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Introduction

The note is organized as follows. Chapter 1 and part of Chapter 2 are standard material in
pluripotential theory about subharmonic functions in complex plane and psh functions.
The presentation for these parts is based on [13, 9, 24, 28, 31]. Chapter 3 deals with
a main object in the intersection of (1,1)-currents: Monge-Ampere operators and its
continuity. ....????? Most of results presented in the note already appear in published
papers. Nevertheless there are seemingly some new ones. The note is incomplete. More
references need to be added.



Chapter 1

Subharmonic functions on the complex
plane

1.1 Harmonic functions on the complex plane

Let (z,y) be the standard coordinates on C and z := z + iy. Let 2 be a connected open
subset of C. Such a subset 2 is called a domain. Let u : {2 — R be a function. We say that
u is harmonic if u € €?(Q) and Au = 0, where A := 9*/9%z + 0*/9?y is the Laplacian
operator.

Theorem 1.1.1. (i) Let f be a holomorphic function on €. Then Re f is a harmonic func-
tion.

(7i) Let u be a harmonic function on ). If ) is simple connected (a disk for example),
then u = Re f for some holomorphic function f on ); moreover such f is unique up to a
constant. In particular every harmonic function is smooth.

Proof. We prove (i). Write f = u + iv. The Cauchy-Riemann equations give d,u = 0,v
and 0,u = —0,v. Thus

Au = 8§u + 8§u = 0,0,v — 0,0,v = 0.

As to (i), we first check the uniqueness of f. Suppose that f is a holomorphic function
such that Re f = u. Compute

Opf = Opu 4 10,0 = Opu —i10yu, Oy f = Oyu + 10yv = Jyu + 10, u.
Thus,
0.f =1/2(0,f — i0,f) = Oyu — i0yu

Hence the derivative of f depends only on w. It follows that f is unique up to a constant.
We now prove the existence of f. Let g := 9,u — i0,u. Observe g € €*(Q) and g satisfies
the Cauchy-Riemann equations. Consequently, g is holomorphic. Let z, € ). Put

f(2) = ulzo) + / g(2)d=,

20
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where the integral is taken over any smooth path joining 2z, and z. The value f(z) is
independent of the chosen path because ¢ is holomorphic and €2 is simple connected. We
can check that Re f = u. This finishes the proof. O

Let D be the unit disk in C. We denote by D(w, r) the disk centered at w and of radius
rin C.

Corollary 1.1.2. (i) (mean-value property) For every harmonic function u on ) and every
disk D(w,r) € Q, we have

1

u(w) = py

2w
/ u(w + re'?)df
0
(71) (maximum principle) Let € be a bounded domain and u be a harmonic function on
Q). Then if u attains a local maximum then it is constant. Consequently, if imsup,,_, 45, u(z) <
0, then u < 0 on Q.

Proof. By Theorem 1.1.1, we can write u = Re f on an open neighborhood of D(w, ),
where f is holomorphic. Recall

flw) = L/ /() iz — " f(w 4 re)do.
OD(w,r)

2mi w—z 2m Jo

Taking the real parts of both sides gives the mean-valued property (i). The desired
assertion in (i) is a direct consequence of (7). O

Theorem 1.1.3. (Poisson’s formula) (i) Let f be a continuous function on dD. Then
1 2 1 _ |Z|2 "
P(f):=— ———f(e"”)db
No=ge | )

is a harmonic function on D which is continuous on D and P(f) = f on dD.
(ii) Let u be a harmonic function on an open neighborhood of D. Then, we have

1 2 1— |Z‘2 0
= — ———u(e")db

u(z) 27?/0 |ei? — Z|2u(e )
for every z € D.

Proof. First observe that for ¢ € 9D, we have

1—|2? (f + z)
= Re
€ — 2 {—=2
which is the real part of a holomorphic function in z (for ¢ fixed). Hence u is harmonic
by Theorem 1.1.1. We leave an exercise to verify that P(f) is continuous up to boundary
and equal to f on JD (see [31, Theorem 1.2.4]).

To get (ii), just observe that for f := u|sp, we have u = P(f) on 0D. This together
with the maximum principle gives u = P(f) on D. O




CHAPTER 1. SUBHARMONIC FUNCTIONS ON THE COMPLEX PLANE S

1.2 Upper semi-continuity

Denote [—o00,00) := RU {—o00}. We recall rules to work with —co. For every a € R, one
has
-0 <a —00+a=-—00, —00-+—00=—00,
and
—o0 ifa>0
(—00)-a=1<%0 ifa=0
oo ifa<0

and (—o0) - (—o0) = co. We don’t define the quotient (—oo/(—o0). The rules have been
made so that for every sequence (b;); C R converging to —oo, there holds
—o00+a = lim (bj+a), —oo-a= limb;-a.
n—00 Jj—00

Let m > 2 be an integer. We denote R>p:={z € R: 2 >0},and Ry :={z e R:z >
0}. The notations R, and R are defined similarly. For every x € R™ and r € R, let
B(z,r) be the ball centered at x of radius r (with respect to the Euclidean distance).

Let 2 be an open subset of R™. Let u : Q — [—00,00). We say the u is upper semi-

continuous if for every a € R, the set {x € Q : u(x) < a} is open in 2. Observe that u is
upper semi-continuous if and only if for every = € 2, we have

lim sup u(y) = u(z),

Yy—x

where

limsupu(y) :=1lim sup u(y)
y— =0 yEB(z,€)

Every continuous function is upper semi-continuous.
Lemma 1.2.1. Let (u,)aca be a sequence of upper semi-continuous functions. Then u :=
inf e 4 u, 1S Upper semi-continuous.
Proof. Observe

{z:u(x) < a} = Npea{r : un(z) < a}
which is open. This finishes the proof. O
Lemma 1.2.2. Let u be an upper semi-continuous function on §). Let K be a compact subset
of ). Then there exists xo € K such that u(xy) = sup,cx u(x).

This means that every upper semi-continuous u is locally bounded from above on (),
e.g. for every = € (), there exists a small open ball U containing = such that sup,; u(z) <
0.

Proof. Put b := sup,.x u(x). Let (z;); be a sequence of points in K such that u(z;) — b
as j — oo. [
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Lemma 1.2.3. Let u : 0 — [—00,00) be upper semi-continuous. Then there exists a de-
creasing sequence (u;); of continuous functions (u; continuous and u; > uj.; for every j)
such that u(x) = lim;_,o, u;(z) for every x € Q.

Proof. If u = —oo, then it is clear: just take u; := —j. Assume u # —oo. Put

uj(x) = sup (u(y) — jlz —yl).

We can check that u; decreases to u and satisfies
(@) — ;)] < jlo — 2]
Hence u; is continuous. O

Let u :  — [—00,00) be a function which is locally bounded from above. The upper
semi-continuous regularization u* of u is given by

u*(x) :=limsupu(y) =lim sup u(y).

y—w 0 yeB(a,e)

Note that if u is upper semi-continuous, then u* = w.

Lemma 1.2.4. The function u* is upper semi-continuous and u* > w.

Proof. The inequality u* > u is clear. We prove the first desired assertion. By the defini-
tion of u*, one sees that u*(x) < a if there exists an ¢ > 0 such that u(y) < a for every
y € B(z,¢€). Let a € R and = € Q such that u*(z) < a. We need to check that u*(y) < a
for y closed enough to x. By definition, we get

sup u(y) <a
yEB(z,€’)

for ¢ > 0 small enough. Hence by the above observation, u*(y) < a for every y € B(x, ¢).
This finishes the proof. O

Lemma 1.2.5. (Choquet’s lemma) Let (u,)qca be a family of functions from 2 — [—o0, 00).
Assume that the family (u, ), is locally bounded from above (i.e, for every x € (), there exists
a ball U in Q containing x such that sup,c 4 sup,cy u < 00). Then there exists a countable
subset B of A such that

(sup ua)* = (sup uq)”™.
a€cA a€EB

Proof. See [13, Page 38]. Idea: there exists a countable basis for the metric topology in
Q. O
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1.3 Subharmonic functions on the complex plane

Definition 1.3.1. A function u : 2 — [—o00,00) is said to be subharmonic if u Z —oo on
every connected component of (), and u is upper semi-continuous and for every z € 2, there
exists a constant r, > 0 small enough such that {z' : |2/ — z| < r,} € Q and the submean
inequality

- 27

1 27 )
u(z) < —/ u(z + re')dh
0

holds for every 0 < r <1’

Note that by definition, being subharmonic is a local property. One can define u to be
subharmonic on an arbitrary open subset (2 in C by asking that u is so on every connected
open component of ). From now on, we only consider the setting where (2 is a domain.

Lemma 1.3.2. Every subharmonic function is locally integrable.

Proof. Let u be a subharmonic function on ). Let A be the set of z € Q such that u
is locally integrable in an open neighborhood of z. Since u #Z —oo on (2, there exists
2o € € such that u(zy) > —oo. This combined with the submean inequality gives that u
is integrable in a small disk centered at z,. Thus, A is non-empty. Moreover A is open
by its definition. We check that A is closed. Let z; € JA. Let z; € A be close enough
to z; such that there is a disk D(z],r) € 2 such that z; € D(z,r/10). Since u is locally
integrable around 2/, there exists 2] € D(z],7/10) such that u(z}) > —oco. By previous
arguments, we know that « is integrable on D(z}, r/2) which contains z,. Hence z; € A.
In other words, A is closed and open. The connectedness of (2 yields A = Q2. This ends
the proof. O

Theorem 1.3.3. (maximum principle) Let 2 be a bounded domain and u be a subharmonic
function on €). Then if u attains a local maximum then it is constant. Moreover for every
harmonic function h on an open neighborhood of ) such that limsup,_,, coq u(x) < h(zo)
for every xy € 0N, then u < h on .

Proof. The proof is similar to the case of harmonic function. O

Corollary 1.3.4. For every disk D(w,r) € €2, we have

1 27 2 _ 2 ]
u(z) < / |zl u(w + re')df (1.3.1)
0

= o |re’? — (z — w)|?

(in particular the submean inequality holds for every relatively compact disk inside §2).

Hence the function
1

27
M, (w,r) := %/ u(w + re)dh
0

is increasing in r (r small).
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Proof. Let (u;),; be a sequence of continuous function decreasing to u; see Lemma 1.2.3.
Combining Theorems 1.3.3 and 1.1.3 gives

u(w) < L /27r L=z —w)/rf” w;(w + re')df

“or Jo e —(z—w)/r2

because the right-hand side is a subharmonic function which is equal to u; > u on
OD(w,r). Letting j — oo gives the first desired inequality. Let 0 < r’ < r be a constant.
Integrating the just-obtained submean inequality over z € 9D (w, 1) gives

1 2w 27

1
Mu s < — d@l— — 15
(w T) = o 0 1T 0 ‘7’619 _ 7alew ’2

7"2 _ 70/2

u(w + re?)do (1.3.2)

1 27 ] 1 271 2 02
< w(w + re®)do—— / g ="
0

o 0 o |reit — rleit’ |2

By using a change of variable, one see that the number

27 2 /2
o —
; |reif — /e |2

is independent of #, and must be equal to 1 (otherwise we get a contradiction in (1.3.2)
by putting v := +1). Hence M, (w,r) is increasing in r. This finishes the proof. O

Let x > 0 be a smooth radial function with support in I such that [.xdLeb = 1,
where Leb is the Lebesgue measure on C. Here being radial means x(z) = x(|z|) for
every z € C. For every constant ¢ > 0, put

Ye(2) = € (2]€),  ullz) = /C u(> — w)x(w)dLeb.

