw ∧ T when T is of bi-dimension (1, 1).

(ii) (Cauchy-Schwarz inequality) if T is of bi-dimension (1, 1), then∫
Ω

du ∧ dcw ∧ T ≤
(∫

Ω

du ∧ dcu ∧ T
)1/2(∫

Ω

dw ∧ dcw ∧ T
)1/2

.

(iii) (Integration by parts formula) if T is of bi-dimension (1, 1) and χ is a smooth
function with compact support in Ω, then∫

Ω

χdu ∧ dcw ∧ T = −
∫

Ω

udχ ∧ dcw ∧ T,

and if u′ is a locally bounded psh function such that u−u′ is compactly supported on Ω then∫
Ω

d(u− u′) ∧ dcw ∧ T = −
∫

Ω

(u− u′)ddcw ∧ T.

Proof. Direct consequence of Theorem 3.2.5.

3.3 Capacity and quasi-continuity

Let Ω be an open subset of Cn. Let E be a Borel subset of Ω. The capacity cap(E,Ω) of E
in Ω, which was introduced in [6], is given by

cap(E,Ω) := sup

{∫
E

(ddcu)n : u is psh on Ω and 0 ≤ u ≤ 1

}
.
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For a closed positive current T of bi-dimension (m,m) on Ω (0 ≤ m ≤ n), we define

capT (E,Ω) := sup

{∫
E

(ddcu)m ∧ T : u is psh on Ω and 0 ≤ u ≤ 1

}
.

We say that a sequence of functions (uk)k∈N converges to u with respect to the capacity
capT (relative in Ω) if for any constant ε > 0 and K b U , we have capT

(
{|uk − u| ≥

ε} ∩K,U
)
→ 0 as k → ∞. We call capT the T -capacity. When T = 1, we simply refer to

capT as capacity. The notion of relative capT was introduced in [29, 40]. By Corollary
3.2.7, capT (E,Ω) <∞ if E is relatively compact in Ω.

Lemma 3.3.1. Let E be a Borel subset in Ω. The following are true:
(i) for every Borel set E ′ ⊂ E, then capT (E ′,Ω) ≤ capT (E,Ω).
(ii) If Borel sets Ej increases to E, then capT (E,Ω) = limj→∞ capT (Ej,Ω).
(iii) for every Borel set E ⊂ Ω, we have

capT (E,Ω) = sup{capT (K,Ω) : K compact subset in E}.

(iv) if Borel sets Ej converges to a set E (in the sense that 1Ej converges pointwise to 1E
as j →∞), then

capT (E,Ω) ≤ lim inf
j→∞

capT (Ej,Ω).

Proof. The property (i) is clear. We check (ii). We can assume capT (E,Ω) < ∞. The
proof when capT (E,Ω) = ∞ is similar. Let ε > 0. There exists a psh function 0 ≤ u ≤ 1

such that
∞ >

∫
E

(ddcu)m ∧ T ≥ capT (E,Ω)− ε.

Since Ej increases to E, for j big enough we get

capT (Ej,Ω) ≥
∫
Ej

(ddcu)m ∧ T ≥
∫
E

(ddcu)m ∧ T − ε.

Hence the desired assertion (ii) follows. The (iii) is done analogously by using an extra
property that (ddcu)m ∧ T is a Radon measure: hence∫

K

(ddcu)m ∧ T ≥
∫
E

(ddcu)m ∧ T − ε

for some compact K in E. Similarly we get (iv).

Let U be an open subset in Cn. We say that a subset A in U is locally complete
pluripolar set if locally A = {ψ = −∞} for some psh function ψ.

Lemma 3.3.2. Let A be a locally complete pluripolar set in Ω. Let T be a closed positive
current of bi-dimension (m,m) on Ω. Assume that T has no mass on A. Then, we have
capT (A,Ω) = 0.
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Proof. The proof is standard. We present the details for readers’ convenience. Since the
problem is of local nature, we can assume that there is a negative psh function ψ on
Ω such that A = {ψ = −∞}. Let u1, . . . , um be bounded psh functions on Ω such that
0 ≤ uj ≤ 1 for 1 ≤ j ≤ m. Let ω is the standard Kähler form on Cn. Let k ∈ N and
ψk := k−1 max{ψ,−k}. We have −1 ≤ ψk ≤ 0. Let χ be a nonegative smooth function
with compact support in Ω. Let 0 ≤ l ≤ m be an integer. Put

Ik :=

∫
Ω

χψkdd
cu1 ∧ · · · ∧ ddcul ∧ ωm−l ∧ T.

Since ψk = −1 on {ψ < −k}, in order to prove the desired assertion, it is enough to show
that for every 0 ≤ l ≤ q, we have

Ik → 0 (3.3.1)

as k →∞ uniformly in u1, . . . , ul. We will prove (3.3.1) by induction on l. Firstly, (3.3.1)
is trivial if l = 0 because T has no mass on A. Assume that it holds for (l − 1). We prove
it for l. Put

R := ddcu2 ∧ · · · ∧ ddcul ∧ ωm−l ∧ T.

By integration by parts, we have

Ik =

∫
Ω

u1χdd
cψk ∧R +

∫
Ω

u1ψkdd
cχ ∧R + 2

∫
Ω

u1dψk ∧ dcχ ∧R.

Denote by Ik,1, Ik,2, Ik,3 the first, second and third term respectively in the right-hand side
of the last equality. Since u1 is bounded by 1, by integration by parts, we get

|Ik,1| ≤ C

∫
Suppχ

−ψkR ∧ ω, |Ik,2| ≤ C

∫
Suppχ

−ψkR ∧ ω,

for some constant C depending only on χ. By induction hypothesis, we have

lim
k→∞

∫
Suppχ

ψkR ∧ ω = 0.

Thus limk→∞ Ik,j = 0 for j = 1, 2. To treat Ik,3, we use the Cauchy-Schwarz inequality to
get

|Ik,3| ≤
(∫

Suppχ

dψk ∧ dcψk ∧R
)1/2

.

Let 0 ≤ χ1 ≤ 1 be a smooth cut-off function compactly supported on U such that χ1 = 1

on Suppχ. Let U1 b U be an open subset containing Suppχ1. Since dψk ∧ dcψk ∧ R ≥ 0,
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we have ∫
Suppχ

dψk ∧ dcψk ∧R ≤
∫

Ω

χ1dψk ∧ dcψk ∧R

=

∫
Ω

χ1(ddcψ2
k − ψkddcψk) ∧R

=

∫
Ω

χ1dd
cψ2

k ∧R−
∫

Ω

χ1ψkdd
cψk ∧R

=

∫
Ω

ψ2
kdd

cχ1 ∧R−
∫

Ω

χ1ψkdd
cψk ∧R

.
∫

Suppχ1

−ψkR ∧ ω +

∫
Ω

χ1dd
cψk ∧R

.
∫

Suppχ1

−ψkR ∧ ω +

∫
U1

−ψkR ∧ ω.

because −1 ≤ ψk ≤ 0 and −ω . ddcχ1 . ω. We infer that

|Ik,3| .
(∫

U1

−ψkR ∧ ω
)1/2

.

By induction hypothesis, limk→∞
∫
U1
ψkR ∧ ω = 0. So limk→∞ Ik,3 = 0. In conclusion,

(3.3.1) follows. This finishes the proof.

Lemma 3.3.3. Let u and u′ be locally bounded psh function such that 0 ≤ u′ ≤ u ≤ 1. Let
K b U b Ω be open subsets. Let T be a closed positive current of bi-dimension (m,m) such
that ‖T‖U ≤ 1. Then for every constant ε > 0, we have

capT (K ∩ {u− u′ ≥ ε}) ≤ ε−1C

(∫
U

(u− u′)(ddcu′)m ∧ T
)2−m

,

where C > 0 is a constant independent of u, u′ and T .

Proof. We follow ideas presented in [29, Proposition 1.12]. Let 0 ≤ v1, . . . , vm ≤ 1 be
psh function on Ω. Since the problem is local and −1 ≤ u, u′, vj ≤ 0 (1 ≤ j ≤ m), we
can assume that Ω b Cn, the functions u, u′, vj are defined on an open neighborhood of
Ω and there exist a smooth psh function ψ defined on an open neighborhood of Ω and an
open neighborhood W of ∂Ω such that K ⊂ Ω\W and u′ = u = vj = ψ on W for every j.
Let

T ′l := ddcv2 ∧ · · · ∧ ddcvm ∧ T.

Observe u′ − u is of compact support in some open set U1 b Ω containing K. Hence, by
integration by parts, we get∫

U1

(u− u′)ddcv1 ∧ T ′l = −
∫
U1

d(u− u′) ∧ dcv1 ∧ T ′l

≤
(∫

U1

d(u− u′) ∧ dc(u− u′) ∧ T ′l
)1/2(∫

U1

dv1 ∧ dcv1 ∧ T ′l
)1/2
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which is .
(∫

U1
d(u− u′)∧ dc(u− u′)∧ T ′l

)1/2

by the Chern-Levine-Nirenberg inequality.

Denote by I the integral in the last quantity. We have

I = −
∫
U1

(u− u′) ∧ ddc(u− u′) ∧ T ′ ≤
∫
U1

(u− u′) ∧ ddcu′ ∧ T ′l .

Applying similar arguments to v2, . . . , vm consecutively and the right-hand side of the last
inequality, we obtain that∫

K

(u− u′)ddcv1 ∧ · · · ∧ ddcvm ∧ T ≤ C

(∫
U1

(u− u′)(ddcu′)m ∧ T
)2−m

, (3.3.2)

where C is independent of u, u′, v1, . . . , vm and T . This finishes the proof.

We now give a definition which will be important later. Let (Tk)k be a sequence of
closed positive currents of bi-dimension (m,m) on Ω. We say that (Tk)k satisfies Condition
(∗) if (Tk)k is of uniformly bounded mass on compact subsets of Ω, and for every open set
U ⊂ Ω and every bounded psh function u on U and every sequence (uk)k of psh functions
on U decreasing to u, we have

lim
k→∞

(uk − u)(ddcu)m ∧ Tk = 0 (3.3.3)

An obvious example for sequences satisfying Condition (∗) is constant sequences: Tk = T

for every k. By Theorem 3.2.5, for every sequence of psh functions (vk)k on Ω such that
vk converges to some psh v in L1

loc as k → ∞ and vk ≥ v for every k, then the sequence
Tk := ddcvk ∧ S satisfies Condition (∗).

Theorem 3.3.4. (Strong quasi-continuity of bounded psh functions) Let (Tl)l be a sequence
of closed positive currents satisfying Condition (∗). Let u be a bounded psh function on U

and (uk)k a sequence of psh functions on Ω decreasing to u. Then for every constant ε > 0

and every compact K in U , we have capTl({|uk − u| ≥ ε} ∩ K) → 0 as k → ∞ uniformly
in l. In particular, for every constant ε > 0, there exists an open subset U of Ω such that
capTl(U,Ω) < ε for every l and the restriction of u to Ω\U is continuous.

Consider the case where Tl = T for every l. Then, the above theorem give a quasi-
continuity with respect to capT for bounded psh function which is stronger than the usual
one for general psh functions with respect to cap (see [6]). We refer to Theorem 3.3.4
as a (uniform) strong quasi-continuity of bounded psh functions.

Proof. Let K b U1 b Ω. Let Tl be of bi-dimension (m,m). By Hartog’s lemma and the
boundedness of u, we obtain that uk is uniformly bounded in k in compact subsets of Ω.
Hence this allows us to apply Lemma 3.3.3 to uk, u to obtain

capTl(K ∩ {uk − u ≥ ε}) ≤ C

(∫
U1

(uk − u)(ddcu)m ∧ Tl
)2−m

, (3.3.4)
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where C is independent of k (note that the mass of Tl on compact subsets of Ω is bounded
uniformly in l). Let

Hk,l :=

∫
U1

(uk − u)(ddcu)m ∧ Tl.

We need to prove that Hk,l converges to 0 as k → ∞ uniformly in l. Suppose that this is
not the case. This means that there exists a constant ε > 0, (ks)s →∞ and (ls)s →∞ such
that Hks,ls ≥ ε for every s. However, by Condition (∗), we get (uks − u)(ddcu)m ∧ Tls → 0

as s→∞. This is contradiction. Hence the first desired assertion follows.
We prove the second desired assertion, let K b Ω and (uk)k a sequence of smooth psh

functions defined on an open neighborhood of K decreasing to u. Let ε > 0 be a constant.
Since uk → u in capTl as k → ∞ uniformly in l, there is a sequence (jk)k converging to
∞ for which

capTl
(
K ∩ {ujk > u+ 1/k},Ω

)
≤ ε2−k

for every k, l ∈ N∗. Consequently, for Kε := K\ ∪∞k=1 {ujk > u + 1/k}, we have that
capTl(K\Kε,Ω) ≤ ε and ujk is convergent uniformly on Kε. Hence u is continuous on Kε.

Let (Us)s be an increasing exhaustive sequence of relatively compact open subsets of
Ω and Ks := U s\Us−1 for s ≥ 1, where U0 := ∅. Observe that Kl is compact, Ω = ∪∞s=1Ks

and

Ks ∩ ∪s′≥s+2Ks′ = ∅ (3.3.5)

for every s ≥ 1. By the previous paragraph, there exists a compact subset K ′s of Ks such
that capTl(Ks\K ′s,Ω) ≤ ε2−s and u is continuous on K ′s. Observe that K ′ := ∪∞s=1K

′
s

is closed in Ω and u is continuous on K ′ because of (3.3.5). We also have Ω\K ′ ⊂
∪∞s=1(Ks\K ′s). Hence capTl(U\K

′,Ω) ≤ ε for every l. The proof is finished.

As one can expect, the above quasi-continuity of bounded psh functions allows us to
treat, to certain extent, these functions as continuous functions with respect to closed
positive currents.

Corollary 3.3.5. Let Rk := ddcv1k ∧ · · · ∧ ddcvmk ∧ Tk and R := ddcv1 ∧ · · · ∧ ddcvm ∧ T ,
where vjk, vj are uniformly bounded psh functions on Ω and Tk, T closed positive currents of
bi-degree (p, p). Let u be a bounded psh function on Ω and χ a continuous function on R.
Assume that Rk → R as k →∞ on Ω and (Tk)k satisfies Condition (∗). Then we have

χ(u)Rk → χ(u)R

as k → ∞. In particular, the last convergence holds when Tk = T for every k or Tk =

ddcwk ∧ S, T = ddcw ∧ S, where S is a closed positive current, w is a psh function locally
integrable with respect to S and wk is a psh function converging to w in L1

loc as k → ∞ so
that wk ≥ w for every k.

Proof. The problem is local. Hence we can assume Ω is relatively compact in Cn. Since
u is bounded, using Theorem 3.3.4, we have that u is uniformly quasi-continuous with
respect to the family capTk with k ∈ N. This means that given ε > 0, we can find an
open subset U ′ of Ω such that capTk(U

′,Ω) < ε and u|Ω\U ′ is continuous. Let ũ be a



CHAPTER 3. MONGE-AMPÈRE OPERATORS 65

bounded continuous function on U extending u|Ω\U ′ (see [32, Theorem 20.4]). We have
χ(ũ)Rk → χ(ũ)R because χ, ũ are continuous. Moreover,∥∥(χ(ũ)− χ(u)

)
Rk

∥∥ . ‖Rk‖Ω\U ′ ≤ capTk(Ω\U
′,Ω) < ε

(we used here the boundedness of Ω) and a similar estimate also holds for
(
χ(ũ)−χ(u)

)
R.

The desired assertion then follows. This finishes the proof.

The following result is a well-known convergence property of Monge-Ampère opera-
tors in [6].

Theorem 3.3.6. Let uj be a locally bounded psh function on Ω for 1 ≤ j ≤ m. Let (ujk)k∈N
be a sequence of locally bounded psh functions increasing to uj in L1

loc as k → ∞. Then we
have

u1kdd
cu2k ∧ · · · ∧ ddcumk → u1dd

cu2 ∧ · · · ∧ ddcum

as k →∞.

Proof. The proof follows that of [29, Theorem 1.15]. First of all, observe that if ujk ↗ uj
almost everywhere then, we have ujk ≤ uj(k+1) ≤ uj pointwise on U . Since the problem
is local, as in the proof of Theorem 3.2.5, we can assume that ujk, uj are all equal to some
smooth psh function ψ outside some set K b Ω on Ω. Let

Sjk := ddcujk ∧ · · · ∧ ddcumk, Sj := ddcuj ∧ · · · ∧ ddcum.

We prove by induction in j that

u(j−1)kSjk → u(j−1)Sj (3.3.6)

k and for every 2 ≤ j ≤ m + 1 (by convention we put S(m+1)k = Sm+1 := 1). The claim
is clear for j = m + 1. Suppose that it holds for (j + 1). We need to prove it for j. Let
Rj∞ be a limit current of u(j−1)kSjk as k →∞. By induction hypothesis (3.3.6) for (j+ 1)

instead of j, Sjk → Sj as k → ∞. This combined with the fact that the sequence (ujk)k
converges in L1

loc to uj gives
Rj∞ ≤ uj−1Sj

(one can see [19, Proposition 3.2]). Fix s ∈ N. Let ω be the standard Kähler form in Cn.
For k ≥ s, by integration by parts,

lim inf
k→∞

∫
Ω

u(j−1)kSjk ∧ ωn−m+j−1 ≥ lim inf
k→∞

∫
Ω

u(j−1)sSjk ∧ ωn−m+j−1

=

∫
Ω

u(j−1)sSj ∧ ωn−m+j−1

=

∫
Ω

u(j−1)sdd
cuj ∧ S(j+1) ∧ ωn−m+j−1

=

∫
Ω

ujdd
cu(j−1)s) ∧ S(j+1) ∧ ωn−m+j−1
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which converges to∫
Ω

ujdd
cu(j−1) ∧ S(j+1) ∧ ωn−m+j−1 =

∫
Ω

u(j−1)sSj ∧ ωn−m+j−1

by induction hypothesis and Corollary 3.3.5. This finishes the proof.

Lemma 3.3.7. (Negligible sets are of zero capacity) Negligible sets are Borel sets of zero
capacity.

Proof. Let (uj)j∈J be a family of psh functions bounded uniformly from above. Let E
be the set of x ∈ Ω such that (supj∈J uj)

∗(x) > supj∈J uj(x). We nede to prove that
cap(E,Ω) = 0. By Choquet’s lemma, we can assume J is countable, and u := (supj∈J uj)

∗

is L1 limit of an increasing sequence (uj)j of psh functions. Observe that

E = ∪s,t∈Q
{
x : (sup

j∈J
uj)
∗ ≥ s > t ≥ sup

j∈J
uj
}
.

Since each of these sets in the last union is Borel, so is E. We first assume that (uj)j is
uniformly locally bounded on Ω. By Theorem 3.3.6, we get

uj(dd
cv)n ≥ u(ddcv)n

as j → ∞ for every bounded psh function v. On the the hand, by Lebesgue’s mono-
tone convergence theorem, uj(ddcv)n → (limj→∞ uj)(dd

cv)n. Hence the set {x : u(x) >

limj→∞ uj(x)} is of zero measure with respect to (ddcv)n.
Consider the general case where (uj)j is not necessarily uniformly locally bounded.

Let u be as above, and J is countable, the family (uj)j is uniformly bounded from above.
Let A := {u1 = −∞}. We already know that A is of zero capacity by Lemma 3.3.2. Let
M be a big integer. Consider ujM := max{uj,−M}, and uM := (supj ujM)∗. Observe that

{x : u(x) > sup
j
uj(x)}\A ⊂

⋃
M∈N

{
x ∈ Ω : uM(x) > sup

j
ujM(x)

}
.

This combined with the first part of the proof implies that {x : u > supj uj} is of zero
capacity.

Just by replacing the usual quasi-continuity of psh functions by the stronger one given
in Theorem 3.3.4 for bounded psh functions, we immediately obtain results similar to
those in [7]. We state here results we will use later.

Lemma 3.3.8. (similar to [7, Lemma 4.1]) Let Ω be an open subset in Cn. Let T be a
closed positive current on Ω and uj, ujk, u′j, u

′
jk bounded psh functions on Ω for k ∈ N and

1 ≤ j ≤ m, where m ∈ N. Let q ∈ N∗ and vj, v′j bounded psh functions on Ω for 1 ≤ j ≤ q.
Put W := ∩qj=1{vj > v′j}. Assume that

Rk := ddcu1k ∧ · · · ∧ ddcumk ∧ T → R := ddcu1 ∧ · · · ∧ ddcum ∧ T

and
R′k := ddcu′1k ∧ · · · ∧ ddcu′mk ∧ T → R′ := ddcu′1 ∧ · · · ∧ ddcu′m ∧ T
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as k →∞ and

1WRk = 1WR
′
k (3.3.7)

for every k. Then we have 1WR = 1WR
′.

Proof. The problem is clear if W is open, for example, when vj is continuous for 1 ≤ j ≤
q. In the general case, we will use the strong quasi-continuity to modify vj. Since the
problem is local, we can assume that Ω is bounded. Let ε > 0 be a constant. By Theorem
3.3.4, we can find bounded continuous functions ṽj on Ω such that capT ({ṽj 6= vj}, U) <

ε. Put W̃ := ∩qj=1{ṽj > v′j} which is an open set. The choice of ṽj combined with the
definition of capT yields that

‖1WR− 1W̃R‖Ω ≤ ε, ‖1WRk − 1W̃Rk‖Ω ≤ ε.

We also have similar estimates for R′, R′k. By this and (3.3.7), we get ‖1W̃Rk−1W̃R′k‖Ω ≤
2ε. This combined with the fact that W̃ is open yields that ‖1W̃R − 1W̃R

′‖Ω ≤ 2ε. Thus
‖1WR − 1WR

′‖Ω ≤ 4ε for every ε. The desired equality follows. This finishes the proof.

Theorem 3.3.9. Let Ω be an open subset in Cn. Let T be a closed positive current on Ω and
uj, u

′
j bounded psh functions on Ω for 1 ≤ j ≤ m, where m ∈ N. Let vj, v′j be bounded psh

functions on Ω for 1 ≤ j ≤ q. Assume that uj = u′j on W := ∩qj=1{vj > v′j} for 1 ≤ j ≤ m.
Then we have

1Wdd
cu1 ∧ · · · ∧ ddcum ∧ T = 1Wdd

cu′1 ∧ · · · ∧ ddcu′m ∧ T. (3.3.8)

Proof. We give here a complete proof for the readers’ convenience. Let ε > 0 be a
constant. Put u′′j := max{uj, u′j − ε} and W̃ := ∩mj=1{uj > u′j − ε}. By hypothesis,
W ⊂ W̃ . We will prove that

1W̃dd
cu1 ∧ · · · ∧ ddcum ∧ T = 1W̃dd

cu′′1 ∧ · · · ∧ ddcu′′m ∧ T. (3.3.9)

Since the problem is local, we can assume there is a sequence of uniformly bounded
smooth psh functions (ujk)k decreasing to uj for 1 ≤ j ≤ m. Since W̃k := {ujk > u′j − ε}
is open, we have

1W̃k
ddcu1k ∧ · · · ∧ ddcumk ∧ T = 1W̃k

ddc max{u1k, u
′
j − ε} ∧ · · · ∧ ddc{umk, u′j − ε} ∧ T.

This together with the inclusion W̃ ⊂ W̃k gives

1W̃dd
cu1k ∧ · · · ∧ ddcumk ∧ T = 1W̃dd

c max{u1k, u
′
j − ε} ∧ · · · ∧ ddc{umk, u′j − ε} ∧ T.

Using this and Lemma 3.3.8, we obtain (3.3.9) by considering k →∞. In particular, we
get

1Wdd
cu1 ∧ · · · ∧ ddcum ∧ T = 1Wdd

cu′′1 ∧ · · · ∧ ddcu′′m ∧ T.
Letting ε→ 0 and using Lemma 3.3.8 again gives

1Wdd
cu1 ∧ · · · ∧ ddcum ∧ T = 1Wdd

c max{u1, u
′
1} ∧ · · · ∧ ddc max{um, u′m} ∧ T.

The last equality still holds if we replace uj in the left-hand side by u′j by using similar
arguments. So the desired equality follows. The proof is finished.
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Remark 3.3.10. Recall that a quasi-psh function u on Ω is, by definition, locally the sum
of a psh function and a smooth one. We can check that results presented above have their
analogues for quasi-psh functions.

Here is an integration by parts formula which will be useful later.

Lemma 3.3.11. (Integration by parts formula II) Let χ ∈ C 3(R) and w1, w2 bounded psh
functions on an open subset Ω of Cn. Let Q be a closed positive current of bi-dimension (1, 1)

on Ω. Then we have

ddcχ(w2) ∧Q = χ′′(w2)dw2 ∧ dcw2 ∧Q+ χ′(w2)ddcw2 ∧Q (3.3.10)

and the operator w1dd
cχ(w2) ∧ Q is continuous (in the usual weak topology of currents)

under decreasing sequences of smooth psh functions converging to w1, w2. Consequently, if
f is a smooth function with compact support in U , then the equality∫

Ω

fw1dd
cχ(w2) ∧Q =

∫
Ω

χ(w2)ddc(fw1) ∧Q (3.3.11)

holds. Moreover, for f as above, we also have∫
Ω

fχ(w2)ddcw1 ∧Q = −
∫

Ω

χ(w2)df ∧ dcw1 ∧Q−
∫

Ω

fχ′(w2)dw2 ∧ dcw1 ∧Q. (3.3.12)

Proof. Clearly, all of three desired equalities follows from the integration by parts if w1, w2

are smooth. The arguments below essentially say that both sides of these equalities are
continuous under sequences of smooth psh functions decreasing to w1, w2. This is slightly
non-standard due to the presence of Q even when χ is convex.

First observe that (3.3.11) is a consequence of the second desired assertion because
both sides of (3.3.11) are continuous under a sequence of smooth psh functions de-
creasing to w2. We prove (3.3.10). The desired equality (3.3.10) clearly holds if w2 is
smooth. In general, let (wε2)ε be a sequence of standard regularisations of w2. Recall that
ddcχ(w2) ∧Q is defined to be ddc

(
χ(w2)Q

)
which is equal to the limit of ddc

(
χ(wε2)Q

)
as

ε→ 0. By (3.3.10) for wε2 in place of w2, we see that ddc
(
χ(wε2)Q

)
is of uniformly bounded

mass. As a result, ddcχ(w2) ∧Q is of order 0. Thus w1dd
cχ(w2) ∧Q is well-defined. Put

I(w1, w, w2) := w1χ
′′(w)dw2 ∧ dcw2 ∧Q+ w1χ

′(w)ddcw2 ∧Q.

Recall that I(1, wε2, w
ε
2)→ ddcχ(w2) ∧Q. By Corollary 3.3.5, we have

I(w1, w2, w
ε
2)→ I(w1, w2, w2) (3.3.13)

as ε→ 0. On the other hand, since χ′′ is in C 1, we get

|χ′′(wε2)− χ′′(w2)| . (wε2 − w2), |χ′(wε2)− χ′(w2)| . (wε2 − w2).

This combined with the convergence of Monge-Ampère operators under decreasing se-
quences tells us that (

I(w1, w
ε
2, w

ε
2)− I(w1, w2, w

ε
2)
)
→ 0 (3.3.14)

as ε → 0. Combining (3.3.14) and (3.3.13) gives that I(w1, w
ε
2, w

ε
2) → I(w1, w2, w2) as

ε→ 0. Letting w1 ≡ 1 in the last limit, we get (3.3.10). The second desired assertion also
follows. We prove (3.3.12) similarly. The proof is finished.
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3.4 Comparison principle

Let Ω be a bounded domain in Cn. Let ω0 be the standard Kähler form on Cn. Let u, v be
bounded psh functions on Ω.

Theorem 3.4.1. (Comparison principle I) Let 1 ≤ k ≤ n be an integer. Let T be a closed
positive (n − k, n − k)-current on Ω. Assume that lim infx→∂Ω(u(x) − v(x)) ≥ 0. Then we
have ∫

{u<v}
(ddcv)k ∧ T ≤

∫
{u<v}

(ddcu)k ∧ T.

Proof. By considering u + ε in place of u, and letting ε → 0, we can assume that
lim infx→Ω(u(x)− v(x)) ≥ ε > 0 for some constant ε. Hence the set A := {u ≤ v + δ/2} is
relatively compact in Ω. Hence there exists a relatively compact subset U in Ω such that
A ⊂ U . Take a cut-off function χ with compact support in Ω such that 0 ≤ χj ≤ 1 and
χ = 1 on A. By integration by parts and the fact that ddcχ = 0 on U and Theorem 3.3.9,
we get ∫

Ω

χ(ddc max{u, v})k ∧ T =

∫
Ω

ddcχ ∧ (ddc max{u, v})k−1 ∧ T

=

∫
{u>v}

ddcχ ∧ (ddc max{u, v})k−1 ∧ T

=

∫
{u>v}

ddcχ ∧ (ddcu)k−1 ∧ T.