Note that the function u. is well-defined on the set 2, which consists of z € () of distance
at least € to Q.

Theorem 1.3.5. (regularisation of subharmonic functions) The function u. is a smooth
subharmonic function and u. decreases to u as ¢ — 0.

Proof. The smoothness is clear because u, is a convolution:
ue(z) = / u(w)xe(z —w)dLeb.
C
Using the submean inequality for u gives

A
ue(z +re)df o

:/Q<%/O u(z—i—rew—w)d@)xe(w)dLeb(w)
> / u(z — w)xo(w)d Leb(w) = u(r).

1 2w 1 2w
21 Jo
1

d@/ u(z + re” — w)y(w)dLeb(w)
Q
27
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Hence u, is smooth and subharmonic. Let 0 < ¢ < e be a constant. Now using the fact
that yx is radial and the polar coordinates gives

u(z) = /0 () /0 e — re)db
= /000 rx(r)dr /OQﬂu(z — ere'?)dd
> /Ooo rx(r)dr /0% u(z — €re?)dou(z) > 2ru(2) /Ooo rx(r)dr = u(z)

by Corollary 1.3.4 and the submean inequality. By the last inequality and the fact that
Suppx. € D(¢), we also get

ue(z) < /000 (Isgig)u(w))rxe(r)dr.

Letting ¢ — 0 and using the upper semi-continuity of « yield that lim sup,_,, u.(z) < u(z2).
This combined with the fact that u. decreases as ¢ — 0 gives the desired assertion. This
finishes the proof. O

We call u, standard regularisation of wu.

Lemma 1.3.6. Let u € €*(2). Then u is subharmonic if and only if Au > 0.

Proof. We assume u is subharmonic. Without loss of generality, we can suppose 0 € ). It
suffices to check Awu(0) > 0. By Taylor’s expansion, we have

1
w(x+1iy) = u(0) +20,u(0)+yo,u(0)+ 3 (x28§u(0) +y28§u(0)) +2y0,0,u(0) + o(|z]* +|y|?).
Integrating the last inequality over 0D(r) gives
M, (r) = u(0) + cr?Au(0) + o(|r[?),

for some constant ¢ > 0. Hence if Au(0) < 0, then we would get M,,(r) < u(0) for r small
enough. This is a contradiction. Hence Awu(0) > 0.

Now consider u € ¢*(Q2) with Au > 0. In order to get the desired assertion, it suffices
to check the sub-mean inequality. Let D(w, r) be a small disk in 2. Let i be a harmonic
function on D(w, ) which is continuous up to the boundary such that v < h on 9D(r).
We choose h later. We will verify that « < h on D(w,r). Let ¢ > 0 be a constant. Put
v:=u—h+¢e|lz—wl? Since Av = Au+ ¢ > 0, we see that v cannot have local maximum
in D(w, ) (by Taylor’s expansion as above). Hence

v < limsup v(z) < er?.
z—0D(w,r)

It follows that u < h + er? for every constant ¢ > 0. Hence v < h on D(w,r). Now
we choose h to be the function in the right-hand side of (1.3.1). The desired submean
inequality hence follows. This finishes the proof. O
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Lemma 1.3.7. Let Q) = U + iV, where U,V are open subsets in R. Let u be a subharmonic
function on 2 such that u(z) depends only on Re z. Then the function u(z) with z € U is
convex.

Proof. By regularisation of u (which depends also only on Re z), we can assume u € €>.
In this case, we have 0 < Au(x) = d?u(z). Hence u is convex. O

Lemma 1.3.8. Let f : ' — € be a holomorphic function. Let u be subharmonic on ().
Then u o f is subharmonic.

Proof. By regularisation, it suffices to check the desired assertion for u smooth. Put
0, = 1/2(0, — i9,) and 0; := 1/2(9, + i9,). We have 0,0; = 1/4A. Using this formula
and the fact that 0; f = 0, one can check that

Aluo f)=|f'(Auo f) > 0.
This finishes the proof. O
Theorem 1.3.9. Let w € Q). The function

1
M,(r) = Dy

2
/ u(w + re?)do
0

is an increasing convex function in log r (r small).

Proof. We have already known that M, (r) is increasing. Consider the function

1 2m )
M,(z) = g/o u(w + e*e)df
which is subharmonic by Lemma 1.3.8. This function depends only on Rez. Hence
applying Lemma 1.3.7 to M, (z) implies that M, (r) is convex. O

1.4 Construction of subharmonic functions

Lemma 1.4.1. Let y : R™ — R be a convex function such that x(ti,...,t,) is increasing
in each variable t;, and x can be extended continuously to be a function from [—oo, c0)™
to [—oo,00). Let uy,...,u, be subharmonic functions on ). Then x(uy,...,u,) is also
subharmonic. In particular, the functions uy + - -+ + Uy, max{u, ..., uy}, and log(e** +
...+ €"™) are subharmonic.

Proof. Let u;. be a sequence of subharmonic function decreasing to u; as ¢ — 0. By
continuity of y, we see that the continuous function x(uy, ..., u,,) decreases to u :=
x(u1,...,u,). Hence u is upper semi-continuous. We need to check the submean in-
equality. To this end, by regularisation, we can assume that «; is smooth for every j. Let
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w € Q and D(w,r) € Q). For every k € N, let (¢1,...,t;) be points equidistributed in
OD(w,r). Since u; is continuous, we obtain that

k
1
ajk = Zuj(ts) — My, (w,r)
s=1
as k — oo. Put b, := (ui(ts), ..., un(ts)) for 1 < s < m. Observe that

K
1 1
X(aik, - - -y Qmp) = X(Elh + -+ bk S Z

which converges to

1 27 ) )
By X(ur(w+re?), .. g (w+re))dd = M, (w,r)
s
as k — oo because of the continuity of y and the choice of ¢, ...,¢;. On the other hand,

since Y is increasing in each variable, we have
u(w) < X(Mul(w, ), ..., M, (w, 7")) = klim X(aik, -« amk) < My(w, ).
—00

This finishes the proof. O
Lemma 1.4.2. Let f be a holomorphic function on ). Then log |f| is subharmonic on .

Proof. Firstly u := log |f| is upper semi-continuous. Observe that u is smooth on Q\{f =
0}, and on the last open set we have

Au = 20.0;log |f|* = az(fflagf) =0.

Hence u is harmonic on Q' := Q\{f = 0}. In particular the submean inequality holds
for every z € V' and for every small enough disk centered at z. Consider z, € {f = 0}.
Since u(zg) = —o0, it is clear that the submean inequality holds for z,. This finishes the
proof. O

Corollary 1.4.3. Let fi,..., f., be holomorphic functions. Then for every positive constant
ai, ..., Gy, we have that log(| fi|* + ...+ | fn|*™) is subharmonic.

Lemma 1.4.4. Let (u;);cs be a family of subharmonic function which is locally bounded
from above uniformly. Then (sup,c ;u;)* is also subharmonic.

Proof. The first desired assertion is direct from the definition of subharmonic functions.
0

Lemma 1.4.5. The limit of a decreasing sequence of subharmonic functions is either identi-
cally equal to —oo or a subharmonic function.

Proof. It is clear from the definition. O
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Theorem 1.4.6. Let u be a subharmonic function on €. Let U be an open subset of 2 and v
be a subharmonic function on U. Assume that limsup,,_,, v(2") < u(z) for every z € U NS
Then the function

max{u,v} on U,
w =
u on Q\U

is subharmonic on ).

Proof. We can check easily that w is upper semi-continuous. The submean inequality is
also immediate from the hypothesis. O

Lemma 1.4.7. (strong upper semi-continuity) Let u be a subharmonic function on 2. Let
B be a set of zero Lebesgue measure on §2. Then for every z € €2, we have

lim sup u(z') = u(z).

Z/gB—z
Proof. This is a direct consequence of the upper semi-continuity property and submean
inequality. Indeed, by the submean inequality and the polar coordinates, we get

u(z) < / u(z)d Leb = / u(z)dLeb < sup  u(2').
D(z,€) D(z,e)\B

z'€D(z,e)\B

Letting € — 0 gives limsup,.4p ,, u(z') > u(z). The converse inequality follows from the
upper semi-continuity. [

Theorem 1.4.8. Let A be a closed subset in C such that A = {v = —oo} for some sub-
harmonic function v on . Let u be a subharmonic function on Q\ A such that for every
compact subset K on ), the function u is bounded from above on K\A. Then u can be
extended uniquely to be a subharmonic function @ on €.

Proof. We check the uniqueness of u. Now observe that A is of zero Lebesgue measure
in 2 because v is locally integrable. Hence, using Lemma 1.4.7, for z € A, we have

@(z) = limsup a(z') = lim sup u(z’).
ZEgA—z ZgA—z
In other words, @ is unique, if it exists.

We now prove the existence. Since the problem is local, we can assume v < 0. Define
ue := u + ev on Q\ A and u. := —oo on A. One can see that v, is upper semi-continuous,
and satisfies the submean inequality. Hence, u. is subharmonic. Hence by Lemma 1.4.4,
the function (sup,. u.)* is a subharmonic function on (2 which is equal to « on Q\ A. This
finishes the proof. O
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1.5 Laplacian of subharmonic functions

We know that if a ¢ function is subharmonic, then its Laplacian is positive. We explain
in this section how to extend the last property to all subharmonic functions.

Recall that a distribution T on () is a continuous linear functional from €>°(Q2) to
C. Here ¢°(12) denotes the set of smooth functions with compact support in (2, and
by continuity we mean that for every sequence (f;);en C %°(€2) such that there exists a
compact K C  satisfying Suppf; C K for every j and f; converges to some f., € €.°(12)
in ¢ topology, we have (T, f;) = (T, fx) as j — oo.

Lemma 1.5.1. A linear functional T : €>°(2) — C is continuous if and only if for every
compact K C ), there exist an integer k € N and a constant C' > 0 such that

(T, ) < Clifller @
for every smooth f with compact support in K.
Proof. Straightforward. O

Every locally integrable function g on C can be viewed as a distribution 7}, by putting

(Ty, f) = /Cgdeeb.

One can check that 7}, is linear and continuous in the above sense. In practice we usually
identify 7, with ¢, and use the same notation ¢ to denote 7,. Every (positive) Radon
measure is also a distribution by integration functions against it. Here we recall that a
Radon measure on a topological space X is a (Borel) measure i on X such that u(K) <
oo for every compact subset K in X.

Let (T;),en be a sequence of distribution on 2. We say that 7, converges weakly to T if

(T, 1) = (T, [)

as j — oo for every f € €>°(2). If (u;)ren is @ sequence of locally integrable functions
converges in L}, to a function u, then u; — u as j — oo in the sense of distributions.