Letting {χ = 1} converge to Ω gives∫
Ω

(ddc max{u, v})k ∧ T =

∫
Ω

(ddcu)k ∧ T.

By this and Theorem 3.3.9 again,∫
{u<v}

(ddcv)k ∧ T =

∫
{u<v}

(ddc max{u, v})k ∧ T

=

∫
Ω

(ddc max{u, v})k ∧ T −
∫
{u≥v}

(ddc max{u, v})k ∧ T

≤
∫

Ω

(ddc max{u, v})k ∧ T −
∫
{u>v}

(ddc max{u, v})k ∧ T

≤
∫

Ω

(ddc max{u, v})k ∧ T −
∫
{u>v}

(ddc max{u, v})k ∧ T

=

∫
Ω

(ddcu)k ∧ T −
∫
{u>v}

(ddc max{u, v})k ∧ T =

∫
{u≤v}

(ddcv)k ∧ T.

We replace u by u + ε in the last inequality, and by letting ε → 0 we obtain the desired
inequality.

Corollary 3.4.2. (Domination principle) Let the notations and the hypothesis be as in The-
orem 3.4.1. Then if (ddcu)k ∧T ≤ (ddcv)k ∧T and T ≥ cωn−k0 for some constant c > 0, then
u ≥ v.
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Proof. Let ρ ≥ 0 be a smooth psh function on Cn such that ddcρ ≥ ω0 on Ω. Suppose
that E := {u < v} is non-empty. Observe E ⊂ {u < v + ρ}. We claim that E is
of strictly positive Lebesgue measure. Consider x0 ∈ E. We have u(x0) < v(x0). Let
δ := v(x0)− u(x0) > 0. By the upper semi-continuity of u,

u(x) ≤ u(x0) + δ/3

for x ∈ B(x0, εδ) for some constant εδ > 0. On the other hand, applying the submean
inequality to v at x0 yields that v(x) ≥ v(x0)−δ/3 for x in a subset A of positive Lebesgue
measure in B(x0, εδ). Thus A ⊂ E. Since A is of positive Lebesgue measure, so is E.

By Theorem 3.4.1 applied to v + ρ, u, we get∫
{u<v+ρ}

(ddcv + ddcρ)k ∧ T ≤
∫
{u<v+ρ}

(ddcu)k ∧ T ≤
∫
{u<v+ρ}

(ddcv)k ∧ T.

On the other hand by the choice of ρ and the hypothesis the left-hand side of the last
inequality is

≥
∫
{u<v+ρ}

(ddcv)k ∧ T +

∫
{u<v+ρ}

ωn0 >

∫
{u<v+ρ}

(ddcv)k ∧ T.

This gives a contradiction. Hence E is empty. The desired assertion follows.

Let ω be a Hermitian metric on Ω. Let u1, . . . , um be bounded ω-psh function on Ω.
By using a local smooth psh function ψ such that ddcψ ≥ ω and writing ddcuj + ω =

ddc(u + ψ) + ω − ddcψ, we can define R := (ddcu1 + ω) ∧ · · · ∧ (ddcum + ω) as in the
case where uj ’s are psh. In particular, R is continuous under decreasing sequences to uj ’s
(see [15]). By Theorem 2.5.10, we can find smooth ω-psh functions (ujk)k decreasing
to u. Hence (ddcu1k + ω) ∧ · · · ∧ (ddcumk + ω) converges weakly to R as k → ∞. As a
consequence, R is independent of the choice ψ and R ≥ 0. We thus obtain a well-defined
positive current R.

Corollary 3.4.3. ([15]) (Domination principle II) Let u, v be bounded ω-psh functions on
Ω such that lim infx→∂Ω(u(x)− v(x)) ≥ 0, and (ddcu+ω)n ≤ (ddcv+ω)n on Ω. Then u ≥ v

on Ω.

Consider from now on a compact complex manifold X, and a Hermitian metric ω on
X. For every Borel set A ⊂ X, define

capBTK(A) := sup
{∫

A

(ddcϕ+ ω)n : ϕ ω-psh, 0 ≤ ϕ ≤ 1 on X
}
.

By Lemma 3.4.6 below, capBTK(A) is always finite. It is also clear that if we use
another Hermitian metric to define capBTK , then the resulted capacity is equivalent to
that associated to ω.

Let (Uj)1≤j≤N and (U ′j)1≤j≤N be finite open coverings of X such that U j is smooth and
contained in some local chart of X biholomorphic to a polydisc for every 1 ≤ j ≤ N,

Uj = {ψj < 0} for some psh function ψj defined on an open neighborhood of U j with
∂Uj = {ψj = 0} and U ′j b Uj for 1 ≤ j ≤ N. In practice, it suffices to take Uj, U ′j to be
balls and ψj are the differences of radius functions and constants.
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Lemma 3.4.4. ([29, 15]) There exists strictly positive constants c1, c2 such that for every
A ⊂ X we have

c1

N∑
j=1

cap
(
A ∩ U ′j, Uj

)
≤ capBTK(A) ≤ c2

N∑
j=1

cap
(
A ∩ U ′j, Uj

)
.

Proof. Put A′j := A ∩ U ′j which is a relatively compact subset of Uj. We have ∪jA′j = A.

The second desired inequality is obvious from the definitions of capacities. We prove
now the first desired inequality.

Fix an index 1 ≤ j ≤ N. By our choice of Uj, for every psh function 0 ≤ u ≤ 1 on Uj,
we can find another psh function −1 ≤ ũ ≤ 0 on Uj satisfying ũ = u − 1 on some open
neighborhood of U

′
j and ũ = 0 on ∂Uj. Such a ũ can be chosen to be max{u− 1, Aψj} for

some constant A big enough. Clearly,∫
A′j

(ddcu)k =

∫
A′j

(ddcũ)k.

Since −1 ≤ ũ ≤ 0 and ũ = 0 on ∂Uj, there is a quasi-psh function ũ1 on X such that
ddcũ1 + Cω ≥ 0 for some constant C independent of ũ and ũ1 = ũ on some open neigh-
borhood of U

′
j and |ũ1| is bounded by a constant independent of ũ. We deduce that∫
A′j

(ddcu)k =

∫
A′j

(ddcũ1)k ≤
∫
A′j

(ddcũ1 + Cω)k ≤ C ′capBTK(A′j),

for some constant C ′ independent of u. Consequently, capBT (A′j, Uj) ≤ CkcapBTK(A′j).
Summing over 1 ≤ j ≤ N in the last inequality gives the first desired inequality. This
finishes the proof.

Proposition 3.4.5. ([30, Theorem 0.2]) Let ϕ, ψ be bounded ω-p.s.h functions on X. Let
0 < ε < 1 and mε := infX(ϕ− (1− ε)ψ). Then there exists a big constant B > 0 depending
only on ω, n such that for every constant 0 < s < ε3/(16B) we have∫

{ϕ<(1−ε)ψ+mε+s}

(
(1− ε)ddcψ + ω

)n ≤ (1 + Cε−ks)

∫
{ϕ<(1−ε)ψ+mε+s}

(ddcϕ+ ω)n,

where C is a constant depending only on n,B.

A consequence of the last result is the following.

Lemma 3.4.6. ([15, 30]) Let M be a positive number. Then there exists a constant cM > 0

such that for every ω-psh function ϕ with |ϕ| ≤M, we have

0 <

∫
X

(ddcϕ+ ω)n ≤ cM . (3.4.1)

However, we don’t know whether

inf
{ϕ: |ϕ|≤M}

∫
X

(ddcϕ+ ω)n > 0?
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Proof. The second desired inequality is proved in [15] by using integration by parts. The
first one is observed in [30]. To see it, it is enough to notice that by choosing ε := 1/2

and s > 0 small enough in Proposition 3.4.5, for every ω-psh ψ with 0 ≤ ψ ≤ s and ϕ as
in the hypothesis, we have∫
{ϕ<infX ϕ+s}

(
ddcψ + ω

)n ≤ c

∫
{ϕ<(1−ε)ψ+mε+2s}

(
(1− ε)ddcψ + ω

)n ≤ cs

∫
X

(ddcϕ+ ω)n

because
{ϕ < inf

X
ϕ+ s} ⊂ {ϕ < (1− ε)ψ +mε + 2s},

where c, cs are constants independent of ψ and cs might depend on s. It follows that there
is a strictly positive constant c′s satisfying∫

X

(ddcϕ+ ω)n ≥ c′scapBTK
(
{ϕ < inf

X
ϕ+ s}

)
(3.4.2)

which is strictly positive because it is the capacity of a non-empty open set. The proof is
finished.

3.5 Locally pluripolar sets

We assume the following important result. Let ω be a Hermitian form on Cn. Let B be
the unit ball in Cn.

Theorem 3.5.1. (Dirichlet’s problem) Let ϕ be a continuous function on ∂B and let f ∈
Łp(ωn). Then there exists a unique u ∈ PSH(B) ∩ C 0(B) such that (ddcu + ω)n = fωn and
u = ϕ on ∂B.

This is a special case of [30, Theorem 4.2] (see references in this paper for historical
works).

Corollary 3.5.2. Let ϕ, f be as in Theorem 3.5.1. Then there exists a unique u ∈ PSH(B)∩
C 0(B) such that (ddcu)n = fωn and u = ϕ on ∂B.

Proof. Let ω := ddc‖z‖2 which is Kähler. By writing ddcu = ddc(u − ‖z‖ + 1) + ω and
noticing that u− ‖z‖+ 1 is equal to u on ∂B, we see that the desired assertion is a direct
consequence of Theorem 3.5.1.

Let X be a compact complex manifold of dimension n. Let ω be a Hermitian metric
on X.

Proposition 3.5.3. Let ϕ be an ω-psh function on X. Let B be a local chart in X biholo-
morphic to a unit ball in Cn. Then there exists a bounded ω-psh function u on X such
that

(ddcu+ ω)n = 0

on B and u = ϕ on X\B, and u ≥ ϕ on X.
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Using Corollary 3.5.2 as the proof below, we see that this result also holds if we
consider psh functions in place of ω-psh functions on X and ddcu in place of ddcu+ ω.

Proof. By Corollary 2.5.11, there exist a sequence of smooth ω-psh functions ϕj on X

decreasing to ϕ. Applying Theorem 3.5.1 to ϕj and B gives an ω-psh function uj on B such
that uj is continuous on B and (ddcuj +ω)n = 0 and uj = ϕj on ∂B. Let u′j := max{uj, ϕj}
on B and u′j := ϕj on X\B. By Lemma 2.5.6, u′j is an ω-psh function on X.

Since uj ≥ uj+1 on ∂B and (ddcuj + ω)n ≤ (ddcuj+1 + ω)n on B, using Domination
principle (Corollary 3.4.3) implies uj ≥ uj+1 on B. It follows that (u′j)j is a decreasing
sequence, and u′j ≥ ϕj ≥ ϕ for every j. Hence u := limj→∞ u

′
j exists and is an ω-psh

function on X. By Theorem 3.2.5, (ddcu+ ω)n = limj→∞(ddcuj + ω)n = 0. It is also clear
by construction that u = ϕ outside B. This finishes the proof.

A subset A of X is locally pluripolar if for every point x in A there is an open neigh-
borhood Ux of x in X and a psh function ϕ on Ux for which A ∩ Ux ⊂ {ϕ = −∞}. A
subset A of X is pluripolar if A ⊂ {ϕ = −∞} for some quasi-psh function ϕ in X.

Since we already know that if A is locally pluripolar in Uj, then cap(A,Uj) = 0, we get
capBTK(A) = 0 if A is locally pluripolar in X. Let (uj) be a family of psh functions on an
open subset U of Ck locally bounded from above. Define u := supj uj and u∗ := sup∗j uj
the upper semi-continuous regularisation of u. The set {u < u∗} is of zero capacity cap
by Lemma 3.3.7. For A ⊂ X,

capADS(A) := inf{exp(sup
A
ϕ) : ϕ ω-psh on X, sup

X
ϕ = 0}.

Lemma 3.5.4. capADS(A) = 0 if and only if A is pluripolar on X.

Proof. If A ⊂ {ϕ = −∞} for some quasi-psh ϕ, it is clear that capADS(A) = 0. Consider
now

capADS(A) = 0. (3.5.1)

Recall that there exists a constant c such that for every ω-psh function ϕ with the nor-
malization condition supX ϕ = 0, we have

‖ϕ‖L1(X) ≤ c. (3.5.2)

We refer to [24, 16, 15] for a proof. Using (3.5.1), there exists a sequence of ω-psh
functions (ϕn) with supX ϕn = 0 such that supA ϕn ≤ −n3. Put

ϕ :=
∞∑
n=1

ϕn
n2

which is a well-defined quasi-psh function because of (3.5.2). On the other hand,

sup
A
ϕ ≤

∞∑
n=1

−n3

n2
= −∞.

It means that A ⊂ {ϕ = −∞}. This finishes the proof.
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Let (ϕj)j∈J be a family of ω-psh functions on X uniformly bounded from above. De-
fine

ϕJ := sup
j∈J

ϕj.

Lemma 3.5.5. ϕ∗J is an ω-psh function.

Proof. We will use Proposition 2.5.5 to check the desired claim. It is enough to work
locally as in the situation of Proposition 2.5.5. Note that we already have that ϕ∗J is
upper semi-continuous by its definition. Let v ∈ Ck\{0} and ε a small positive constant.
Applying Proposition 2.5.5 to ϕj gives

ϕj(x) ≤ 1

2π

∫ 2π

0

ϕj(x+ εeiθv)dθ +

∫ ε

0

dt

t

∫
{|s|≤t}

ωx,v,

where ωx,v is the restriction of ω to the line Lx,v := {x+ tv : t ∈ C}. Taking the supremum
over j ∈ J in the last inequality implies

ϕJ(x) ≤ 1

2π

∫ 2π

0

ϕJ(x+ εeiθv)dθ +

∫ ε

0

dt

t

∫
{|s|≤t}

ωx,v. (3.5.3)

Let x∞ ∈ X. Consider a sequence (xn) ⊂ X converging to x∞ such that

ϕ∗J(x∞) = lim
n→∞

ϕJ(xn).

Applying (3.5.3) to x = xn and letting n→∞, we obtain

ϕ∗J(x∞) ≤ lim sup
n→∞

1

2π

∫ 2π

0

ϕJ(xn + εeiθv)dθ + lim sup
n→∞

∫ ε

0

dt

t

∫
{|s|≤t}

ωxn,v.

The second term in the right-hand side of the last inequality is equal to∫ ε

0

dt

t

∫
{|s|≤t}

ωx∞,v

because ω is smooth. This combined with the fact that

lim sup
n→∞

ϕJ(xn + εeiθv) ≤ ϕ∗J(x∞ + εeiθv)

and Fatou’s lemma yields

ϕ∗J(x∞) ≤ 1

2π

∫ 2π

0

ϕ∗J(x∞ + εeiθv)dθ +

∫ ε

0

dt

t

∫
{|s|≤t}

ωx∞,v.

The desired assertion now follows by Proposition 2.5.5. This finishes the proof.

As in the local setting, {ϕ∗J > ϕJ} is of zero capacity (see Lemma 3.3.7). We will
present below an important case of (ϕj)j∈J and its associated extremal function ϕ∗J .
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Let A be a non-pluripolar subset of X. As in the local setting or in the Kähler case, we
introduce the following extremal ω-psh function:

TA := sup
{
ϕ ω-psh : ϕ ≤ 0 on A

}
.

It is clear that TA ≥ 0. Let T ∗A be the upper semi-continuous regularisation of TA. We can
check that

capADS(A) = exp(− sup
X
TA). (3.5.4)

Thus TA is bounded from above because A is non-pluripolar. We deduce that T ∗A is a
bounded ω-psh function and QA := {T ∗A > TA} is of zero capacity. Since TA = 0 on A, we
get T ∗A = 0 on A\QA.

Proposition 3.5.6. Let A be a nonpluripolar compact subset of X. We have

(ddcT ∗A + ω)n = 0 (3.5.5)

on X\A.

Proof. By Choquet’s lemma (Lemma 1.2.5), there exists an increasing sequence of ω-psh
function ϕj for which T ∗A = (limj→∞ ϕj)

∗. Let B be a ball in X such that B ∩ A = ∅ . By
Proposition 3.5.3, we obtain an ω-psh function ϕ′j such that (ddcϕ′j + ω)n = 0 on B and
ϕ′j ≥ ϕj on X and ϕ′j = ϕj on X\B. Observe that ϕ′j increases to TA by the construction
and the definition of TA. It follows that (ddcT ∗A + ω)n = 0 on B by Theorem 3.7.4. The
desired assertion hence follows.

Proposition 3.5.7. Let A be a nonpluripolar compact subset of X. Then there exist strictly
positive constants c1, λ1 independent of A such that

exp
(
− λ1cap−1

BTK(A)
)
≤ capADS(A) ≤ c1 exp

(
−M1/n

A cap−1/n
BTK(A)

)
. (3.5.6)

where MA :=
∫
X

(ddcT ∗A + ω)n > 0.

Note that MA > 0 because of Lemma 3.4.6.

Proof. Since A non-pluripolar, T ∗A is a bounded ω-psh function. By (3.5.4), the desired
inequalities are equivalent to the following:

λ1cap−1
BTK(A) ≥ sup

X
TA ≥ c′1 +M

1/n
A cap−1/n

BTK(A), (3.5.7)

where c′1 := − log c1.
We prove now the first inequality of (3.5.7). We can assume supX TA > 0 because

otherwise the desired inequality is trivial for any λ1 ≥ 0. Put ϕA := T ∗A − supX T
∗
A which

is an ω-psh function with supX ϕA = 0. It follows that

‖ϕA‖Lp . 1 (3.5.8)

for every p ≥ 1 by Proposition 2.5.7.
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Let ϕ be an ω-psh function such that 0 ≤ ϕ ≤ 1. Since (supX TA)−1ϕA = −1 on A\QA,

and capBTK(QA) = 0, we obtain∫
A

(ddcϕ+ ω)n ≤ (sup
X
TA)−1

∫
X

[−ϕA](ddcϕ+ ω)n . (sup
X
TA)−1‖ϕA‖L1 (3.5.9)

for every ϕ with 0 ≤ ϕ ≤ 1 by the Chern-Levine-Nirenberg inequality (Corollary 3.2.7).
Combining (3.5.9) with (3.5.8) gives the first inequality of (3.5.7). It remains to prove
the second one.

Recall that −1 ≤ (supX TA)−1ϕA ≤ 0 and (supX TA)−1ϕA is an (supX TA)−1ω-psh
function. Hence (supX TA)−1ϕA is ω-psh if (supX TA)−1 ≤ 1. Consider the case where
(supX TA)−1 ≤ 1. By definition of capBTK , we get

capBTK(A) ≥ (sup
X
TA)−n

∫
A

(ddcϕA + ω)n = (sup
X
TA)−n

∫
A

(ddcT ∗A + ω)n (3.5.10)

By Proposition 3.5.6, we have∫
A

(ddcT ∗A + ω)n =

∫
X

(ddcT ∗A + ω)n.

Hence the second inequality of (3.5.7) follows if (supX TA)−1 ≤ 1.When (supX TA)−1 ≥ 1,

then T ∗A − 1 ≤ 0 on X and ≤ −1 on A\QA. We infer that

capBTK(A) = capBTK(A\QA) ≥
∫
A

(ddcT ∗A + ω)n > 0

which combined with the fact that supX TA ≥ 0 yields the second inequality of (3.5.7) in
this case. The proof is finished.

Theorem 3.5.8. A subset on a compact complex manifold is pluripolar if and only if it is
locally pluripolar.

One can apply this result to subsets of Cn because Cn is an open subset of Pn a com-
pact complex manifold. By the above theorem, there exist abundantly non-continuous
quasi-psh functions on a compact complex manifold. This is a fact which probably can-
not be seen directly because unlike projective manifolds, a general compact complex
manifold might have very few hypersurfaces.

Proof. First observe that a countable union of pluripolar sets is again a pluripolar set.
Indeed, let (Vk)k∈N be a countable family of pluripolar sets on X. Hence we have Vk ⊂
{ϕk = −∞} for some ω-p.s.h function ϕk with supX ϕk = 0. Define

ϕ :=
∞∑
n=1

ϕk/k
2

which is of bounded L1-norm because ‖ϕk‖L1 is uniformly bounded in k. Hence ϕ is a
quasi-psh function and Vk ⊂ {ϕ = −∞} for every k.
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Let V be a locally pluripolar set. We need to prove V is pluripolar. If V is compact,
the desired claim is a direct application of (3.5.6). For the general case, we need some
more arguments.

By Lindelöf’s property, we can cover V by at most countably many sets of form {ϕj =

−∞} for some p.s.h functions ϕj on some open subset Uj of X. Hence in order to prove
the desired assertion, we only need to consider V = {ϕ = −∞} for some psh function ϕ
in an open subset U of X which is biholomorphic to a ball in Ck.

Let U1 be a relatively compact open subset of U. Suppose that V ∩U1 is not pluripolar.
Hence T ∗V ∩U1

is a bounded ω-p.s.h function. Consider a decreasing sequence of smooth
psh functions (ϕk)k∈N defined on an open neighborhood of U1 converging pointwise to
ϕ. For every positive integer N, put

Vk,N := {ϕk ≤ −N} ∩ U1

which is a compact subset increasing in k. Hence (T ∗Vk,N )k∈N is a decreasing sequence of
ω-psh functions which converges pointwise to an ω-psh function TN .

Since {ϕk < −N} is open, T ∗Vk,N = TVk,N = 0 on {ϕk < −N} ∩ U1. Thus TN = 0 on
{ϕ < −N} ∩ U1 which contains V ∩ U1. We infer that

0 ≤ TN ≤ T ∗V ∩U1

for every N. This combined with the fact that (TN)N∈N is increasing gives

0 ≤ T∞ := ( lim
N→∞

TN)∗ ≤ T ∗V ∩U1
(3.5.11)

and T∞ is an ω-psh function. Applying (3.5.6) to A := Vk,N we get

sup
X
T ∗Vk,N ≥ c′1 +M

1/n
k,N capBTK(Vk,N)−1/n (3.5.12)

where Mk,N :=
∫
X

(ddcT ∗Vk,N + ω)n. By the convergence of Monge-Ampère operators, we
have

lim
k→∞

Mk,N =

∫
X

(ddcTN + ω)n =: MN , lim
N→∞

MN =

∫
X

(ddcT∞ + ω)n =: M∞ (3.5.13)

Note that M∞ > 0 by Lemma 3.4.6. On the other hand, since ϕk decreases pointwise to
ϕ as k →∞, there exists a constant c independent of k,N such that

capBTK(Vk,N) ≤ cN−1

by the Chern-Levine-Nirenberg inequality (Corollary 3.2.7). This together with (3.5.13)
and (3.5.12) implies

sup
X
TN ≥ c′1 + cM

1/n
N N1/n, (3.5.14)

for some constant c > 0 independent of N. Letting N → ∞ in the last inequality and
using (3.5.13), (3.5.11), we get

sup
X
T ∗V ∩U1

≥ sup
X
T∞ =∞.

This is a contradiction. Hence V ∩ U1 is pluripolar for every relatively compact open
subset U1 of U . It follows that V is pluripolar. This finishes the proof.
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3.6 Regularity of capacity

We recall the following important theorem due to Choquet. Let X be a locally compact
separable metric space. Let c be a nonnegative real function defined the set of all subsets
of X. The function c is said to be a generalized capacity if the following properties are
satisfied:

(i) for E1 ⊂ E2, c(E1) ≤ c(E2),
(ii) if Ej increases to E, then c(Ej) increases to c(E),
(iii) if compact Kj decreases to K, then c(Kj) decreases to c(K).
For every subset E in X we put

c∗(E) = inf{c(U) : U open subset in X containing E}

and
c∗(E) = sup{c(K) : K compact subset in E}.

Here is a well-known result of Choquet.

Theorem 3.6.1. ([9, 12]) Let c be a generalized capacity on X. Then for every Borel subset
E, we have

c(E) = c∗(E). (3.6.1)

This result is true for any locally compact topological space X. But in the scope of the
lecture, it is enough for us to consider locally compact separable metric spaces.

Proof. We give a sketch of the proof for readers’ convenience. Recall that a Fσ subset in
X is a countable union of closed subsets in X, and Fσδ is a countable intersection of Fσ
subsets in Ω. Using Property (ii) of c, we get c(E) = c∗(E) if E is a closed subset in X

because F is a countable union of compact subsets in X. Similarly (3.6.1) holds true if E
is Fσ and Fσδ set. The desired assertion follows from it and the following claim asserting
that every Borel set is the image of a Fσδ set under a continuous map.

Claim. For every Borel subset E in X, there exist a compact metric space Y and a con-
tinuous map f : Y → X and a Fσδ subset A in Y such that f(A) = E.

We prove the Claim. We avoid using Tychonoff’s theorem in this proof. Let A be the set of
subsets E inX satisfying the claim. Observe that open subsets ofX belong to A . In order
to obtain the desired assertion, it suffices to check that A is an σ-algebra. Let (Ej)j∈N be
in A . Put E = ∩jEj. Let fj : Yj → X be a continuous map such that f(Aj) = Ej for
some Fσδ subset Aj in Yj. Consider the space Y :=

∏
j Yj with the usual topology which

is the coarsest topology making every projection pj : Y → Yj to its component Yj to be
continuous. Recall that open subsets in Y is given by

∏
j∈J Uj×

∏
j 6∈J Yj, where Uj are an

open subset in Yj. This topology is metrizable by the following metric:

d(x, y) :=
∞∑
j=1

dj(xj, yj)

2j(1 + dj(xj, yj))
,
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where dj denotes the metric on Yj, and x = (xj)j∈N and y = (yj)j∈N are elements in Y .
With this metric, one can check that Y is compact because Yj is so. Let

Aj = ∩∞s=1 ∪∞k=1 Kskj,

where Kskj is compact in Yj (notice Yj is compact) and Kskj is increasing in k as s, j
fixed. Hence ∏

j

Aj = ∩s ∪k1,...,ks Ksk11 × · · · ×Kskss × Yr+1 × · · ·

which is a Fσδ in Y . Put

A := {y ∈
∏
j

Aj : fj ◦ pj(y) = fj′ ◦ pj′(y),∀j, j′}

which is closed subset of
∏

j Aj. Let f : A→ X be given by f(y) := f1 ◦ p1(y). Using the
metric structure, we extend f naturally to a continuous map from A to X. Note that A is
a compact metric space, and f(A) = ∩jfj(Aj) = ∩jEj. Hence E ∈ A .

Consider now E := ∪jEj. Let {y0} be a point-set. Let Y ′j := Yj ∪{y0} which is again a
compact metric space, and Y ′ :=

∏
j Y
′
j . Let pj : Y ′ → Y ′j be the natural projection from

Y ′j to Y ′j . Set
A := ∪j{y0} × · · · × {y0} × Aj × {y0} × · · ·

which is formally the disjoint union of Aj. Observe A is Fσδ in Y ′. Consider f : A → X

given by
f(y0, . . . , y0, yj, y

0, . . .) := fj(yj).

We see that f(A) = ∪jEj. Extends f to A as before. We thus proved Claim. This finishes
the proof.

Recall that a domain Ω is said to be hyperconvex if there exists a continuous psh
function h < 0 on Ω such that for every constant c < 0, the set {h < c} is relatively
compact in Ω. From now on we assume that Ω is bounded and hyperconvex. We follow
partly the presentation in [9, 29]. Let E be a subset in Ω. The relative extreme function
of E in Ω is defined by

uE,Ω := sup{u psh in Ω : u ≤ 0, u ≤ −1 on E}.

Note that uE,Ω = −1 on E and −1 ≤ uE,Ω ≤ 0. By Choquet’s lemma, u∗E,Ω is the limit of
an increasing sequence of negative psh functions on Ω. Hence u∗E,Ω is bounded psh on Ω.

Lemma 3.6.2. (i) If E1 ⊂ E2, then uE2,Ω ≤ uE1,Ω,
(ii) If E ⊂ Ω1 ⊂ Ω2, then uE,Ω2 ≤ uE,Ω1

(iii) If compact Kj decreases to K, then (limj u
∗
Kj ,Ω

)∗ = u∗K,Ω.