Let T be a distribution on 2. We can define partial derivatives 0,7 and 0,7 by the
following formula
<81T7 f> = _<T7 a:]cf>
for every f € ¢>°(Q2), and similarly for 0,7. By integration by parts formula, these
operators extend the usual partial derivatives of 4 functions. We say that T is positive
and write 7" > 0 if (T, f) > 0 for every f € €>°(2) with f > 0. For distributions 77, 75,
we write T} > T, of T} — T, > 0. Recall the following fundamental fact.

Theorem 1.5.2. ([32, Theorem 2.14]) Let X be a locally compact Hausdorff space, and let
A be a positive linear functional on the space 6.(X) of continuous functions with compact
support in X. Then there exists a Radon measure ;1 on X representing A, i.e,

(A, f) = /X Fd

for every f € €.(X).
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When X is a locally compact Hausdorff space in which every open subset can be
written as a countable union of compact subsets, every Radon measure is regular (see
[32, Theorem 2.18]), i.e for every Borel set E in X, we have

u(E) =inf{u(V): E CV, Vopen} =sup{u(K): K C E, K compact}.

In particular every Radon measure on R™ is regular.
Corollary 1.5.3. Every positive distribution is a positive Radon measure.

By the last result, for every positive distribution 7', we can define (T, f) for every con-
tinuous function f with compact support, or more generally for every bounded (Borel)
measurable function f on X. Note by Lebesgue’s dominate convergence theorem, for ev-
ery sequence ( f;); of uniformly bounded smooth functions supported in a fixed compact
subset in 2 such that f; converges pointwise to some function f as j — oo, then we have
(T, f;) — (T, f) as j — oo. The following is fundamental in the theory of distributions.

Theorem 1.5.4. Let (1}); is a sequence of distributions such that the sequence (1}, f) is
bounded for every f € €>°(2). Then for every compact K in ), there exist an integer k > 0
and a constant C' > 0 such that

(T3, I < Clifllsr o), (1.5.1)

for every j and every smooth [ with compact support in K. Consequently, if the limit
(T, f) := lim; oo (T, f) exists for every f € €>°(2), then T is a distribution and T; con-
verges weakly to T as j — oc.

Proof. The second desired assertion follows directly from the first one. We check the first
one. It is a consequence of the Banach-Steinhaus theorem in functional analysis (see [33,
Theorem 2.6]). Let K be a compact subset in €2, and ¢*°(K, 2) be the set of f € €>(Q)
such that Suppf C K. Observe that ¢>°(K,2) with the topology induced by that of
¢:0(Q) (here f; — fin €<(K,Q) if || f; — fll4r@ — 0 as j — oo for every k € N) is
naturally endowed with a metric which makes it to be a complete metric space.

By Lemma 1.5.1, every distribution S induces naturally a continuous linear functional
Sk on € (K, 2). Hence we obtain continuous functionals 7 j : €*°(K, ) — C induced
by 7;. By hypothesis, (T} x, f) is bounded uniformly in j for every f € ¢°°(K,2). This
combined with the Banach-Steinhaus theorem applied to (7 x); gives (1.5.1). This fin-
ishes the proof. O

Let T be a distribution and let g be a smooth function with compact support in €. The
convolution of T with ¢ is defined by

Txg(x):=(T(),9(z =),

for x € Q such that the distance from x to 0f2 is greater than the diameter of the support
of g.
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Lemma 1.5.5. The following statements are true:
(1) the convolution T x g is smooth, and

DT xg) = (D*T)xg =T x D%,
(1) for every smooth f with compact support in ),
<T*gaf> = <T7f*g1>7

where g,(z) := g(=2),

(¢44) let x be a smooth radial function with compact support in Q such that [, xdLeb = 1
and x.(z) := e 2x(z/¢), then T * x. converges weakly to T as ¢ — 0,

(1) if (1}); is a sequence of distributions converging to a distribution 1" then Tjxg — T'xg
in € topology.

Proof. We check (7). It suffices to do it for a = 1. Using linearity of T gives
D(T # g)(z) = lim h™ (T * g(x + h) — T * g(z))
h—0

= lim(T,h™ (g(z + h =) — gz —))).
h—0
Put g.(y) := g(xz — y). Observe now that

R gz +h—y)—gz—y) =h g.(y — h) — 9.(v))

converges to —Dg,(y) in € topology as h — 0 (x fixed). Hence by continuity of 7', we
get
D(T % g)(zx) = (T, —Dg,) = (DT, g).

Since Dy, (y) = —Dg(x — y), we also obtain
D(T % g)(x) = (T, —Dg.) = (T, Dg).

We check (i7). Since T * g is smooth, we can decompose the following integral into
Riemann sum:

(T#g. f) = / T x g() f(w) = 7 lim e 3 T x () (),

e—0 .
JEA

where we decompose C into squares of size ¢ indexed by a countable family A. and
choose z; to be the center of the squares. Observe that

D* (71'_16_2 Z g(z; — y)f(%)) = le? Z —D%g(x; — y)f(xj))

JjEAe JEA.

which converges uniformly in y to

/C DAy — y)f(x)d Leb(z)
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as € — 0 for every «. This combined with the continuity of 7" gives

(Txg, f)=(T, f*aq)

The desired assertion (iii) is a direct consequence of (ii) and the fact that f x x. — f as
e — 0 in € topology.
It remains to verify (iv). Firstly we have

DTy % g(z) =T %« D%(x) = T« D%g(z) = DT * (x)

as j — oo for every = by the weak convergence of 7;. The pointwise convergence of
D*Tj x g is actually uniform thanks to Theorem 1.5.4. Thus, we obtain the ¢ conver-
gence of T x g to T' x g. This finishes the proof. O

Remark 1.5.6. All of above properties of distributions have direct analogues for distribu-
tions in a domain in R".

We come back to subharmonic functions.

Theorem 1.5.7. Let u be a subharmonic function on ). Then Au is a positive measure.

Proof. Let (u.). be a regularisation of u. We have Au. — Au as ¢ — 0 in the sense of
distributions. This combined with the fact that Au. > 0 implies that Au is a positive
distribution. By this and Corollary 1.5.3, we obtain the desired assertion. O

Theorem 1.5.8. Let v be a distribution on 2 such that Auw > 0. Then there exists a
subharmonic function ' on ) such that v = v’ (that means u is the distribution induced by

).

Proof. Let u. := u x x. be standard regularisation of u. We have Au, = (Au) % x. > 0.
Hence u, is subharmonic. We check that u,. decreases as ¢ — 0. To this end, we consider

Ue,s = Ue * X§

which converges weakly to us as ¢ — 0 because u. — u weakly. Since u, ;s is decreasing
in 0 because it is a standard convolution of u. which is a subharmonic function. Letting
¢ — 0 and using the above observation implies that us is decreasing in ¢ as distributions.
Hence u; is decreasing in ¢ as functions because they are smooth. By this and Lemma
1.4.5, the pointwise limit of (u.). is either identically equal to —oc (in this case u, — —oo
in L] by Lebesgue’s monotone convergence theorem) or a subharmonic function. The
former case cannot happen because u. — u as distributions. We infer that u, decreases
to a subharmonic function v’ which is equal to u almost everywhere. This finishes the
proof. N

Corollary 1.5.9. Let (u;);cs be a family of subharmonic function which is locally bounded
from above uniformly. Then the set of z € €2 such that (sup;c; u;)*(2) > (sup;c; u;)(z) is of
zero Lebesgue measure.
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Proof. Let u := (sup,c;u;). We know that Au > 0 as distributions. Let u. be standard
regularisation of u. By the proof of Theorem 1.5.8, the sequence (u.). is decreasing.
Hence u, decreases to a subharmonic function «’. We get v’ = u as distribution. Since
both functions are locally integrable, we see that they are equal almost everywhere. On
the other hand, by the upper semi-continuity, we have v < u* < wu.. It follows that
u* < u/. Since v’ = u almost everywhere, we deduce that v’ = «* almost everywhere. [

The set of = such that (sup;.; u;)*(2) > (sup;c; u;)(2) is called a negligible set. By the
above result, every negligible set is of zero Lebesgue measure. We will see later that a
much deeper property holds: every negligible set is (pluri)polar.

Corollary 1.5.10. Let u be a distribution on ) such that Au = 0. Then there exists a
harmonic function v’ on §2 such that u = u/.

Proof. It suffices to apply Theorem 1.5.8 to u and —u. O

Lemma 1.5.11. We have
Alog |z| = 2mdy,

where &g is the Dirac mass at 0.

Proof. Let f € €>°(C). We compute

(Alog|z], f) = (log[2|, Af)
1 1
= —lim [ log(|z|* +€)AfdLeb = = hm/ Alog(|z|* +¢€)f dLeb.
2 C 26—)0 C

e—0

Note that
4de

Alog(|z)? + €) = 40.0: log(|z|* + €) = (EEE

Using this and the polar coordinates gives

*® der f(re?)do
2 _
/CAIOg<‘Z| +€)deeb—27T/0 w

B ° 2erdl * 4erO(r))do
= 47‘(‘f(0) A mdr + QWA wdr,

dr

where we decomposed f(re?) = f(0) + O(r) as r small. Direct computations show that
the first integral converges to 47 f(0) as e — 0, whereas the second one converges to 0 as
¢ — 0. We infer that (Alog |z|, f) = 27 f(0). This finishes the proof. O

The following result tells us that every measure with compact support in C is indeed
the Laplacian of some subharmonic function on C.

Theorem 1.5.12. Let i be a measure with compact support in C. The function

uu(2) = /ec log |z — w|dpu(w)

is subharmonic on C, and Au,, = 2mp.
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Proof. For every constant ¢ > 0, put

Ue 1= / log(|z — w| + €)du(w).
weC

Observe that u, is continuous. Since log(|z — w| + €) is subharmonic and continuous, we
see that u, is an average of subharmonic functions. Hence u, is subharmonic. Note that
u. decreases to u, as e — 0. Hence v, is either — = —oo or subharmonic. For z ¢ Suppy,
we have u,(z) > —oo. Hence u # —oo. We deduce that u, is subharmonic.

It remains to check that Au, = p. Let f € €>°(C). We compute

@u.f)=wan = [

zeC

:/ dﬂ(w)/ Af(2)log|z — w]dLeb
weC zeC

:/wecdu(w) /ZGC f(z)Alog|z—w|dLeb:/(cfd,u

by Lemma 1.5.11. Hence Aw, = p. This ends the proof. O

Af(z)dLeb/ log |z — w|du(w)
C

Theorem 1.5.13. (Riesz’s representation formula) Let u be a subharmonic function on an
open neighborhood of D. Then we have

- 2 1 o 2 )
2mu(z) :/log z_§ Au—i—/ iu(ew)d&
D 0

e — 22
where Au is identified with a measure.