Proof. The first two desired claims are trivial. It remains to prove the third desired claim.
Put

u := (lim
j
uKj ,Ω)∗.
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Since uKj ,Ω ≤ uK,Ω, we get u ≤ uK,Ω. It remains to prove the converse inequality. By Cho-
quet’s lemma, there is a sequence of psh functions (uk)k increasing almost everywhere
to u∗E,Ω such that uk ≤ 0 on Ω and uk ≤ −1 on K. Let ε > 0 be a constant. Since Kj

compact decreases to K and K ⊂ {uk < 1− ε}, we see that for k fixed, and j big enough,
Kj ⊂ {uk < 1−ε}. It follows that (1−ε)−1uk ≤ u∗Kj ,Ω. Letting j →∞ gives u ≥ (1−ε)−1uk
for every k. Letting k →∞ and then ε→ 0, we obtain that u ≥ u∗E,Ω almost everywhere.
Hence u ≥ u∗E,Ω. This finishes the proof.

Proposition 3.6.3. Let E be a relatively compact subset in a bounded hyperconvex domain
Ω. We have

cap∗(E,Ω) =

∫
Ω

(ddcu∗E,Ω)n.

If compact Kj decreases to K, then

lim
j→∞

cap(Kj,Ω) = cap(K,Ω) = cap∗(K,Ω).

Proof. Since −1 ≤ u∗E,Ω ≤ 0, we get

cap(E,Ω) ≥
∫
E

(ddcu∗E,Ω)n =

∫
Ω

(ddcu∗E,Ω)n.

We prove the converse inequality. Let h be a psh function on Ω such that h < 0 on Ω

and {h < c} b Ω for every constant c < 0. Since E is relatively compact, by rescaling,
we can assume h < −1 on E. Thus h ≤ u∗E,Ω. We infer that u∗E,Ω is an exhaustion psh
function for Ω, i.e, the open set {u∗E,Ω < c} is relatively compact in Ω for every constant
c < 0. In particular, lim infx→∂Ω u

∗
E,Ω = 0 (hence lim supx→∂Ω u

∗
E,Ω = 0 because u∗E,Ω ≤ 0).

Let −1 ≤ u ≤ 0 be a psh function on Ω. Let A := {u∗E,Ω > uE,Ω}. We already know that

cap(A,Ω) = 0 (3.6.2)

by Lemma 3.3.7. Let 0 < ε < 1 be a constant. Observe that E ⊂ {uE,Ω < (1− ε)u}. Using
this and the comparison principle (Theorem 3.4.1) gives

(1− ε)n
∫
{u∗E,Ω<(1−ε)u}

(ddcu)n ≤
∫
{u∗E,Ω<u}

(ddcu∗E,Ω)n ≤
∫

Ω

(ddcu∗E,Ω)n.

Combining this with (3.6.2) yields

(1− ε)n
∫
E

(ddcu)n ≤
∫
E

(ddcu∗E,Ω)n.

Taking the supremum over every u and letting ε→ 0 give

cap(E,Ω) ≤
∫

Ω

(ddcu∗E,Ω)n.

Hence we obtain

cap(E,Ω) =

∫
E

(ddcu∗E,Ω)n (3.6.3)
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if E is compact. Consider now a relatively compact open subset U in Ω. Let Kj be a
sequence of compact subsets increasing to U . Observe uKj ,Ω decreases to uU,Ω. By a
similar equality as (3.6.2), u∗Kj ,Ω decreases to a psh function u∞ ≥ u∗U,Ω. Moreover for
every open B b U , we have u∗Kj ,Ω = −1 on B if j big enough. Hence u∞ = −1 on U . It
follows that u∞ = u∗U,Ω, and u∗Kj ,Ω decreases to u∗U,Ω. Using this and applying (3.6.3) to
Kj and taking j →∞ gives

cap(U,Ω) = lim sup
j→∞

∫
Ω

(ddcu∗Kj ,Ω)n =

∫
Ω

(ddcu∗U,Ω)n

by Theorem 3.2.5 (notice here that (ddcu∗Kj ,Ω)n is supported on a fixed compact subset in
Ω because U b Ω).

Let E b Ω be an arbitrary set, and U b Ω open set containing E. Observe that
0 > u∗E,Ω ≥ u∗U,Ω on Ω. Hence using comparison principle, we get∫

Ω

(ddcu∗E,Ω)n ≤
∫

Ω

(ddcu∗U,Ω)n = cap(U,Ω)

Taking the infimum over every open U containing E gives∫
Ω

(ddcu∗E,Ω)n ≤ cap∗(E,Ω).

Now let (uj)j be a sequence of psh functions increasing to uE,Ω. Hence E is contained in
the open subset Gj := {uj < −λj}, where the constant λj increases to 1. We can assume
that uj is an exhaustion psh of Ω (by replacing uj by max{uj, h}). We infer that Gj b Ω

and u∗Gj ,Ω increases to u∗E,Ω almost everywhere. Theorem 3.3.6 implies that∫
Ω

(ddcu∗E,Ω)n = lim
j→∞

∫
Ω

(ddcu∗Gj ,Ω)n = lim
j→∞

cap(Gj,Ω) ≥ cap∗(E,Ω).

The last desired assertion follows from the first part of the proof and Lemma 3.6.2. This
finishes the proof.

Lemma 3.6.4. Let E b Ω. The following statements are equivalent:
(i) E is pluripolar in Ω,
(ii) uE,Ω = 0,
(iii) cap∗(E,Ω) = 0.

Proof. The equivalence between (i) and (ii) can be obtained by using directly the defini-
tion of uE,Ω. By Proposition 3.6.3, we get

cap∗(E,Ω) =

∫
Ω

(ddcu∗E,Ω)n,

and we see that (ii) implies (iii). Assume now (iii). Hence (ddcu∗E,Ω)n = 0 Recall that
limx→∂Ω u

∗
E,Ω = 0, see the proof of Proposition 3.6.3. Using this and Corollary 3.4.2

implies (ii).
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Theorem 3.6.5. Negligible sets are pluripolar.

Proof. Let (uj)j∈J be a family of psh functions bounded uniformly from above on Ω. Since
the problem is local, we can assume Ω is hyperconvex. Let E be the set of x ∈ Ω such that
u := (supj∈J uj)

∗(x) > supj∈J uj(x). By Choquet’s lemma, we can assume J is countable,
and u := (supj∈J uj)

∗ is L1 limit of an increasing sequence (uj)j of psh functions. Let
ε > 0 be a constant. By quasi-continuity, there is an open subset U = U(ε) in X such that
capBTK(U) ≤ ε and u, uj is continuous on X\U . Observe that

E\U = ∪s,t∈Q
{
x ∈ X\U : u(x) ≥ s > t ≥ sup

j∈J
uj
}

= ∪s,t∈QKs,t.

Observe that Ks,t are compact. Hence

E ⊂ U ∪ ∪s,t∈QKs,t, Ks,t ⊂ E.

Since cap(E,Ω) = 0 (Lemma 3.3.7), we get cap(Kst,Ω) = 0. Thus cap∗(Kst,Ω) = 0 by
Proposition 3.6.3. This combined with the fact that cap(Uε,Ω) < ε yields that there is an
open subset U ′ in Ω such that cap(U ′,Ω) ≤ 2ε and E ⊂ U ′. We infer that cap∗(E,Ω) = 0.
In particular cap∗(E ∩K,Ω) = 0 for every compact K in Ω. Combining this with Lemma
3.6.4 shows that E ∩ K is pluripolar in Ω. Hence E = ∪j(E ∩ Kj) is pluripolar, where
Ω = ∪jKj and Kj b Ω. This finishes the proof.

Theorem 3.6.6. The function cap∗(·,Ω) is a generalized capacity on Ω, and we have

cap(E,Ω) = cap∗(E,Ω) = cap∗(E,Ω) (3.6.4)

for every Borel subset E in Ω. If E is relatively compact Borel subset in Ω, then

cap(E,Ω) =

∫
Ω

(ddcu∗E,Ω)n. (3.6.5)

Proof. The first and third desired properties for a generalized capacity holds for cap∗(·,Ω)

thanks to Proposition 3.6.3. Let Ej be subsets in Ω increasing to E. We need to prove that
cap∗(Ej,Ω) increases to cap∗(E,Ω). Without loss of generality, we can assume Ej b Ω.
Let ε > 0 be a constant. By the proof of Theorem 3.6.5, we know that there is an open
subset U in Ω such that cap∗(U,Ω) ≤ ε such that

∪∞j=1{u∗Ej ,Ω > uEj ,Ω} ⊂ U.

Let 0 < r < 1 be a constant. Put Uj := {u∗Ej ,Ω < −r}. By the proof of Proposition 3.6.3,
we know that Uj b Ω and

lim
x→∂Ω

u∗Ej ,Ω = lim
x→∂Ω

u∗Uj ,Ω = 0.

This combined with the fact that r−1u∗Ej ,Ω ≤ u∗Uj ,Ω and the comparison principle implies
that

cap∗(Uj,Ω) =

∫
Ω

(ddcu∗Uj ,Ω)n ≤ r−n
∫

Ω

(ddcu∗Ej ,Ω)n = r−ncap∗(Ej,Ω).
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Note that Uj is increasing in j, and V := U ∪∪jUj contains E. Hence U ∪Uj increases to
V . We obtain thus

cap∗(E,Ω) ≤ cap(V,Ω) ≤ cap(U,Ω) + r−n lim inf
j→∞

cap(Ej,Ω).

Letting r → 1 in the last inequality yields that cap∗(Ej,Ω) increases to cap∗(E,Ω). Hence
cap∗(·,Ω) is a generalized capacity. The equality (3.6.4) is deduced immediately from
this and the fact that

cap∗(K,Ω) = cap(K,Ω)

for every compact K in Ω.
The equality (3.6.5) follows directly from (3.6.4) and Proposition 3.6.3. This finishes

the proof.

3.7 Continuity of Monge-Ampère operators: continued

Let Ω be an open subset in Cn.

Theorem 3.7.1. Let uj, ujk be as in Theorem 3.3.6. Let (u′jk)k be a sequence of locally
bounded psh functions on Ω for 1 ≤ j ≤ m such that u′jk ≥ ujk and u′jk → uj in L1

loc as
k →∞. Then we have

u′1kdd
cu′2k ∧ · · · ∧ ddcu′mk → u1dd

cu2 ∧ · · · ∧ ddcum

as k →∞.

Proof. Since the problem is local, as usual, we can assume that u′jk, ujk, uj are all equal
to some smooth psh function ψ outside some set K b Ω on Ω. Let

S ′jk := ddcu′jk ∧ · · · ∧ ddcu′mk, Sj := ddcuj ∧ · · · ∧ ddcum.

We let Sjk as in the proof of Theorem 3.3.6. We prove by induction in j that

u′(j−1)kS
′
jk → u(j−1)S

′
j

as k →∞ and for every 2 ≤ j ≤ m+ 1 (by convention we put S ′(m+1)k = S ′m+1 := 1). The
claim is clear for j = m + 1. Suppose that it holds for (j + 1). We need to prove it for
j. Let Rj∞ be a limit current of u′(j−1)kS

′
jk as k →∞. By induction hypothesis (3.3.6) for

(j + 1) instead of j, S ′jk → Sj as k → ∞. This combined with the fact that the sequence
(u′jk)k converges in L1

loc to uj gives

Rj∞ ≤ uj−1Sj.
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On the other hand, since u′jk ≥ ujk, we get∫
Ω

u′(j−1)kS
′
jk ∧ ωn−m+j−1 ≥

∫
Ω

u(j−1)kS
′
jk ∧ ωn−m+j−1

=

∫
Ω

u′jkdd
cu(j−1)k ∧ S ′(j+1)k ∧ ωn−m+j−1

=

∫
Ω

ujkdd
cu(j−1)k ∧ S ′(j+1)k ∧ ωn−m+j−1

· · ·

≥
∫

Ω

u(j−1)kSjk ∧ ωn−m+j−1 →
∫

Ω

uj−1Sk ∧ ωn−m+j−1

as j →∞ by Theorem 3.3.6. Hence Rj∞ = uj−1Sj. This finishes the proof.

Corollary 3.7.2. Let (uj)j be a sequence of psh function uniformly bounded increasing to a
psh function u. Let (u′j)j be a sequence of psh function uniformly bounded such that u′j ≥ uj
and u′j converges to u in L1

loc. Then u′j converges to u in capacity.

Proof. Let ε > 0 be a constant. Observe that

{|u− u′j| ≥ δ} ⊂ {u′j − uj ≥ δ} ∪ {u− uj ≥ δ}.

Let K b U b Ω be open sets. Since (uj)j, (u
′
j)j are uniformly bounded, using Lemma

3.3.3 gives

cap(K ∩ {u− uj ≥ δ},Ω) ≤ δ−1C

(∫
U

(u− uj)(ddcuj)n
)2−n

and

cap(K ∩ {u′j − uj ≥ δ},Ω) ≤ δ−1C

(∫
U

(u′j − uj)(ddcuj)n
)2−n

where C > 0 is a constant independent of j. The right-hand sides of both inequality tend
to 0 as j →∞ thanks to Theorem 3.7.1. The desired assertion hence follows.

Proposition 3.7.3. Let (uj)j∈J be a family of uniformly bounded continuous psh functions,
and u := (supj uj)

∗. Let ε > 0 be a constant. Then there exists a closed subset A in Ω such
that cap(A,Ω) < ε and u is continuous on Ω\A.

Note here that the usual quasi-continuity of psh functions implies that psh function
are continuous outside an open subset A with small capacity. In the above statement, A
is closed. This fact might be useful in practice.

Proof. One just needs to use Corollary 3.7.2 and argue as in the proof of Theorem 3.3.4.
We will obtain a closed subsetA in U such that cap(A,U) < ε and u is continuous on U\A.
Notice that the exceptional set A is closed because in the current setting the sequence
u′j increases to u (almost everywhere), while in the setting of Theorem 3.3.4 we have a
sequence decreasing to u.



CHAPTER 3. MONGE-AMPÈRE OPERATORS 85

The following continuity property of Monge-Ampère operators covers both those for
increasing and decreasing sequences (Theorems 3.3.6 and 3.2.5).

Theorem 3.7.4. Let Ω ⊂ Cn be an open set. Let (Tk)k be a sequence of closed positive
currents satisfying Condition (∗) so that Tk converges to a closed positive current T on Ω as
k →∞. Let uj be a locally bounded psh function on Ω for 1 ≤ j ≤ m. Let (ujk)k∈N, (u

′
jk)k∈N

be sequences of locally bounded psh functions converging to uj in L1
loc as k → ∞ such that

u′jk ≥ ujk. Then, the convergence

u′1kdd
cu′2k ∧ · · · ∧ ddcu′mk ∧ Tk → u1dd

cu2 ∧ · · · ∧ ddcum ∧ T (3.7.1)

as k →∞ holds provided that one of the following two conditions is fulfilled for each j:
(i) ujk(x)↗ uj(x) for every x ∈ Ω as k →∞,
(ii) ujk(x)↗ uj(x) for almost everywhere x ∈ Ω (with respect to the Lebesgue measure)

and T has no mass on pluripolar sets.

Proof. Assume for the moment that (3.7.1) holds for ujk in place of u′jk. Then arguing as
in the proof of Theorem 3.7.1 gives (3.7.1). Hence it remains to check (3.7.1) for ujk in
place of u′jk. Let

Sjk := ddcujk ∧ · · · ∧ ddcumk ∧ Tk, Sj := ddcuj ∧ · · · ∧ ddcum ∧ T.

We prove by induction in j that

u(j−1)kSjk → u(j−1)Sj (3.7.2)

k and for every 2 ≤ j ≤ m+ 1 (by convention we put S(m+1)k := Tk and Sm+1 := T ). The
claim is true for j = m + 1. Suppose that it holds for (j + 1). We need to prove it for j.
Let Rj∞ be a limit current of u(j−1)kSjk as k → ∞. By induction hypothesis (3.7.2) for
(j + 1) instead of j, Sjk → Sj as k → ∞. This combined with the fact that the sequence
(ujk)k converges in L1

loc to uj gives

Rj∞ ≤ uj−1Sj (3.7.3)

(Lemma 3.2.1). On the other hand, since (ujk)k is increasing, using Corollary 3.3.5, we
obtain

lim inf
k→∞

u(j−1)kSjk ≥ lim inf
k→∞

u(j−1)sSjk = u(j−1)sSj

for every s ∈ N. Letting s→∞ in the last inequality gives

Rj∞ ≥ ( lim
s→∞

u(j−1)s)Sj = uj−1Sj + ( lim
s→∞

u(j−1)s − uj−1)Sj. (3.7.4)

Recall that the set of x ∈ U with uj−1(x) > lims→∞ u(j−1)s(x) is empty in the setting of
(i) and is a pluripolar set in the setting of (ii) by Theorem 3.6.5. Hence (3.7.2) follows
from Lemma 3.3.2, (3.7.4) and (3.7.3). The proof is finished.

The following remark will be important in next chapters.
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Remark 3.7.5. By the above proof and Lemma 3.3.2, Property (ii) of Theorem 3.7.4 still
holds if instead of requiring T has no mass on pluripolar sets, we assume the following two
conditions:

(i) T has no mass on Aj := {x ∈ U : uj(x) 6= limk→∞ ujk(x)} for every 1 ≤ j ≤ m and,
(ii) the set Aj is locally complete pluripolar for every j.

We conclude this section with the following result.

Corollary 3.7.6. Let (uj)j be a sequence of psh function uniformly bounded increasing to a
psh function u. Let (u′j)j be a sequence of psh function uniformly bounded such that u′j ≥ uj
and u′j converges to u in L1

loc. Then uj converges to u in capacity capT for every closed
positive current T having no mass on pluripolar sets.

Proof. Similar to the proof of Corollary 3.7.2.

We now present an important setting where we can define Monge-Ampère operators
for unbounded psh functions. Let ω be the standard Kähler form on Cn. Let Ω be an open
subset in Cn. Let T be a closed positive current of bi-degree (p, p) with p < n on Ω. Let
u be a psh function on Ω. The unbounded locus L(u) of u is the set of x ∈ Ω such that
u is unbounded in every open neighborhood of x. Observe that L(u) is closed, and it is
empty if u is bounded. When u = log ‖x− a‖ for a ∈ Ω, then L(u) = {a}.

Lemma 3.7.7. Assume that L(u)∩SuppT is compact in Ω. Then u is locally integrable with
respect to the trace measure of T . Hence the current ddcu ∧ T := ddc(uT ) is well-defined.

Note that the hypothesis that p < n is necessary. When p = n, take T be the the
Dirac mass at a, then log ‖x − a‖ is not locally integrable with respect to δa. A weaker
version of Lemma 3.7.7 was presented in [13, Page 151] requiring an extra assumption
that L(u) ∩ SuppT is contained in a Stein open subset in Ω. This condition is actually
superfluous as the proof below shows.

Proof. We give a sketch of proof, and refer to [13] for detailed arguments. By wedging
T with ωn−p−1, we can assume that T is of bi-dimension (1, 1). Let K b U b Ω be open
subsets such that U contains L(u) ∩ SuppT . Since u is bounded from above on compact
subsets, the desired assertion is equivalent to checking that∫

K

uT ∧ ω > −∞. (3.7.5)

Let 0 ≤ χ ≤ 1 be a smooth cut-off function with compact support in U and χ = 1 on
an open neighborhood of L(u) ∩ SuppT . Let ψ be a smooth psh function on Ω such that
ddcψ(x) > 0 for every x ∈ Ω. We can take for example ψ(x) = ‖x‖2. Since ψ is strongly
psh, in order to get (3.7.5), it suffices to check that

I :=

∫
Ω

χuT ∧ ddcψ > −∞.
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By integration by parts we get

Iε :=

∫
Ω

χuεT ∧ ddcψ (3.7.6)

=

∫
Ω

χψddcuε ∧ T +

∫
Ω

ddcχ ∧ uεψT + 2

∫
Ω

ψduε ∧ dcχ ∧ T

=

∫
Ω

χψddcuε ∧ T +

∫
Ω

ddcχ ∧ uεψT − 2

∫
Ω

uεdψ ∧ dcχ ∧ T.

Let I1, I2, I3 be the first, second and third term in the right-hand side. Let 0 ≤ χ1 ≤ 1 be
a smooth cut-off function with compact support in Ω such that χ1 = 1 on U ∩ Suppχ. We
have

I1 =

∫
Suppχ

χψddcuε ∧ T .
∫

Ω

χ1dd
cuε ∧ T

=

∫
Ω

uεdd
cχ1 ∧ T

=

∫
Suppχ1\L(u)

uεdd
cχ1 ∧ T →

∫
Suppχ1\L(u)

uddcχ1 ∧ T > −∞

because u is uniformly bounded on Suppχ1\L(u). We treat I2, I3 similarly. So we get
I := limε→0 Iε > −∞. This finishes the proof.

Note that similar arguments also allow us to prove the following. We leave it as an
exercises for readers.

Lemma 3.7.8. Let X be a complex manifold with a Hermitian metric ω such that there
exists a bounded psh function ψ on X such that for every compact K in X, there exists a
constant cK satisfying ddcψ ≥ cKω on K. Let η be a continuous (1, 1)-form. Then every
η-psh function is locally integrable with respect to every closed positive current of bi-degree
(p, p) with p < dimX.

As in the case of bounded psh functions, we have the following continuity property.

Theorem 3.7.9. Let T be a closed positive current of bi-degree (p, p) on Ω with p < n. Let
u1, . . . , um (m ≤ n− p) be psh functions on Ω such that L(uj)∩ SuppT b Ω for every j. Let
(ujk)k be a sequence of psh functions on Ω converging to uj in L1

loc and ujk ≥ uj for every
j, k. Then we have

u1kdd
cu2k ∧ · · · ∧ ddcumk ∧ T → u1dd

cu2 ∧ · · · ∧ ddcum ∧ T

weakly as k →∞.

Theorem 3.7.9 was proved in [13, Page 152] under an extra assumption that Ω is
Stein. We note that the usual arguments as in Theorem 3.2.5 or in [13, Page 152] don’t
work directly because Ω is not Stein.

Proof. Put

Qjk := ujkdd
cu(j+1)k ∧ · · · ∧ ddcumk ∧ T, Qj := ujdd

cuj+1 ∧ · · · ∧ ddcum ∧ T.
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We prove by induction on j that Qjk → Qj as k → ∞. When j = m, it is clear thanks
to Lemma 3.7.7. Assume it is true for j + 1. We prove the desired assertion for j. By
the proof of Lemma 3.7.7, the mass on compact subsets of the family (Qjk)k is uniformly
bounded. Let Q′j be a limit current of (Qjk)k as k → ∞. As usual we note that Q′j ≤ Qj.
Let 0 ≤ χ ≤ 1 be a cut-off function with compact support in Ω such that χ = 1 on an open
neighborhood of L := ∪mj=1L(uj) ∩ SuppT . We will prove that χQ′j = χQj. We already
have χQ′j ≤ χQj. We prove the converse inequality. By wedging T with ωn−p−m+j, we
can assume that Q is of bi-degree (n, n). Let uεj and uεjk be standard regularisation of
uj, ujk respectively. Observe uj ≤ uεj ≤ uεjk. By this and integration by parts as in (3.7.6)
one obtains ∫

Ω

χQj ≤
∫

Ω

χuεjkdd
cu(j+1) ∧ ddcQj+2

=

∫
Ω

χuj+1dd
cuεjk ∧ ddcQj+2 +

∫
Ω

uεjkuj+1dd
cχ ∧ ddcQj+2

− 2

∫
Ω

uεjkduj+1 ∧ dcχ ∧ ddcQj+2.

Letting ε → 0 and noticing that uj are locally bounded on an open neighborhood of the
supports of ddcχ and dχ ({χ ≡ 1} contains an open neighborhood of ∪mj=1L(uj) ∩ SuppT

gives∫
Ω

χQj ≤ lim inf
ε→0

∫
Ω

χuj+1dd
cuεjk ∧ ddcQj+2 +

∫
Ω\L

ujkuj+1dd
cχ ∧ ddcQj+2

− 2

∫
Ω\L

ujkduj+1 ∧ dcχ ∧ ddcQj+2.

Let A1k, A2k, A3k be the first, second and third term in the sum in the right-hand side of
the last inequality. We define A′2k, A

′
3k by substituting uj+1 by u(j+1)k in the integral defin-

ing A2k, A3k respectively. By Corollary 3.3.5 and noticing again that ujk, uj are locally
bounded on Ω\L, we infer

lim
k→∞

(A2k − A′2k) = lim
k→∞

(A3k − A′3k) = 0. (3.7.7)

On the other hand, by induction hypothesis, the current ddcuεjk ∧ ddcQj+2 converges
weakly to ddcujk ∧ ddcQj+2 as ε → 0. This combined with the inequality uj+1 ≤ u(j+1)k

gives

A1k ≤ A′1k :=

∫
Ω

χu(j+1)kdd
cujk ∧ ddcQj+2.

Thus we conclude that∫
Ω

χQj ≤ lim inf
k→∞

(A′1k + A′2k + A′3k) =

∫
Ω

χujkdd
cu(j+1)k ∧ ddcQj+2.

Repeating this procedure for uj+2, . . . , um, we obtain that∫
Ω

χQj ≤
∫

Ω

χQjk.

Hence χQj = χQjk. This finishes the proof.



CHAPTER 3. MONGE-AMPÈRE OPERATORS 89

It is now a right time to introduce the following notion.

Definition 3.7.10. We say that the intersection of ddcu1, . . . , dd
cum, T is classically well-

defined if for every u′j ≥ uj for 1 ≤ j ≤ m, and every non-empty subset J = {j1, . . . , js} of
{1, . . . ,m}, we have that u′js is locally integrable with respect to the trace measure of T and
inductively, u′jr is locally integrable with respect to the trace measure of

∧s
t=r+1 dd

cu′jt ∧ T
for r = s− 1, . . . , 1, and

uj1kdd
cuj2k ∧ · · · ∧ ddcujsk ∧ T → uj1dd

cuj2 ∧ · · · ∧ ddcujs ∧ T

as k →∞, where (ujk)k is a any sequence of psh functions converging to uj in L1
loc such that

ujk ≥ uj.

The above definition is independent of the local potential of ddcuj. See [25, 27] for
variants of this definition.

Proposition 3.7.11. Let u1, . . . , um be psh functions such that ddcu1, . . . , dd
cum, T have a

classical intersection. Let (ujk)k be a sequence of psh functions converging to uj in L1
loc such

that ujk ≥ uj. Then the sequence Qk :=
∧m
j=1 dd

cujk ∧ T satisfies the Condition (∗). In
particular, (Qk)k satisfies the property mentioned in Theorem 3.7.4.

Proof. We will use arguments similar to those in the proof of Theorem 3.2.5. Notice
that by hypothesis, the intersection

∧m
j=1 dd

cuj ∧ T is symmetric in u1, . . . , um. Let v be
a bounded function on Ω and (vk)k a sequence decreasing to v as k → ∞. We need to
check that

(vk − u)(ddcv)m
′ ∧ Tk → 0

as k →∞ for every integer m′ ≥ 0. As usually (by the uniform boundedness of vk, v) we
can assume that vk ≤ 0, v ≤ 0, Ω is a ball in Cn and there is a smooth psh function ψ on
Ω such that

vk = v = ψ

outside some compact subset in an open neighborhood of Ω, and all functions and cur-
rents in consideration are defined on an open neighborhood of Ω in Cn, . Since the
arguments are more or less standard modulo what we have gone so far, in what follows
we only present the complete proof for the case where m′ = 0 and m = 1, i.e, we will
prove that

vkQk → vQ. (3.7.8)

The general case follows from analogous argument with a bit more messy writing. Let R
be a limit current of the family (vkQk)k as k →∞. Put Q := ddcu1 ∧ T . We have R ≤ uQ

by Lemma 3.2.1. We will prove that the masses of R and uQ on Ω are equal. To this end,
without loss of generality, we can assume that Q is of bi-dimension (n, n). Let vk,ε, uε, ψε
be standard regularisations of vk, u, ψ (on an open neighborhood of Ω). Since v − ψ = 0

outside some compact subset in Ω, we obtain

vk,ε = vε = ψε
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outside some compact subset in Ω if ε is small enough. Since v ≤ vε ≤ vk,ε, we get∫
Ω

vQ ≤
∫

Ω

vk,εQ =

∫
Ω

(vk,ε − ψε)Q+

∫
Ω

ψεQ.