Proof. As the first step, we assume u smooth and prove the desired formula. Let vy, v,
be the first and second integral in the sum on the right-hand side of the desired formula.
For a fixed ¢ € D and » € D, note that 1 — 2¢ has no zero in . Hence Alog |1 — z£| =0
on D. It follows that

Aw = Alog |z — &| = 27ég,

where w := log ' f_‘i‘. Note also that ¢ is continuous. Hence w is subharmonic. Since
w = 0 on JD, we get w < 0 on D by the maximum principle. Hence v; is a subharmonic
function whose Laplacian is equal to 27A,. On the other hand, for every z, € 9D,
since Au is smooth, we have lim, ,, v;(z) = 0. In other words, v; can be extended
continuously up to boundary and equal to 0 on the boundary. On the other hand, v, is
subharmonic and equal to 27u on dD. We deduce that v; + vy is subharmonic and equal
to 27w on 0D, and A(vy + vy) = 2rAu. Hence vy + v — 27u is harmonic on D and equal
to 0 on 9. It follows that v; + vy — 27u = 0 by the maximum principle.

Now consider the general case. Since u is defined on an open neighborhood of D,
we can construct a sequence of smooth subharmonic functions (u.). defined on an open
neighborhood of D such that u, decreases to u. By the first part of the proof, we have the
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Riesz representation formula for u.. In order to obtain that for u, we just need to check

that
v1.e(2) ::/wAu6 — v1(2) :/log
D D

as e — 0 for every z € D. Let v’ := won D and v’ := 0 on C\D. As observed above,
w’ is subharmonic on D and w’ < 0. Let y be a radial function used to defined the
regularisation u., and define . as usual. For every We have

—¢
1—z€

Au (1.5.2)

(Aue, w') = (A(u* xo),w') = (Au, w' * x.).

The function w’ * y. decreases to w on D as ¢ — 0 (recall w = 0 on dD), and to 0 on
C\E. Hence (1.5.2) follows by Lebesgue’s monotone convergence theorem. The proof is
finished. O

1.6 Compactness properties

We start with the following result suggesting that the singularity of subharmonic func-
tions in C is "not much worse” than that of the logarithmic function.

Theorem 1.6.1. Let u be a subharmonic function defined on an open neighborhood of 2ID
such that ||u|| ;1 opy < 1. Let K be a compact subset of D. Then there exist constants C,a > 0
independent of u such that

/ e ““dLeb < C.
K
In particular the LP norm of u on K is uniformly bound.

Proof. Using partition of unity, it suffices to prove the desired assertion for K := 1/4D.
Suppose that there exists z, € 3/2D such that u(zy) > 10 then by the submean inequality,
we get

lulloem = /D( | JuldLel> 2 1/2u(z0) = 9/8 > 1.
20,

This is a contradiction. Hence v < 10 on ;. By similar arguments, we also see that there
exists a z; € 1/8D such that u(z;) > —C) for some constant Cy > 0 independent of wu.
By considering 1/(10 + Cp)(u(- — 21) + Cp) instead of u, we reduce the question to the
following statement: for a subharmonic function u defined on D such that «(0) > 0 and
u < 1 on D, then there exist constants o, C' > 0 both independent of « such that

/ e *dLeb < C.
Dy
2
We check it now. Let o be a small strictly positive constant to be chosen later. By max-
imum principle, v < 1 on . By Riesz representation formula applied to (u — 1) in
Theorem 1.5.13, we get
1

—1=— 11
u(z) o Dog

Au+ — — " (u(e) — 1)df.

2 Jy e — z|?

z—¢ L[ 1—|z)?
1—2£
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Let ui(z),us(z) be the first term and the second term in the right-hand side of the last
equality.

We use the letter C' to denote a general positive constant independent of u, although
its value can vary line from line. Note that u; < 0 (see the proof of Theorem 1.5.13). We
also have u, < 0 because v < 1 on 9dD. Using the equality —1 = u;(0) + u2(0) (let z =0
in the Riesz representation formula) yields that

1< (0) <0, —1<uy(0)<0.

Observe that there exists a constant C' > 0 such that

2T
lua(2)] < c% —(u(e®) = 1)d8 = —Cluy(0) < C
0

for every |z| < 1/2. We deduce that

/ e “"dLeb < Ca/ e “™dLeb.
Dy /o Dy /o

It remains to estimate the last integral for suitable small a.

Since u1(0) = 5= [;log|¢|Au, we infer that A := Au(]D%) < C for some constant
C independent of u. Since €' is convex and u(9D) <, by Jensen’s inequality, for every
constant « > 0, one obtains

efau1(z) </
&eh

Integrating over z € D/, and noting that fDm |z — &7 < o if a < 2/A < 2/C, we

/ emomlz) < / (Au/A) = 1.
Dy /o £ehD
This ends the proof. O

Z_£ —Aa

1—2z¢

(Bu/A) £ [ Je= e (Bu/a).

£eb

obtain

We recall the following standard fact.

Lemma 1.6.2. Let X be a metric space which is a countable union of compact subsets. Let
(15); be a sequence of measures on X of mass bounded uniformly on compact subsets on
X. Then there exists a subsequence (p;);» of (u;); such that p; converges weakly to some
measure fis..

Note here the weak convergence of measures seen as distributions coincides with the
usual notion of converges of measures.

Proof. By a diagonal argument, we can assume X is compact. We will only use this result
for X is an open subset of R™. So we give here a proof for this case. The general case
is done similarly. The space ¢°(X) of continuous functions with the supnorm on X is
separable. This means that it has a countable dense subset. Let A = {fi, f»,...} be such
a dense subset. By a diagonal argument and the fact that y;(X) < M for some constant
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M independent of j, we can extract a subsequence (1;/);» such that (4, fi) is convergent
as j — oo for every k. Define ., as follows. Put

<,uooa fk> = jhirolij’jlv fk>

Since A is dense, for every continuous function f on X, we can find a sequence (fs, )«
converging to f in the supnorm. Since

|<y’007 fsk - fsk/>| = ]}1_{20 |<Hj’v fsk - fsk/>| < MHfSk - fsk/H:
we infer that the sequence (u, fs,) is convergent. Hence we can put
<,uooa f> = khm <,uoo7 fsk>
— 00

By similar reasoning, one can check that this definition is independent of the choice of
(fs.)x- Hence we obtain a function p., : °(X) — R which is linear and positive. Hence
by Theorem 1.5.2, i, is a measure. We leave the readers to check that y; — fio.. O

Lemma 1.6.3. Let (u;); be a sequence of functions on 2 which are of L'-norm locally
bounded uniformly in j, i.e, for every compact K in ), there exists a constant My such that
lwjll oy < My (L'-norm is computed with respect to Lebesgue measure on C). Then there
exists a sequence (j;)r C N such that u;, (considered as a distribution) converges weakly to
some distribution on €2 as j — oo.

Proof. Let u; := max{u;,0} and u; := —min{u;,0}. We have u;t > 0and u; = ul —u;

;-
Since
/|uj|dLeb:/ \u;r|dLeb+/ |u; |d Leb,

we infer that uj: is of L'-norm locally bounded uniformly in j. Since uj: is non-negative,
we can view them as positive distribution (hence measures). Now one just applies
Lemma 1.6.2 to uf to obtain the desired assertion. O

The following is fundamental in pluripotential theory.

Theorem 1.6.4. (i) Let (u;); be a sequence of subharmonic functions converging weakly to
some distribution u. on §). Then u., is also a subharmonic function and u; — us in L,

for every constant 0 < p < oo. Furthermore for every compact subset K in () and every
continuous function f on K, we have

lim sup sup(u; — f) < sup(u — f). (1.6.1)
K

j—o0 K
(1) Let (u;j); be a sequence of subharmonic functions uniformly locally bounded from
above defined on (). Then either u; converges uniformly on compact subsets in ) to —oo as

j — oo or there exists a subsequence (u; ) ;; which converges in L? to a subharmonic function
U for every real number 0 < p < oo.
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Proof. Since Auy, = lim; o Au; > 0, by Theorem 1.5.8, u., is a subharmonic function.
As the next step, we verify that u; — us in Lj,,.

Let u; ., u . be standard regularisation of u;, u, respectively defined using the same
cut-off function y. Let x, be the function induced by x and ¢ as usual. By the first part of

the proof, the sequence u; is of L'-norm locally bounded uniformly. We have

w;(2) = /QXG(Z — x)u;(z)d Leb(x).

Since u; — u as distributions, using Lemma 1.5.5 (iv), we see that u; . is equicontin-
uous in j for e fixed. This together with the fact that u;. converges pointwise to .
yields that the convergence u;. — u« . is uniformly on compact subsets, for € fixed. By
subharmonicity, we have

Uj < Uje,  Uog < Usge

Let 4 > 0 be a constant. We estimate

Uj — Uoo,e — 0 < Uj — Uoo < Uje — Uoo + 0.

Since ;. — U, > U uniformly, we infer that u;, — us, + 0 > 0 if j is large enough.
Likewise
Uj — Usge — 0 < Uje — Uoge — 0 < 0

for j big enough. Hence
|t — U || 1) < / max{u; — Uoo + 0, Uooe — Uj + d}d Leb
K
< / f(Wje — Uso + 0 + Usoe — uj +0)d Leb
Q

where f is a nonnegative smooth function with compact support which is equal to 1 on
K. Letting j — oo in the last inequality gives

lim sup |[u; — oo || L1 (1) < / f(2Uooe — 2us +26)d Leb .

Jj—oo Q
loe- We check (1.6.1). Let f be a continuous
function > 0 on K. By above arguments (the fact that u; . — .. uniformly on compact
subsets),

Letting €,6 — 0 implies that u; — u., in L}

lim sup sup(u; — f) < limsupsup(uje — f) = sup(tso,c — f)
j—00 K j—00 K K

for every constant ¢ > 0. Put M := supg(u — f). Observe that the continuous func-
tion max{us . — f, M} decreases pointwise to the constant function M as €0. Hence by
Dini’s theorem, max{u., . — f, M} converges uniformly to M as ¢ — 0. We infer that
SUpPg (Uooe — f) = M as € — 0. Thus (1.6.1) follows.

Since (u;); is uniformly locally bounded from above and the problem is local, we can
assume that u; < 0 on () for every j. Assume that u; does not converge uniformly on
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compact subsets in ) to —oo as j — oo. This means that there exists a compact subset
K C Qand z; € K such that u;(z;) > —C for every j € N some constant C' independent
of j. We need to prove that there exists a subsequence of (u;),; converging in L” for every
1 <p<oo.

By considering a subsequence of (z;);, we can assume that z; converges to z,, € K.
Since u;(z;) > —C and z; close to z, as j big, using the submean inequality implies that
l|uj][21(p) is uniformly bounded for some small ball B centered at z,,. Let A be the set
of z € Q such that there exists a small ball B containing z and ||u,||;1(5) is uniformly
bounded. We have just seen that A is non empty. Moreover A is open because of its
definition. By an argument similar to those in the proof of Lemma 1.3.2, we can prove
that A is also closed. Hence A = (2 (we always assume 2 is connected). In other words,
the sequence (u;); is of L' norm locally bounded uniformly in j. Hence, by extracting a
subsequence, we can assume that u; converges weakly to a distribution u,, as j — oo.
By Part (i), u; converges to u, in L.

Consider now p > 1. By Holder’s inequality, we have

[Juj — UOOHIL)p(K) = /K |uj — Uoo|1/2’uj — uoo|p_1/2dLeb

2 2
< </ |uj—uoo]dLeb> (/ |uj—uoo|2p_1dLeb> .
K K

The second integral in the right-hand side of the last inequality is bounded uniformly in
j by Theorem 1.6.1. Whereas the first one converges to 0 by the previous part of the
proof. This finishes the proof. O

Corollary 1.6.5. (i) Let (u;); be a sequence of subharmonic functions converging weakly to
some distribution u on ). Let ¢; := sup,; uy. Then the upper semi-continuity regularisa-
tion ¢} of p; decreases to u.

(1) Let x be as in Lemma 1.4.1. For 1 < k < m, let u;), be subharmonic function such

that uj, converges in L;, to uy as j — oo. Then we also have x(uj1, ..., u;jy) converges in
L}, to x(ui,...,uy) (hence in L} . for every p > 0).

Proof. We check (i). By Theorem 1.6.4, (u;); is uniformly locally bounded from above.
Hence ¢} is a well-defined subharmonic function. Since (¢j); is decreasing sequence and
¢ > u; — u as distributions, we get that ¢} decreases to a subharmonic function v/, and
u’ > u. By Theorem 1.6.4 and extracting a subsequence if necessary, we can assume that
u; — w in L}, and u;(z) — u(zx) for almost everywhere = € Q. Hence ¢;(x) — u(x) for

loc

almost everywhere x. This combined with the fact that

{z: ¥j(x) > ¢;(2)}

is of zero Lebesgue measure (Corollary 1.5.9) implies that ¢}(z) — u(z) for almost
everywhere x. We infer that «/(z) = u(z) for a.e. x. Hence «' = u by the strong upper
semi-continuity of «’ and w.

It remains to check (ii). It suffices to prove the desired assertion for a subsequence of
(x(uj1,...,ujm));. By extracting a subsequence if necessary, using Theorem 1.6.4 yields
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that x(u;1, . . ., u;y) is locally bounded uniformly in j and x(u;1, . . ., u;,) convergesin L.

to some harmonic function v as j — co. On the other hand, Theorem 1.6.4 again, u;;
converges pointwise almost everywhere to u; as j — oo, for 1 < k < m (after again ex-
tracting a subsequence). Hence x(u;1, ..., u;,) converges pointwise almost everywhere
to x(uq, ..., uy,). It follows that x(uy,...,u,) = v. This finishes the proof. O

Corollary 1.6.6. Let (u;); be a sequence of harmonic functions converging weakly to a
harmonic function u on €). Then wu; converges to u in € topology in (.

Proof. By Theorem 1.6.4, we have u; — w in L]

loc*

disks. Using the Poisson formula, we obtain that

Let D(w, ) € D(w,r3) € 2 be two

u(z) = / K(z, 2" )u(z")d Leb,
D(w,r2)\D(w,r1)

for z € D(w.r1/2), where K(z, z') is some smooth function on (z, 2’) in some open neigh-
borhood of the closure of D(w, r;/2) x D(w, r9)\D(w, ). Hence

D*u(z) :/ DYK(z, 2" )u(z")d Leb.
D(w,r2)\D(w,r1)

1
loc

We also have similar equality for ;. Combining this with the L, , convergence of (u,);

yields that
sup |D%u; — D%ul| < / lu; —ul =0
D(w.r1/2) D(w,r2)\D(w,r1)
as j — oo. Hence the desired assertion follows. O

Remark 1.6.7. The notions of harmonic functions and subharmonic functions can be ex-
tended to the case of R™ by using the Laplacian in R™. The (sub)harmonic functions on
open subsets in R™ shares many similar properties as in the case of R?> ~ C. However they
are not the main object of the course. We will see, in the next chapter, a more refined gener-
alization of subharmonic functions on C which is the notion of so-called plurisubharmonic
functions.

Notes. All of results presented in this chapter are classical, except possibly the notion of
strong upper semi-continuity which was introduced in [17]. The presentation is based
on [13, 24, 28, 31].



Chapter 2

Plurisubharmonic functions

2.1 Plurisubharmonic functions

Let Q) be a domain in C".

Definition 2.1.1. A function u : Q@ — [—00,00) is said to be plurisubharmonic (psh) if
u % —oo on ), and u is upper semi-continuous and for x € ) and every complex line L
passing through z, the restriction u|pnq of u to L N is either = —oo or a subharmonic
function on a small neighborhood of x in L N .

Recall that a complex line is an affine complex vector subspace of dimension 1 in
C". We identified L N Q2 with an open subset in C. Let z = (z,...,2,) € Q and r =
(11,...,mn) € R%,. Denote D(z,7) := D(z1,71) X -+ X D(2,,7,), and

OD(z,7r) == ID(z1,71) X -+ X OD(2,,70)

which is a proper subset of the Euclidean topological boundary of D(r, z). This set can
be identified with [0, 27)™.

Lemma 2.1.2. Let u be a psh function on S). Then for every polydisk D(z,r) € €}, we have

1 . ,
u(z) < / w(zy 4+ 1€, 2y + e dl, - - - db,.
(27T)n OD(z,r)
Proof. Apply consecutively the submean inequality to w(zy,...,2j_1,+, 2Zj41,...,2,) ON
D(z;,7;), where z; fixed for j' # j. O

We now present basic properties of psh functions. Some results are given without
proofs if they are either deduced directly from the 1-dimensional case or can be proved
in a similar ways as their analogue in the 1-dimensional case.

Lemma 2.1.3. Every psh function is locally integrable.

Theorem 2.1.4. (maximum principle) Let €2 be a bounded domain and u be a psh function
on ). Then if u attains a local maximum then it is constant. Consequently,

supu(z) = sup limsup u(x)
e €N x—xoEIN

25
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Corollary 2.1.5. For every polydisk D(w,r) € ), we have

1 ot —w,l? . .
ulz) < ) / H | ije. l(] d u(wy + e w, + 1ae?)dy - - - db,
OD(w,r) =1 rev —

(2m 2 — wy)[?
(2.1.1)
Hence the function
1 2 ] )
M, (w,ry, ... ) = 2—/ u(wy 4 e, . w, + rpe)dby .. db,
T Jo
is increasing in each variable r; for 1 < j < n.
Let x1,...,xn» > 0 be smooth radial functions with compact support in D such that

fc x;dLeb = 1for 1 < j < n. Put x(21,...,2,) = Xx1(21) ... xn(2s). For every constant
e > 0, put

Xe(2) =€ "x(z/€), u.(z):= /n u(z — w)x(w)d Leb.

Note that the function u. is well-defined on the set €2, which consists of z € () of distance
at least ¢ to Q2.

Theorem 2.1.6. (regularisation of psh functions) The function u. is a smooth psh function
and u,. decreasing pointwise to u as ¢ — 0.

Proof. The smoothness is clear. Let L. be a complex line intersecting 2. Using the equality
uc(z) = [, u(z—w)x.(w)d Leb(w), one see that the restriction u.|;, of u. to L is an average
of subharmonic function on L. Thus u,|,, is itself subharmonic. Hence u, is subharmonic.
Let

u(€r, ..., €n,2) = /Qu(z —w)(X1)e; (1)« (Xn)e, (wn)d Leb(w),

where ¢; is a small positive constant for 1 < j < n. Observe that u.(z) = u(e,...,¢€, z).
Put 2’ = (29,...,2,) and v’ = (ws, ..., w,). By Fubini’s theorem,

e en2) = / (x2)es (1) - -+ (xu)e. (10, ) Leb

-----

/ u(z — wr, z — w/)(Xl)El(w1>dLeb7
w1

here it is not important to specify the open subsets over which the integrals are taken.
Since u(z; — wy, 2’ — w') is either subharmonic or = —oco on an open subset in C, using
Theorem 1.3.5 implies that u(ey, ..., €,, z) is increasing in ¢;. Similarly, we also obtain
that u(ey,...,€,,2) is increasing in every ¢; for 1 < j < n. On the other hand, by
Lemma 2.1.2, u(ey, ..., €,,2) > u. By this, in order to get u(ey, ..., €,, 2) decreases to u as
(é1,...,€,) — 0, one just needs to use the upper semi-continuity of  as in the proof of
Theorem 1.3.5. O
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We call u, standard regularisation of u. Recall some basic on differential forms on
R™, where m is a positive integer. For every subset I = {iy,...,ix} C {1,...,m} (here
iy < ...<1iy), denote dry := dx;, A --- A dx;,. Every differential k-form ¢ on R" can be
written uniquely as

where [ runs over every subset of {1,...,m} of cardinality k. We say & € ¢~ if f; is so
for every I. A k-form is said to be real if its coefficients are real. Let 2* be the set of
smooth k-form with compact support in §2.

Let f(zy,...,%,) be a " function on R™. The exterior differential operator d acting
on differential forms is computed as follows. We have

df (z1,...,x,) = Z@m].f(xl, ey Ty )d
=1

More generally for every differential k-form ® = ), f;(x)dz;, recall

do = " df; Ada;
I

which is a (k + 1)-form.

Let z = (z1,...,2,) be the standard complex coordinates in C". For j = 1,...,n, put
zj = zj + 1y;. We identify C" with R?" by sending (z1,...,2,) t0 (Z1,Y1,- .-, Tn, Yn). Set
dz; = dx; + idy; and dz; := dx; — idy;. Similarly as above, we put

dZ[:dZ”/\/\dZZk, d,é]:déu/\/\dzk

Observe dz; = 1/2(dz; + dz;) and dy; = 1/(2i)(dz; — dz;). Using these formulae, we can
decompose ¢ uniquely as

(I):Zf]JdZ[/\dZ],
1,J

where I, J run overs non-empty subsets of {1,...,m}. Let ® := dorg fr.,dzr Ndz;. We
say that @ is of bi-degree (p, q) (and say @ is a (p, ¢)-form or a form of bi-degree (p, q)) if
fr; = 0 for every (I, J) such that either || # p or |J| # q. Denote by 27%((Q2) the set of
smooth (p, ¢)-forms with compact support in 2. We have seen that

P*(Q) = Dpy =k ZP1(Q). (2.1.2)

Using this decomposition, we see that d = 9+ 9, where for every (p, ¢)-form ®, we define
0% to be the (p+ 1, ¢)-form in the decomposition of d® given by (2.1.2). Analogously, 0®
is the (p, ¢ + 1)-form in the last decomposition of d®. The operators 9, d act on 2*(Q) by
using (2.1.2). Since d? = 0, using bi-degree decomposition, we get

P =9 =0, 90+00=0.
Put az]. = 1/2(835] — iayj> and agj = 1/2(&15J + z'(?yj) for 1 S] < n. For b = f[JdZ] A dZJ,
0d = azjf[Jde A dZ[ N dZJ, 5(1) = 85jfUd2j A dZ] N di].

Put d° := i/(2m)(0—0). Hence dd® = i/700. When n = 1, the operator dd°u = coAu(idz A
dz), where ¢y > 0 is a constant.
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Lemma 2.1.7. (i) Let & = ZI,J frsdz;r NdZ;y be a form. Then ® is real if and only if ® = @,
or equivalently f;; = (—1)WVIf , for every I, J.
(7i) Let ® be a real form, then dd°® is real as well, in other words, dd° is a real operator.