By integration by parts, we get∫
Ω

(vk,ε − ψε)Q =

∫
Ω

u1dd
c(vk,ε − ψε) ∧ T

=

∫
Ω

u1dd
cvk,ε ∧ T −

∫
Ω

u1dd
cψε ∧ T

≤
∫

Ω

u1kdd
cvk,ε ∧ T −

∫
Ω

u1dd
cψε ∧ T

=

∫
Ω

u1kdd
c(vk,ε − ψε) ∧ T +

∫
Ω

u1kdd
cψε ∧ T −

∫
Ω

u1dd
cψε ∧ T

=

∫
Ω

(vk,ε − ψε)ddcu1k ∧ T +

∫
Ω

u1kdd
cψε ∧ T −

∫
Ω

u1dd
cψε ∧ T

because u1 ≤ u1k. Letting ε→ 0 yields∫
Ω

vQ ≤
∫

Ω

vkQk.

The desired assertion hence follows. This finishes the proof.

We have known that the intersection of ddcu1, . . . , dd
cum, T is classically well-defined

if L(uj) ∩ SuppT b Ω ⊂ Cn. We present now another very important setting where the
classical intersection of closed positive (1, 1)-current is well-defined. We start with a basic
lemma. For every constant 0 < ρ < 1, let Dρ denote the disk of radius ρ centered at 0 in
C.

Lemma 3.7.12. Let 0 < ρ1 < ρ2 < ρ3 < 1 be constants. Then there exists a smooth
subharmonic function v ≥ 0 on D\Dρ1 such that Suppv b D and

v > 0, ddcv > 0

in Dρ3\Dρ2.

Proof. Let v1(z) := 1/|z|2. We have ddcv1 > 0 on Dρ3\Dρ2. Let ρ3 < ρ′3 < 1 be a constant
and c := 1/ρ′23 . Let χ be a smooth convex increasing function such that χ = 0 on (−∞, c]
and χ′(t) > 0 for t ≥ 1/ρ2

3. Put v := χ(v1). Then v is subharmonic, v(z) = 0 for |z| ≥ ρ′3
and

ddcv ≥ χ′(v1)ddcv1 > 0

on Dρ3\Dρ2. This finishes the proof.

One can see that the above proof doesn’t work in higher dimension due to the Hartogs’
phenomena. Let n ≥ 2. Let 0 < r, r1 < 1 be constants. Let

H := {(z, w) ∈ Dn−p × Dp : ‖w‖′ < r} ∪ {(z, w) ∈ Dn−p × Dp : r1 < ‖z‖′ < 1},
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where z = (z1, . . . , zn−p), ‖z‖′ := max{|z1|, . . . , |zn−p|}, and w = (w1, . . . , wp), ‖w‖′ :=

max{|w1|, . . . , |wp|}. The set H is called the standard (n− p, p) Hartogs figure. Observe

Dn\H = {(z, w) ∈ Dn : ‖z‖′ ≤ r1, ‖w‖′ ≥ r}.

We put Ĥ := Dn. Generally, the imageH of every standard (n−p, p) Hartogs’ figure under
a biholomorphism Ψ from Dn to a bounded domain in Cn is called a Hartog’s figure, and
we also put Ĥ := Ψ(Dn). Here is a deep estimate concerning the mass of currents on
Hartogs figures.

Theorem 3.7.13. (Oka’s inequality for currents) ([19]) Let H be the standard (n − p, p)
Hartogs’s figure. Let 0 < ρ < 1 be a constant. Then there exists a constant Cρ such that for
every negative current Q of bi-dimension (p, p) with ddcQ ≥ 0, we have

‖Q‖Dnρ + ‖ddcQ‖Dnρ ≤ Cρ‖Q‖H .

We will apply the above result to Q := uT , where T is a closed positive current and u
is a negative psh function.

Proof. Before going into details, we observe that the size of the Hartogs figure plays
no role here, that means that the specific values r1, r are not important for our below
estimates. At the end of the proof we will need to deform slightly our Hartogs figure but
this will cause no problem at all. Let

Wj := {(z, w) ∈ Dn−p
r1
× Dp

ρ : ρ ≥ |wj| ≥ r}

for 1 ≤ j ≤ p and
H ′ := {(z, w) ∈ Dn−p × Dp : r1 < ‖z‖′ < 1}.

Observe that

Dn
ρ\H = ∪pj=1Wj. (3.7.9)

Hence it suffices to estimate the mass of currents on Wj. Put W := W1. We claim that

‖Q‖W + ‖ddcQ‖W ≤ Cρ‖Q‖H′ . (3.7.10)

Assume for the moment that (3.7.10) is true. Then one just needs to apply consecutively
(3.7.10) for w2, . . . , wk in place of w1 to get the desired inequality. It remains to check
(3.7.10).

Let r1 < r′1 < 1 and 0 < r′ < r < ρ′ < 1 be constants. Let 0 ≤ χ1(z), χ2(w) ≤ 1 be
smooth cut-off functions such that

Suppχ1 b {‖z‖′ < r′1}, Suppχ2 b {r′ < ‖w‖′ < ρ′},

and χ1 = 1 on an open neighborhood of {‖z‖′ ≤ r1}. We will choose χ2 explicitly later.
Let

Ω := Dn−p
r′1
× {r′ < ‖w‖′ < ρ′}.
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Observe Supp(χ1χ2) b Ω. Let S be a smooth closed positive form on Ω. Observe that∫
Ω

χ1χ2dd
cQ ∧ S =

∫
Ω

ddc(χ1χ2)Q ∧ S.

It follows that∫
Ω

χ1χ2dd
cQ ∧ S +

∫
Ω

ddcχ2 ∧ (−Q) ∧ S =

∫
Ω

ddc
(
(1− χ1)χ2

)
(−Q) ∧ S. (3.7.11)

By Lemma 3.7.12, we can choose a smooth subharmonic function v(w1) on {|w1| > r/2}
such that ddcv(w1) > 0 and v > 0 on {r′ ≤ |w1| ≤ ρ′}. Let w′ := (w2, . . . , wk) and

χ2(w) := v(w1) + χ3(w′),

where 0 ≤ χ3(w′) ≤ 1 is a smooth function with compact support in Dp−1 and χ3 = 1 on
Dn−p−1
ρ . Let S := (ddc‖w′‖2)p−1. Note that

ddcχ2 ∧ S & (ddc‖w‖2)p

on {r′ ≤ |w1| ≤ ρ′} × Dp−1 because every bad terms from ddcχ2 are canceled when
wedging with S. Using this and (3.7.11), we obtain that

‖ddcQ ∧ (ddc‖w′‖2)p‖W + ‖Q ∧ (ddc‖w‖2)p‖W .
∫

Ω

ddc
(
(1− χ1)χ2

)
(−Q) ∧ S . ‖Q‖H′

(3.7.12)

because ddc
(
(1−χ1)χ2

)
= 0 outside H ′. The last inequality is almost what we want. The

remaining issue is that ‖Q ∧ (ddc‖w‖2)p‖W is less than ‖Q‖W because we need to take
into account

Q ∧ (ddc(‖w‖2 + ‖z‖2))p

when computing ‖Q‖W . We bypass this problem by applying (3.7.12) to small generic
perturbed coordinates of w. To be precise, we can consider

w̃j := wj + εtj

for 1 ≤ j ≤ p, where tj is one of z1, . . . , zn−p, w1, . . . , wp. Denote by A the set of such
coordinate systems and the original coordinate system w itself. Since ε is small, we still
have

|w̃1| ≥ r̃

for some fixed constant r̃ > 0 for w̃ ∈ W . This allows us to apply (3.7.12) to these new
coordinates w̃′. Hence we obtain

‖ddcQ ∧ (ddc‖w′‖2)p‖W + ‖Q ∧ (ddc‖w̃‖2)p‖W .
∫

Ω

ddc
(
(1− χ1)χ2

)
(−Q) ∧ S . ‖Q‖H′ .

(3.7.13)

Summing up (3.7.13) over A and noticing that ddc‖w̃‖2 + ddc‖w‖2 & ddc‖tj‖2, we get
(3.7.10). The proof is finished.
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Lemma 3.7.14. Let u, v be psh functions on Dn. Let 1 ≤ p ≤ n− 1 be an integer. Let T be a
closed positive current of bi-dimension (p+ 1, p+ 1) on Dn. Let 0 < ρ < 1 be a constant. Let
(uk)k and (vk)k be sequences of psh functions converging to u, v in L1

loc(Dn) respectively such
that vk ≥ v and uk ≥ u for every k. Assume that v is locally bounded on H and u is locally
integrable with respect to the trace measure of T . Then, the following two properties hold:

(i) v, vk are locally integrable with respect to the trace measure of T , and u, uk are
locally integrable with respect to the trace measure of ddcv ∧ T, ddcvk ∧ T , respectively, and
ukdd

cvk ∧ T converges weakly to uddcv ∧ T as k →∞ in Dn,
(ii) if (Tk)k is a sequence of closed positive currents of bi-dimension (p+1, p+1) such that

uk is locally integrable with respect to the trace measure of Tk and ukTk → uT as k → ∞
and for every bounded psh function w, we have wddcuk ∧ Tk → wddcu ∧ T as k →∞, then
ukdd

cvk ∧ Tk → uddcv ∧ T as k →∞.

Proof. We first check (i). By Theorem 3.7.13 applied to vεT (we can, as usual, assume
that v ≤ 0 and here vε is the standard regularisation of v), the functions v, vk are locally
integrable with respect to T . Combining this with Lemma 3.2.1 implies that vkT →
vT . In particular ddcvk ∧ T converges to ddcv ∧ T as k → ∞. By Theorem 3.2.5 or
Corollary 3.2.7, u is locally integrable with respect to the trace measure of ddcv ∧ T
and ddcvk ∧ T on H. Since uk ≥ u, we also obtain that uk is locally integrable with
respect to the trace measure of ddcvk ∧ T on H. Using this and Theorem 3.7.13 again,
we see that the functions uk, u are locally integrable with respect to the trace measure of
ddcvk ∧ T, ddcv ∧ T respectively.

Put Q := uddcv ∧ T . Now let the notations be as in the proof of Theorem 3.7.13.
By Theorem 3.7.13 and the Chern-Levine-Nirenberg inequality and the fact that vk is
uniformly bounded on fixed compact subset in H, we see that the current ukddcvk ∧ T
is of mass bounded uniformly on compact subsets in Dn. Let R be a limit current of the
family (ukdd

cvk ∧ T )k as k →∞. As usual we get

R ≤ uddcv ∧ T.

We check the inverse inequality. Since R = uddcv ∧ T on H by Corollary 3.2.7, using
(3.7.9), we see that it suffices to prove that∫

Ω

χ1χ2R =

∫
Ω

χ1χ2udd
cv ∧ T.

Let uε, uεk be standard regularisations of u, uk respectively. We define similarly vε, vεk. Let
S := (ddc log ‖w′‖2)p−1. Applying (3.7.11) to Qk,ε := uεkdd

cvk ∧ T gives∫
Ω

χ1χ2dd
cQk,ε ∧ S +

∫
Ω

ddcχ2 ∧ (−Qk,ε) ∧ S =

∫
Ω

ddc
(
(1− χ1)χ2

)
(−Qk,ε) ∧ S.

Let A1,ε, A2,ε, A3,ε be the first, second, and third term from left to right. We obtain similar
A′1,ε, A

′
2,ε, A

′
3,ε for Q′k := uεkdd

cv ∧ T . Since ddc
(
(1− χ1)χ2

)
b H, we infer

lim
k→∞

lim
ε→0

(A3,ε − A′3,ε) = 0.
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We are going to prove a similar assertion for A1,ε. Using u ≤ uk ≤ uεk and ddcχ2 ∧ S ≥ 0

(recall S = (ddc‖w′‖2)p−1 and χ2 is chosen explicitly as in the proof of Theorem 3.7.13),
we get

A′1,ε =

∫
Ω

χ1vdd
cχ2 ∧ ddcuεk ∧ T + terms with dχ1

which is
≤
∫

Ω

χ1vkdd
cχ2 ∧ ddcuεk ∧ T ∧ S + terms with dχ1.

We don’t have to worry about terms with dχ1 because its support lies in H, so everything
is ok. We deduce that

lim
k→∞

lim
ε→0

(A1,ε − A′1,ε) ≥ 0.

It follows that
lim
k→∞

lim
ε→0

(A2,ε − A′2,ε) ≤ 0.

In other words,

lim
k→∞

lim
ε→0

(∫
Ω

ddcχ2 ∧ uεkddcvk ∧ T ∧ S −
∫

Ω

ddcχ2 ∧ uεkddcv ∧ T ∧ S
)
≥ 0.

Now by perturbing Ω and the Hartogs’s figure by using generic Euclidean change of
coordinates as in the end of the proof of Theorem 3.7.13, there exists a smooth strictly
positive (n− p, n− p)-form Φ on an open neighborhood of Ω (i.e, Φ & ωn−p) such that

lim
k→∞

lim
ε→0

(∫
Ω

uεkdd
cvk ∧ T ∧ Φ−

∫
Ω

uεkdd
cv ∧ T ∧ Φ

)
≥ 0.

Using this and the inequality uk ≥ u gives

lim
k→∞

lim
ε→0

(∫
Ω

uεkdd
cvk ∧ T ∧ Φ−

∫
Ω

uddcv ∧ T ∧ Φ

)
≥ 0. (3.7.14)

Now we perturb a bit Ω such that the trace measures of ddcvk ∧ T, ddcv ∧ T,R have no
mass on ∂Ω. Using this and letting ε→ 0 in (3.7.14) yield∫

Ω

R ∧ Φ−
∫

Ω

uddcv ∧ T ∧ Φ = lim
k→∞

lim
ε→0

(∫
Ω

ukdd
cvk ∧ T ∧ Φ−

∫
Ω

uddcv ∧ T ∧ Φ

)
≥ 0.

(3.7.15)

Hence R = uddcv ∧ T , and (i) follows. The second desired assertion (ii) is obtained by
arguing similarly as above with Q̃k,ε := uεkdd

cvk ∧Tk in place of Qk,ε. Notice that we need
to use the hypothesis on Tk when comparing Ã′1,ε and Ã1,ε (analogous versions of A′1,ε
and A1,ε). This finishes the proof.