Proof. Consider a form ¢ formally as a polynomial of real variables dx;, dy; for 1 < j <n
with complex coefficients. Then & is simply the complex conjugate of the polynomial .
Hence (i) follows. The (ii) is deduced by similar reasons. O

Lemma 2.1.8. Let g : ' — €2 be a holomorphic map. Let ® be a form. Then g*0® = Jg*®,
and a similar equality for O also holds. Moreover if ® is of bi-degree (p, q) then g*® is so.

Proof. Since f* and 0 are linear, it suffices to check the desired equality for ® of bi-degree
(p,q). Since dg*® = g*d®, and g* preserves the bi-degree, we get the desired equality. [

Lemma 2.1.9. Let u € €*(2). Then u is psh if and only if dd°u > 0, i.e, the matrix of
coefficients of —idd‘u is positive semidefinite.

Proof. Let z € Q and v = (vy,...,v,) € C". Let L := z + Cv which is a complex line
passing through z. Put u,(t) := u(x + tv) which is the restriction of v to L. We have

ddu(z) =i/ Z Egﬁkf(z)dzj A dZy.

1<j,k<n
Using Lemma 2.1.8, we compute

coAu(idt A dt) = ddur(t) = (dd°u)|L
= i/m02 ., f (2 + tv)d(z; + v;t) Ad(z + vjt)

- < Z ijgkf(z + tv)vjz_)k) i/mdt A dt.

1<j,k<n

It follows that v is psh if and only if >3, , ., 92, f(2)v;0, > 0 for every v € C". This

finishes the proof. O

Lemma 2.1.10. Let Q2 = U +iV, where U,V are open subsets in R™. Let u be a psh function
on 2 such that u(z) depends only on Re z. Then the function u(x) with x € U is convex.

Proof. By regularisation of u (which depends also only on Re z), we can assume u € €>.
In this case, we have 0 < dd“u(x) = H,u(x) (Hessian of u(x)). Hence u is convex. O

Lemma 2.1.11. Let f : Q' — Q be a holomorphic function. Let u be psh on Q). Then u o f
is also psh.

Proof. By regularisation, it suffices to check the desired assertion for u smooth. To check
u o f is psh, we need to restrict it to a complex line L’ in ). Hence without loss of
generality, we can assume that €)' is in C. Let ¢, € € € C. We need to check that
dd®(uo f)(tg) > 0. Locally near ¢y, we have f(to+t) = f(20)+vt+O(t*). Now we compute
dd(uo f)(to) as in the proof of Lemma 2.1.9 to obtain the positivity of dd°(uo f)(ty). This
finishes the proof. O
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Theorem 2.1.12. Let w € Q. The function

1

M (w;ry, ... 1) = 2n)

/ u(wy + e w, + ree)dy - - - db,
oD(z,r)

is a convex function in (logry,...,logr,) which is increasing in each variable r; for 1 < j <
n.

Proof. We have already known that M,(r) is increasing in each variable r;. Consider the
function
1

M,(z) = @n)

/ u(z + ee® 2, e db, - - - db,
oD(z,r)

which is psh by Lemma 2.1.11. This function depends only on Rez. Hence applying
Lemma 2.1.10 to M, (z) implies that M, (r) is convex in (logry,...,logr,). O

Corollary 2.1.13. For every z € (), the limit

v(u,z) = lim ulZi7.7)

>0
r—0 logr

exists and we have

max{|z] — z1|,...,]|

/ —
u(2') < v(u, 2)log = nlk M, (2 logr, ... logr) (2.1.3)

-
forevery 2 € D(zy,7) X -+ X D(z,, 7).
Proof. Let f(t) := M,(z;¢',...,¢e") for —oo < t < 0. By Theorem 2.1.12, we infer that

f(t) is a convex increasing function in ¢. It follows that the function

F) = flto)
t—1tg -

0

is increasing in t for t, fixed. Thus f(¢)/t is convergent as t — —oo. The first desired
assertion follows. We check the second one. Since

v(u,z) = lim f(t)/t= lim ft) = f(to)

to—c0 t—1ty

using the increasing property of the function in the limit, we get

f(t) <wvlu,2)(t —to) + f(to)

for every t < to. This combined with the fact that u(z’) < f(t) if 2/ € D(zy,€') x -+ X
D(z,, €' gives the second desired assertion. O

The nonnegative number v(u, z) is called the Lelong number of u at z. Bounded psh
functions have zero Lelong number everywhere. However the converse is far from being
true. For example, the function u(z) = —/—1log z (for ||z|| < 1) is psh by Lemma 2.2.1
below, and it has zero Lelong number everywhere (by (2.1.3)). Observe that for u < v
psh functions, then v(u, z) > v(v, z) for every z because M, < M,. The Lelong numbers
is a simple and important object measuring the singularity of psh functions.
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2.2 Construction of plurisubharmonic functions

Lemma 2.2.1. Let x : R™ — R be a convex function such that x(t,...,t,) is increasing
in each variable t;, and x can be extended continuously to be a function from [—oo,00)™
to [—o00,00). Let uy,...,u, be psh functions on Q). Then x(ui,...,u,) is also psh. In
particular, the functions uy + - - - + Uy, max{uy, ..., uy}, and log(e™ + ...+ e*) are psh.

A function f on ) is said to be holomorphic if for every z, € 2, there exists a small
open neighborhood U of z, such that

f(z1,. 00y 20) = f(20) —1—2 Z ar(z — z)!

k=1 |I|=k

which is an absolutely convergent series for = € U, where a; € C, I = (i1, ...,i,) C€ N",
|I| :==4; + - +i,and 27 := 2}* - - zin.

n

Lemma 2.2.2. Let f be a holomorphic function on €). Then log |f| is psh on (.

Corollary 2.2.3. Let f1,..., f be holomorphic functions. Then for every positive constant
ai, ..., a,, we have that log(|fi|* + ...+ |fm|*™) is psh.

By the last result, the function log max{|z] — z1|,..., |z, — z.| is psh. This combined
with (2.1.3) shows that the Lelong number v(u, z) of a given psh function u at z is the
largest constant A such that

u(z") < Mogmax{|z; — 21|, ..., |2, — za|} + O(1)
for 2/ in a small polydisk around z. Moreover using the fact that
(D(z,7/n))" C B(z,7) C (D(z,7))"

(B(z,r) is the ball of radius r centered at z), we also see that v(u, z) is the largest constant
A such that
u(z') < Alog ||/ — 2| + O(1)

for z/ in a small ball around z.

Lemma 2.2.4. Let (u;);c; be a family of psh function which is locally bounded from above
uniformly. Then (sup,c;u;)* is also psh.
Lemma 2.2.5. The limit of a decreasing sequence of psh functions is either identically equal

to —oo or a psh function.

Theorem 2.2.6. Let u be a psh function on ). Let U be an open subset of €2 and v be a
psh function on U. Assume that limsup,,_,, v(2') < u(z) for every z € OU N ). Then the
function

max{u,v} on U,
w =
u on Q\U

is psh on €.
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Lemma 2.2.7. (strong upper semi-continuity) Let u be a psh function on €). Let B be a set
of zero Lebesgue measure on €). Then for every z € (), we have

limsup u(2') = u(z).
Z/gB—z

Theorem 2.2.8. Let A be a closed subset in C such that A = {v = —oc} for some psh
function v on ). Let u be a psh function on Q\ A such that for every compact subset K on
(), the function u is bounded from above on K\ A. Then u can be extended uniquely to be a
psh function @ on €.

A % function u is said to be pluriharmonic if ddu = 0.

Lemma 2.2.9. Let u be pluriharmonic. For every polydisk D(w,r) € €2, we have

n 2 2
U(Z) = Lﬂ/ H TZJG_ |zj —wj| 2U(w1 +T1€i917"'awn +Tnei0n)d61 den
(27T> OD(w,r) j=1 ’7“6 7= (Zj - wj)|

In particular u is smooth.

A higher dimensional analogue of Theorem 1.1.1 also holds: u is pluriharmonic if
and only if it is locally the real part of a holomorphic function. We refer to [13, Page 42]
for a proof.

2.3 Complex Hessian of psh functions

Let (z1,...,2,) be the standard coordinates on C". We orient C" by using the standard
volume form vol,, := (i/2dzy A dz) A -+ A (i/2dz, N dZ,).

A k-current on ) is a continuous linear functional T from 2" *(Q)) to C. Here
2?=*(Q) denotes the set of smooth (2n — k)-forms with compact support in 2, and
by continuity we mean that for every sequence (®;);cy C 22" *(Q2) such that there ex-
ists a compact K C () satisfying Supp®; C K for every j and ®, converges to some
P, € 2" Q) in € topology, we have (T, ;) — (T, ®,.) as j — oo. Every k-form with
locally integrable coefficients ¥ on C can be viewed as a distribution Ty by putting

(Ty, ®) = /Q\p/\cp.

In practice we usually identify Ty with ¥, and use the same notation ¥ to denote 7T7y.
More generally, every k-form whose coefficients are Randon measures is a k-current.
Let (T;),en be a sequence of k-current on 2. Let T be a k-current on (2. We say that
T; converges weakly to T if
(T;, @) — (T, ®)

as j — oo forevery & € €°(2). For I, J C {1,...,n} and f € €>(Q2) put

(Try, f) = (T, 01y fdzre NdZje),
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where ¢, is defined by the equality
dzr NdzZy Ndzre NdZge = 615(i/2dzy NdZy) A -+ A (i)2dz, N dZ,).
We infer that 77, are distributions on €2 and

T:ZT]]dZ[/\dZ].

1,J

Every distribution 7" on €2 can be naturally identified with a 2n-current by identifying T’
with T vol,,.

Lemma 2.3.1. A linear functional T : 2**~*(Q) — C is a current if and only if for every
compact K C ), there exist an integer s € N and a constant C' > 0 such that

(T, ®) < C|®|

@5(Q) (2.3.1)
for every smooth f with compact support in K.
Proof. Straightforward. O

When (2.3.1) holds for s = 0 for every K, we say that T is of order 0. The following
is a generalization of Theorem 1.5.2.

Theorem 2.3.2. ([32, Theorem 2.14]) Let X be a compact Hausdorff space, and let A be
a bounded linear functional on the space € (X) of continuous functions in X. Then there
exists a complex Radon measure ;1 on X representing A, i.e,

(A, f) = /X Fd

forevery f € €(X).
Consequently, we get

Corollary 2.3.3. Every current of order 0 is a differential form whose coefficients are com-
plex Radon measures.

Let T be a k-current on (2. We define the exterior differential dT of T to be the (k + 1)-
current given by
(T, @) = (~1)* (T, do)
for every ® € 22" *(Q). We say that T is of bi-degree (p, q) or of bi-dimension (n—p, n—q)
if (T, ®) = 0 for every (p/, ¢')-form ® with (p'.¢') # (n — p,n — q). By decomposing forms
into sums of (p, ¢)-forms, we see that every k-current can be decomposed uniquely as the
sum of (p, ¢)-currents. For a (p, ¢)-current 7" and (p’, ¢’)-form &, put

(0T, ®) := (=1)P*7HT 0P)

if (p,q¢)=(n—p—1,q),and (0T, ) = 0 otherwise. By linearity, we obtain a well-defined
(p + 1,q)-current 9T. We define 0T similarly. Note that d = 9 4+ 0. When T is smooth,
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0T and OT coincide with the definition in the smooth case. We say that 7 is closed (or
d-closed) if dT = 0, we define similarly 0-closedness, and 0-closedness.

A simple positive continuous (p, p)-form is (iy1 A7) A -+ A (i, A75,), where 71, ..., 7y,
are (1,0)-form (with complex coefficients). Every simple positive form is real. Positivity
of forms are preserved under holomorphic maps.

Lemma 2.3.4. Every constant (p,p)-form can be written as a linear combination (with
functions coefficients) of constant simple positive forms.

Proof. For the first desired assertion, it suffices to use the formula

4d2’j A de = (de + de) VAN (de + de) — (de — de) A (dZ]' — de)
+i(dz; +idzy) A (dz; +idzg) — i(dz; —idzy) A (dz; — idzg).

]

A real (1,1)-current 7 is said to be positive (and write 7' > 0) if (T, a) > 0 for every
simple positive form a with compact support. Since simple positive form are preserved
under holomorphic maps, the positivity is independent of the Euclidean coordinates on
Cn.

Lemma 2.3.5. Let o = i, ajrdz; A dzj, be a real continuous (1, 1)-form. Then o > 0 if

and only if the Hermitian matrix [a;i]1<jr<n 1S positive semidefinite. In particular, for every
€* function u, then u is psh if and only if dd“u is a closed positive form.

Proof. the second desired assertion follows from the first one and Lemma 2.1.9. We
check the first one. We assume first that the Hermitian matrix [a;x]1<;x<, IS positive
semidefinite. Note that for a Hermitian matrix, being positive semidefinite is preserved
under an C-linear change of coordinates in C". Let § be a simple (n — 1,n — 1)-form. Fix
2p € ). By a C-linear change of coordinates, we can assume that 3(zy) = c(idze A dz3) A
-+ A (idz, A dz,), where ¢ is a positive constant. Now we compute

a(zo) A B(z0) = a11(zp) vol, >0

because a;; > 0. Thus @ > 0. Conversely, assume a > 0. Let t = (¢y,...,t,) € C*\{0}.
Let (¢, 25, ..., 2,) be new orthogonal coordinates on C". Let vol], be the canonical volume

’rn

form in C" induced by these new coordinates. Compute
0 < aA(idzg Ndzy) N --- A (idz, ANdZ)) = ( Z ajktjfk> vol!,.
1<j,k<n
Since vol,, > 0, we get } -, ., axt;tr > 0. The desired assertion follows. O
Lemma 2.3.6. Every positive (1, 1)-current T" has measures coefficients.

Proof. Let a be a constant simple positive (n — 1,n — 1)-form. By positivity, 7' A « is a
positive (n,n)-current. Hence it is a measure. By Lemma 2.3.4, every coefficient 7;; can
be written as a linear combination of some 7" A «. Hence T}, is a complex measure. [
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Theorem 2.3.7. Let u be a psh function on Q). Then dd°u is a closed positive current.

Proof. Let (u.). be a regularisation of u. We have dd“u. — dd“u as ¢ — 0 in the sense
of distributions. On the other hand by Lemma 2.3.5, we get dd‘u. > 0. It follows that
dd°u > 0. The closedness is clear because d(dd“u) = 0. O

Theorem 2.3.8. Let u be a distribution on €2 such that dd°u > 0. Then there exists a psh
function v’ on 2 such that u = u/'.

Corollary 2.3.9. Let (u;);e; be a family of psh function which is locally bounded from
above uniformly. Then the set of z € Q such that (sup;c;u;)*(2) > (sup;c; u;)(2) is of zero
Lebesgue measure.

The set of = such that (sup,c;u;)*(2) > (sup,c;u;)(2) is called a negligible set. By
the above result, every negligible set is of zero Lebesgue measure. We will see later
that a much deeper property holds: every negligible set is pluripolar (i.e, contained in
{u = —oo} for some psh function « on 2 or even in C").

Corollary 2.3.10. Let u be a distribution on €2 such that dd“u = 0. Then there exists a
pluriharmonic function v’ on §2 such that u = u/.

Proof. It suffices to apply Theorem 2.3.8 to u and —u and use the mean equality. O

We admit the following important result.

Theorem 2.3.11. ([13, Page 135]) Let T be a closed positive (1,1)-current. Then T is
locally equal to dd“u for some psh function w.

2.4 Compactness properties

Recall ) is a domain in C".

Theorem 2.4.1. Let u be a negative psh function on €2 such that ||ul| 1oy < 1. Let K be a
compact subset of (). Then there exist constants C, a > 0 independent of u such that

/ e ““dLeb < C.
K

In particular the LP norm of u on K is uniformly bound.

Proof. Without loss of generality we can assume that © < 1 on (2. By using a partition
of unity, we can assume that X' C (ID;/;)" and 2 = D". Since ||u|| ;1) < 1, there exists
2o € (Dy/2)", such that u(z) > —M, where M > 0 is a constant independent of u. We
can assume zo = 0. For 1 < j <n, let F; : D x D"~! — C" be given by

F(t, 2.z, ) =2, 2, L, 20,y 2 )
For z = (z1,...,2,) € D", there exists j such that |z;| < |z;| for every j/ # j. Hence
such z belongs to the image of F;. We deduce that the images of F};’s cover the polydisk
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D". Moreover since F} is 1 — 1 almost everywhere, using change of variables formula, we

obtain .
/ e*"dLeb <) / e FdLeb.
K =1 /D"

It remains to estimate

Aj = / e *FdLeb = / d Lebgn- / e *"FdLebc .
n Dn—1 D

Consider the function v := u o F(+, 2') for fixed z’. We have v < 1 on D and v(0) > —M
and v is subharmonic on an open neighborhood of D. Thus applying Theorem 1.6.1 to v
implies that

/e_o‘“c’Fd Lebe <1
D

uniformly in 2’. This implies that A; < 1. The proof is finished. O

The following is fundamental in pluripotential theory.

Theorem 2.4.2. (i) (Hartogs’ lemma) Let (u;); be a sequence of psh functions converging
weakly to some distribution u., on §. Then u., is also a psh function and u; — u, in L}

for every constant 0 < p < oo. Furthermore for every compact subset K in ) and every
continuous function f on K, we have

lim sup sup(u; — f) < sup(u — f). (2.4.1)
jooo K K

(13) Let (u;); be a sequence of psh functions uniformly locally bounded from above defined
on . Then either u; converges uniformly on compact subsets in €} to —oo as j — oo or there
exists a subsequence (u; ) which converges in L? to a psh function u, for every real number
0<p<oc.

Proof. We argue verbatim as in the proof of Theorem 1.6.4. O

Corollary 2.4.3. (i) Let (u;); be a sequence of psh functions converging weakly to some
distribution u on €. Let p; := supy; uy. Then the upper semi-continuity regularisation ¢}
of @; decreases to .
(77) Let x be as in Lemma 1.4.1. For 1 < k < m, let u;; be psh function such that w;
converges in L}, to u; as j — oco. Then we also have x(uj1, ..., u;mn) converges in L}, to
p

x(u1,...,un) (hencein Lj . for every p > 0).

Corollary 2.4.4. Let (u;); be a sequence of pluritharmonic functions converging weakly to a
harmonic function u on €). Then wu; converges to u in € topology in (.
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2.5 Quasi-plurisubharmonic functions

Let X be a complex manifold (a differentiable manifold of even real dimension equipped
with a ¢ atlats whose transition functions are holomorphic). The notion of bidegree
(p,q) is independent of local coordinates by Lemma 2.1.8. The operators 0,0 hence
extends globally to X. Likewise the notion of positivity for real (1, 1)-currents are also
naturally extended.

A function v on X is said to be psh if it is locally psh, i.e, for every x € X, there
exists a biholomorphic map f (hence for such every f by Lemma 2.1.11) from an open
neighborhood of z to an open subset C" such that uo f~! is psh on f(U). By the maximum
principle, we have the following.

Lemma 2.5.1. There is no non-constant psh function on compact complex manifold.

This is the reason to introduce the notion of quasi-plurisubharmonicity for functions
on compact complex manifolds.

Let X be a complex manifold of dimension n. A function from X to [—oc0, 00) is said to
be quasi-plurisubharmonic (quasi-psh for short) if it can be written locally as the sum of
a psh function and a smooth one. Obviously every smooth function on X is quasi-psh. A
bit more elaborated example is as follows. Let B, be the ball centered at 0 in C" of radius
r. Let U be a local chart in X biholomorphic to the unit ball in C", let y be a smooth
function on X supported on B,/3 C U and x = 1 on B, /5, then v := x(z) log||z|| is a well-
defined quasi-psh function on X and {u = —oo} is non-empty. Put d :=i/(27)(0 — 9).

Lemma 2.5.2. For every quasi-psh function u on a complex manifold X, there exist a
smooth (1,1)-form n such that dd“u + n > 0.

Proof. Let (),); be a partition of unity subordinated to some locally finite covering (U;),
on X. Let u = u; + f; on U; where u; is psh on U; and f; is smooth on U;. Thus we get
ddu = dd°u; + dd° f; > dd° f; on Uj. It follows that

ddu =Y " yddu > x;dd° f; =i n
J J

which is a smooth (1, 1)-form on X. This finishes the proof. O

For a continuous real (1, 1)-form 7, a quasi-psh function u is said to be n-psh if ddu +
n > 0 in the sense of currents.

Lemma 2.5.3. Let T be a closed positive (1,1)-current on X. Then there exist a smooth
closed (1,1)-form n on X and an n-psh function u such that T' = dd“u + 7.

Proof. Let (x;); be a partition of unity subordinated to some locally finite covering (U );
on X. We choose elements U; of that covering to be relatively compact small enough
local charts so that 7' = dd“u; on U; where u; is psh on U; (see Lemma 2.3.11). On
U; N U, we have dd‘(u; — uj) = 0. Hence by Corollary 2.3.10, u; — uj is smooth. Put

u = Z XjUj.
J
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We compute dd“u on Uj,. Let xy € Uj,. Let .J; be the set of j such that 2, € U;. Observe
that Jj is finite because our covering is locally finite. Let 1V be a small neighborhood of
z such that WNU; = @ for j ¢ J. For z € W we have

) =Y xia)uy(e)

= ( Z X3 (@) o () + Z X () (uy () = o (7))
= wj (@) + Y (@) (uy(x) — wy ().

Jj€Jo

Since the second term is smooth, we see that dd“u = dd°uj, +n =T + n on W for some
smooth form 7. Hence the desired assertion follows. O

Proposition 2.5.4. (the Lelong-Jensen formula) Let u be a psh function on an open subset
QYin C. The for every disk D(z,71) € D(z,r2) € €2, we have

1 2

2T T2
— u(z + 7“2€i0) — i/ u(z + re? / dr / ddu. (2.5.1)
2m Jo 2m Jo .