Let Hm denote the m-dimensional Hausdorff measure on Cn. Recall that H2n is pro-
portional to the Lebesgue measure on Cn. For basic material on Hausdorff measures, one
can consult [18].
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Lemma 3.7.15. Let Ω be an open subset in Cn. Let E be a closed subset in Ω such that
H2p(E) = 0. Then for every x ∈ E, there exists a (n− p, p) Hartogs’ figure H in Ω such that
H ∩ E = ∅ and x ∈ Ĥ.

Proof. Let L be an affine (n − p)-dimensional complex subspace in Cn. Let L1 be a p-
dimension complex subspace transverse to L. Let π : Cn → L1 be the natural projection
along L. Recall that

H2p(E) = sup
δ>0

inf

{∑
s

(diam(Es))
2p : E ⊂ ∪∞s=1Es, diam(Es) ≤ δ

}
.

Since π is Lipschitz on compact subsets in Cn, using the above formula, we infer that
H2p(π(E)) = 0. Hence for almost everywhere x ∈ L1, the (n − p)-dimensional complex
subspace π−1(x) doesn’t intersect E.

Now fix x0 ∈ E. We can assume x0 = 0. Let Gn−p be the Grassmanian space of
(n − p)-dimensional complex subspaces of Cn. Note that dimGn−p = p(n − p). Let G ′n−p
be the space of (x, L) where L ∈ Gn−p and x ∈ L. Observe that G ′n−p is a submanifold of
Cn × Gn−p of dimension (n− p)p+ n− p. Let π1, π2 be the natural projections from G ′n−p
to the first and second components. For x 6= 0, the fiber π−1

1 (x) is of codimension n. This
combined with the fact that H2p(E\{0}) = 0 implies that

H2(n−p)p(π
−1
1 (E\{0})) = 0.

Arguing as in the first part of the proof, we deduce that

H2(n−p)p
(
π2(π−1

1 (E\{0}))
)

= 0.

Since π2(π−1
1 (E\{0})) ⊂ Gn−p which is of real dimension 2(n − p)p, we obtain that

π2(π−1
1 (E\{0})) is of zero Lebesgue measure in Gn−p. It follows that almost every affine

(n − p)-dimensional complex subspace L passing through x0 doesn’t intersect E except
at x0. Let L be such a subspace.

Let L⊥ be the p-dimensional complex subspace passing through x0 and orthogonal to
L. Let (z, w) be coordinates on Cn such that {z = 0} = L⊥ and {w = 0} = L. For every
constant r > 0, let Dp(x0, r) ⊂ L⊥ and Dn−p(x0, r) ⊂ L be polydisks. Since E ∩ L = {x0}
and E is closed, we can choose r′ small enough such that B := ∂Dn−p(x0, r) × Dp(x0, r

′)

doesn’t intersect E.
Since most of subspaces parallel to L doesn’t intersect E, we choose a sequence of

(n − p)-dimensional subspaces (Lj)j parallel to L such that Lj → L as j → ∞ and
Lj ∩ E = ∅. Let xj be the intersection point of Lj and L⊥. We have xj → x0 as j → ∞.
Put

Bj := ∂Dn−p(xj, r)× Dp(xj, r
′).

Put Dj := Dn−p(xj, r) × Dp(xj, r) which is a polydisk containing x0 if j is big enough.
Since Bj is compact and Bj → B which doesn’t intersect E, we infer that Bj ∩ E = ∅
as j big enough. Fix such a j. Hence by thickening a bit the set Bj ∪ (Dn−p(xj, r)× {0})
inside Dj (where Dn−p(xj, r) is the polydisk in L⊥j centered at xj), we can find a small
constant 0 < r′′ < r such that

H := {(z, w) ∈ Dj : r − r′′ < ‖z‖′ < r} ∪ {(z, w) ∈ Dj : ‖w‖′ < r′′}
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doesn’t intersect E. Clearly H is a Hartogs’ figure and Ĥ = Dj containing x0. This
finishes the proof.

Corollary 3.7.16. Let E be a closed subset in Ω such that H2p(E) = 0. Let K be a compact
subset in Ω. Then there exists a compact K1 in Ω\E and a constant C such that for every
closed positive current T of bi-dimension (p, p) on Ω and every negative psh function u on
Ω, we have

‖uT‖K ≤ C‖uT‖K1 .

Proof. This is a direct consequence of Lemma 3.7.15 and Theorem 3.7.13.

Theorem 3.7.17. ([19]) Let Ω be a domain in Cn. Let T be a closed positive current of
bi-dimension (p, p) on Ω with p < n. Let L1, . . . , Lm be closed subsets in Ω such that for
every subset J ⊂ {1, . . . ,m} we have

H2p−2|J |+2

(
∩j∈J Lj ∩ SuppT

)
= 0.

Let u1, . . . , um (m ≤ p) be psh functions on Ω such that L(uj) ⊂ Lj for every j. Then uj is
locally integrable with respect to the trace measure of ddcuj+1 ∧ · · · ∧ ddcum ∧ T for every
1 ≤ j ≤ m, and for every compact K in Ω there exist a constant C and compact subsets
K1, . . . , Km all independent of T, u1, . . . , um such that Kj ∩ Lj = ∅ for every 1 ≤ j ≤ m,
and

‖u1dd
cu2 ∧ · · · ∧ ddcum ∧ T‖K ≤ C‖u1‖L∞(K1) · · · ‖um‖L∞(Km)‖T‖Ω. (3.7.16)

Furthermore, let (ujk)k be a sequence of psh functions on Ω converging to uj in L1
loc and

ujk ≥ uj for every j, k. Then ujk is locally integrable with respect to the trace measure of
ddcu(j+1)k ∧ · · · ∧ ddcumk ∧ T for every 1 ≤ j ≤ m, and we have

u1kdd
cu2k ∧ · · · ∧ ddcumk ∧ T → u1dd

cu2 ∧ · · · ∧ ddcum ∧ T

weakly as k →∞.

Here |J | denotes the cardinality of J . We refer to [13] for a weaker version of this
result where H2k−2|J |+2 is replaced by H2k−2|J |+1.

Proof. We prove by induction the desired assertions on m. Assume that they are true for
m − 1. We check them for m. Note that by induction hypothesis the operator ddcujk ∧
· · ·∧ddcumk∧T is symmetric in ujk, . . . , umk for 2 ≤ j ≤ m, and they satisfy the Condition
(∗) by Proposition 3.7.11. We will need this observation at the end of the proof.

Let Qjk, Qj be as in the proof of Theorem 3.7.9. We will prove that Q1 and Q1k are
well-defined (Qjk, Qj are well-defined for j ≥ 2 by induction hypothesis). Let

E := ∩ms=1Ls ∩ SuppT.

Let K b Ω. By hypothesis H2p−2m+2(E) = 0. By Lemma 3.7.15, there exists a compact
K1 b Ω\E such that

‖Q1‖K . ‖Q1‖K1 .
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Let x ∈ K1. We have either x 6∈ ∩ms=1Ls or x 6∈ SuppT . If the latter case occurs, it is clear
that Q1 is zero on some small open neighborhood of x. We consider x 6∈ ∩ms=1Ls. Then
uj is locally bounded near x for some 1 ≤ j ≤ m. If u1 is locally bounded, then we are
done. If uj is bounded for some j ≥ 2, then by symmetry, we can assume that u2 is locally
bounded. Thus

Q1 = u1dd
cu2 ∧ ddcQ3.

Since u1 is locally integrable with respect to Q3 by induction hypothesis, using Theorem
3.2.5 or Corollary 3.2.7, we infer that Q1 is of finite mass on compact subsets, and

‖Q1‖B(x,ε) . ‖u2‖L∞(B(x,2ε))‖u1dd
cQ3‖B(x,2ε),

where ε > 0 is a constant small enough so that u2 is still bounded on B(x, 2ε). By
induction hypothesis, we get

‖u1dd
cQ3‖B(x,2ε) . ‖u1‖L∞(K1,x)‖u3‖L∞(K1,x) · · · ‖um‖L∞(K1,x)‖T‖Ω,

where Kj,x is some compact subset having empty intersection with Lj. Hence letting x
run over K and using the compactness of K, we deduce (3.7.16). Similar arguments
also show that Q1k is of mass bounded uniformly on compact subsets.

Let Q′1 be a limit current of (Q1k)k as k →∞. As usual we note that Q′1 ≤ Q1. Let x0 ∈
Ω. If x0 6∈ SuppT , then both Q′1, Q1 are zero in a small open neighborhood of x. Consider
x0 ∈ SuppT . By the hypothesis and Lemma 3.7.15, we can find a (n−(p−m+1), p−m+1)

Hartogs’ figure H such that H ∩ (∩mj=1Lj ∩ SuppT ) = ∅ and x0 ∈ Ĥ. Hence there is
1 ≤ j0 ≤ m such that uj0 is locally bounded in H. If j0 = 1, then we get Q′1 = Q1 locally
near x0 thanks to Proposition 3.7.11 and the induction hypothesis (the intersection of
ddcu2, . . . , dd

cum, T is classically well-defined and u1 is bounded on a small neighborhood
of x0).

Consider j0 ≥ 2. Since ddcQ2 is symmetric in u2, . . . , um by induction hypothesis.
Without loss of generality we can assume j0 = 2. We are now being exactly in the
situation in (ii) of Lemma 3.7.14 with ddcQ3, dd

cQ3k, u1, u2 in place of T, Tk, u, v. Using
that lemma we obtain the desired convergence. This finishes the proof.

In the last part of this section, we will define Lelong numbers of closed positive cur-
rents.

Proposition 3.7.18. Let u, u′ be psh functions which are locally integrable with respect to
the trace measure of T and u ≥ u′. Then we have

1{u=−∞}dd
cu ∧ T ≤ 1{u′=−∞}dd

cu ∧ T ≤ 1{u′=−∞}dd
cu′ ∧ T.

Proof. Since u ≥ u′, we get {u = −∞} ⊂ {u′ = −∞}. Let ε > 0 be a constant. Put
wj := max{(1 − ε)u − j, u′}. We have wj = (1 − ε)u − j on {u′ < −j/ε} because u ≥ u′.
Using this and Theorem 3.3.9, we obtain

ddcwj ∧ T ≥ 1{u′<−j/ε}dd
cwj ∧ T

= (1− ε)1{u′<−j/ε}ddcu ∧ T ≥ (1− ε)1{u′=−∞}ddcu ∧ T.
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Letting j →∞, and then ε→ 0 gives

ddcu′ ∧ T ≥ 1{u′=−∞}dd
cu ∧ T.

This finishes the proof.

The last result was proved in ([1] and also [13]) when T is a Monge-Ampère of closed
positive (1, 1)- currents. We define the Lelong number of T at a ∈ Ω to be

ν(T, a) :=

∫
{a}

(ddc log ‖x− a‖)n−p ∧ T.

The last expression is well-defined thanks to Lemma 3.7.7. The following is a direct
consequence of Proposition 3.7.18.

Theorem 3.7.19. (comparison of Lelong numbers) Let u1, u
′
1, . . . , um, u

′
m be psh functions

on X such that the intersections of ddcu1, . . . , dd
cum, T and of ddcu1, . . . , dd

cum, T are clas-
sically well-defined. Assume that uj ≥ u′j for 1 ≤ j ≤ m. Then we have

1∩mj=1{uj=−∞}

m∧
j=1

ddcu1 ∧ T ≤ 1∩mj=1{u′j=−∞}

m∧
j=1

ddcu′j ∧ T (3.7.17)

and

ν(ddcu1 ∧ · · · ∧ ddcum ∧ T, x) ≤ ν(ddcu′1 ∧ · · · ∧ ddcu′m ∧ T, x) (3.7.18)

for every x ∈ Ω. In particular for every a ∈ Ω and every psh function ϕ on an open
neighborhood of a in Ω such that ϕ(x)− log ‖x− a‖ = O(1) near a then we have

ν(T, a) =

∫
{a}

(ddcϕ)n−p ∧ T.

The second assertion in Theorem 3.7.19 is due to Demailly [13]. The above result
implies that the notion of Lelong number is independent of the local coordinates ([13,
36]). Hence for every closed positive current T on a complex manifold X, for every
x ∈ X, we can define the Lelong number ν(T, x) of T at x is that of T at x in any local
chart around x. Here is another way to calculate the Lelong number. We refer to [13,
Chapter 3] for proofs.

Lemma 3.7.20. We have

ν(T, x) =
(
ε2(n−p)πn−p/(n− p)!

)−1
∫
B(a,ε)

T ∧ ωn−p.

Note that ε2(n−p)πn−p/(n − p)! is the volume of a ball of radius ε in Cn−p. So the
Lelong number is the infinitesimal quantity measuring the (n− p) dimension of the trace
measure of T .

Proof. ????
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Lemma 3.7.21. Let u be a psh function on Ω. Then for every x ∈ Ω, we have ν(u, x) =

ν(ddcu, x).

Proof. ???

We admit the following fundamental result.

Theorem 3.7.22. (Siu [36], and [13, Chapter 3] for generalizations) (i) For every constant
c, the set {x ∈ Ω : ν(T, x) ≥ c} is an analytic subset in Ω.

(ii) There are irreducible analytic subsets (Vj)j∈N of dimension n − p on Ω and a closed
positive (p, p)-current R on Ω such that for every constant δ > 0 the set {x : ν(R, x) ≥ δ} is
of dimension < n− p, and

T =
∞∑
j=1

λj[Vj] +R,

for some constant λj > 0.
(iii) For every irreducible analytic subset V in Ω, there exist a proper analytic subset W

in V and a constant λ > 0 such that ν(T, x) = λ for every x ∈ V \W , and ν(V, x) ≥ λ for
every x ∈ V . We call λ the generic Lelong number of T along V .

The above result can be deduced from a deep theorem due to Demailly saying that
one can approximate psh functions locally by those with analytic singularities. We refer
to [14, Section 14] for details.

Further notes. Lemma 3.2.1 is from [19]. Section 3.3 generalizing some results from [6,
7] is taken from [38]. Theorem 3.4.1 and Corollary 3.4.2 and Section 3.6 are essentially
from [6]. The proof of Theorem 3.4.1 is based on arguments from [21]. The case where
X = Cn of Theorem 3.5.8 was proved in [26]. The proof was then simplified in [6] and
[4]. The case where X is projective or Kähler manifolds were proved in [16] and [20].
Finally Theorem 3.5.8 in the current form was proved in [37]. The capacity capBTK was
introduced in [29] as an analogue to the local capacity cap. The capacity capADS was
introduced in [16], see [3, 35, 22] for related notions and more information. Theorem
3.7.4 generalizes a result from [38].
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