In particular,
1 2T ) T2 d
u(z) = ﬁ/o u(z +ree’?) — /0 % /T dd‘u.

Proof. Firstly notice that (2.5.1) holds for every smooth function in place of w. This can
be seen by a direct computation using integration by parts. We leave it to readers. We
explain how to get it for psh functions.

Let (u.). be a standard regularisation of u. Since u. is smooth, as observed above, we

get
1 27 ) 1 27 ro d
By ue(z + TQGZG) - 2—/ ue(z + rie? / d / dd‘u,. (2.5.2)
T Jo T Jo "

When ¢ — 0 the left-hand side tends to that of (2.5.1). We deal with the right-hand side.
Since Au, — Au weakly, for every r so that dd“u has no mass on JD,,, we have

/ ddue — ddu (2.5.3)
T D,

as ¢ — 0. Since dd°u is a Radon measure, there are at most a countable number of
0 < r < ry such that dd°u has mass on JD,. It follows that (2.5.3) holds for almost
everywhere r. We infer that the right-hand side of (2.5.2) tends to that of (2.5.1) as
¢ — 0. Thus we get (2.5.1). The second desired equality follows by taking r; — 0. The
proof is finished. O

We have the following characterization of quasi-psh functions in terms of submean-
type inequalities.
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Proposition 2.5.5. Let U be an open subset of C" and n a continuous real (1, 1)-form on
U. A function u : U — [—00,00) is n-psh if and only if it is upper semi-continuous, not
identically —oo and for every x € U and every complex line L, := {x +tv : t € C}, for some
v € CM\{0}, passing through x, we have

1 2 ) Edt
u(z) < —/ u(x+ee’9v)d9—|—/ —/ Mo, (2.5.4)
27 Jo o 1 Jysis

for every constant ¢ > 0 small enough, where 1,(t) is the restriction of n to L, which is
identified with C via t — x + tv.

Proof. Consider an n-psh function u. We need to verify (2.5.4). Let y be a usual cut-off
function used to define standard regularisation of » and let x, be the associated cut-off
function for every constant > 0. Recall

o () = / u(w = y)xe(y)dLebly)

which is smooth (we change a bit the notation for the standard regularisation here). We
have v" — u pointwise as r — 0 because u can be written as the sum of a psh function
and a smooth one. Denote by

n'(z) = / n(xz —y)x-(y) vol(y)

which converges uniformly to  as » — 0 because 7 is continuous. We deduce that
dd°u+n > 0 if dd“u™ +n" > 0 for every r small. On the other hand, we have

ddew 41y — / [dd°u- — ) + (- ~ )} ) vol(y)

which is the convolution of the (1, 1)-current (dd“u + n) with y,. Thus dd°u” +n" > 0 if
dd°uv +n > 0. Similarly, (2.5.4) holds if it holds for (u",n") in place of (u,n) for every
small r. It follows that it suffices to prove (2.5.4) for smooth v and smooth 7.

Hence we can assume u,n are smooth and follow standard arguments in [24]. Let
v € C* and z € U. Put u,(t) := u(x + tv). We get dd°u, + 1, > 0. The Lelong-Jensen

formula for u,(t) gives
Me,v - ME’,U :/ ﬂ/ ddcuva
e b Jysisn

where ¢ > ¢ are positive constants and
1 2w

M,y = —
’ 21 Jo

wu, (ee’)df

for every constant s > 0. It follows that

“dt
Me’,v S Me,v+/ _/ M-
e b Jysisn



CHAPTER 2. PLURISUBHARMONIC FUNCTIONS 39

Letting ¢ — 0 in the last inequality gives (2.5.4) because u, is continuous at 0.

Assume now (2.5.4). This combined with the hypothesis that © # —oc implies u €
L},.. Moreover, as in the case of psh functions, since u is upper semi-continuous, (2.5.4)
also tells us that u is strongly upper semi-continuous in the sense that for every Borel
subset A of U whose complement in U is of zero Lebesgue measure, we have

lim sup u(y) = u(z). (2.5.5)
yeEA—zx
Indeed, by the upper semi-continuity of u, we have limsup,c, ,, u(y) < u(z). We only
need to check the inverse inequality. Since the problem is local, we can assume 7 is
bounded. Integrating (2.5.4) with respect to ¢, we get
1

u(z) < —5 u(x + tw)(=dt AdD) + || ~O(),
€ Jijt<e) 2

for every e small enough. Letting ¢ — 0 in the last inequality gives

] :
u(z) < limsup —; u(x + tv)(zdt A dt). (2.5.6)
=0 TE Jij<e) 2

Let ¢ be a strictly positive constant. There exists a constant §; > 0 such that

u(y') < limsupu(y) + 6, (2.5.7)
yeEA—T
for every y' € A such that ||y — x| < ;. Since the Lebesgue measure of U\ A is zero, by
Fubini’s theorem, for almost everywhere v € C*\{0}, the set (U\ A) N L, is of Lebesgue
measure zero in L,. Using this, (2.5.6) and (2.5.7), we see that for almost everywhere
veCM\{0}and A, ;= {t: (x +tv) € AN L,},

1 :
u(z) < limsup —; u(x + tv)(idt Adt) < limsupu(y) + 4§
=0 TE™ J|t|<e,teAy} 2 yEA—T

for every constant 6 > 0. Letting § — 0 in the last inequality implies

u(z) < limsup u(y).
yEA—T
Thus (2.5.5) follows.
Consider first the case where u € . Direct computations show

€ (Mey — uy(0)) — mddu,(0)/2

as ¢ — 0. Applying this to (2.5.4) gives dd“u,(0) + 7,(0) > 0. In other words, we get
ddu+n > 0.

In general, let ", 7" be as above. Since v € L},., u" — w in L}, .. We see easily that
(2.5.4) also holds for (u",7") in place of (u,n). By the above arguments, dd“u” + n" > 0.
Letting » — 0 gives dd°u +n > 0.

It remains to check that « is the sum of a psh function and a smooth one. To this end,
we only need to work locally. Thus, we can assume there is a smooth function ) on U
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with dd® > n. We deduce dd°u; > 0 for u; := u + ¢ which is also strongly semi-upper
continuous in the above sense. Let u/ be the regularisation of «; defined in the same way
as u”. Notice that u] — u; in L} and u} is psh and decreasing to some psh function u}.
Hence, u; = u| almost everywhere. Using this and (2.5.5) for u; in place of « yield that
u; = u} everywhere. In other words, v is quasi-psh. This ends the proof. O

The following extension result generalizes the similar property for psh functions.

Lemma 2.5.6. Let U be an open subset in a complex manifold Y. Let n be a continuous real
(1,1)-formon Y. Let 1, be an n-psh function on U and v, an n-p.s.h function on Y such that

limsup,_,, ¥1(y) < ¥o(x) for every x € OU. Define ¢ := max{1y,1»} on U and v := 1), on
Y\U. Then v is an n-psh function.

Proof. This is a direct consequence of Proposition 2.5.5. O

Let 1 be a continuous real (1, 1)-form. Denote by PSH(X, 1) the set of n-psh functions
on X. Let w be a Hermitian metric on X, i.e, w is a smooth real (1, 1)-form on X such
that w can be written locally as

w=1 Z a;dz; N\ dzy,

1<jk<n
where [a;;];  is a positive definite Hermitian matrix. Since
w" = | det[aji];x|* vol,

in the local coordinates (zy, ..., z,). The (n,n)-form w™ defines a smooth volume form on
X. In what follows we will use LP-norms on X which are computed with respect to w™.

Proposition 2.5.7. (Compactness for quasi-psh functions) Assume that X is compact. Let
Ay, Ay, Az be the subset of PSH(X, n) consisting of u such that ||u|p1x) < 1, supxu = 0,
and [, uw™ = 0 respectively. Then A; is compact in the L'-topology (hence LP-topology for
everyp>1) for1 <j<3.

Proof. The fact that A; is compact follows directly from Theorem 2.4.2 and the com-
pactness of X. We consider now A,. Suppose that there exists a sequence (u;); C A,
such that |lu;||z1(x) — oo as j — oo. Since (u;); is uniformly bounded from above, by
Theorem 2.4.2 and extracting a subsequence if necessary, we get that either u; converges
uniformly to —oo, or u; converges in L' to some quasi-psh function. The second possibil-
ity cannot occur because ||u;||;1(x) — 00. So u; converges uniformly to —oo. Let z; € X
such that u(x;) = 0. We can assume z; — x, as j — oo. Consider a local chart U around
T~ and j big enough so that z; € U. By shrinking U, we can find a smooth psh function
Y on U such that dd“) > 7. Hence u; + v is psh on U. This combined with the submean
inequality implies

was) + v(a)) < ol(Dy) [ (wy(o) + () Leb,

D



CHAPTER 2. PLURISUBHARMONIC FUNCTIONS 41

where D; € U is a small polydisk around z;. Since f is smooth, we infer

U

for some constant C' independent of j. Letting j — oo gives a contradiction because the
right-hand side tends to —oo. Thus there exists a constant C' such that |ju||;1x) < C for
every u € Ay. Consequently A, is relatively compact. To see why A, is indeed compact,
consider (u;); C A, such that u; — uw in L'. Since u; < 0 for every j, and u; — u almost
everywhere (a subsequence), we obtain « < 0 on X. On the other hand, by (2.4.1), we
have sup, v > 0. Hence u € A, in other words, A, is compact.

We deal with Aj. It suffices to check that supy u is bounded uniformly for v € A;.
In this case the compactness of A; follows from that of A,. Let (u;); C As, and v; :=
u; — supy u; which belongs to A,. Hence by extracting a subsequence, we can assume
v; = v € Ay in L', It follows that

/ vw" = lim [ v;w" = — lim sup uj/ w".
Hence supy v, is uniformly bounded in j. This finishes the proof. O

The following is a nice application of the convexity of psh functions.

Lemma 2.5.8. Let u be a psh function on an open subset 2 in C". Let M,(z,r1,...,r,) be
the function defined in Theorem 2.1.12. Then M,(z,r1,...,r,) is a continuous psh function
in z for ry,...,r, fixed.

Proof. It suffices to check that M, (z,rq,...,r,) is continuous psh on every relatively com-
pact subset U of €). Let U be such a set. Let ry > 0 be such that for every z € U, the
polydisk (D(z,79))" € 2. Without loss of generality we can assume r, = 1.

By considering a sequence of smooth psh functions decreasing to u, we see that
M, (z,r1,...,7r,) is the limit of some decreasing sequence of psh functions. Hence it
is psh (hence upper semi-continuous). It remains to check that it is also lower semi-
continuous. By Theorem 2.1.12, M,(z,ry,...,r,) is convex in (logry,...,logr,) for z
fixed. Thus for A € (0, 1) we have

My (2,71, 1) < (1= MMz, 7Y 0™ LM (2,1,...,1). (2.5.8)

n

Fix A\ small enough. Let z = (zy,...,2,). We see that if 2’ = (Z],...,2}) is closed enough
to z, then
(1=A)~" 1-A"1 / /
D(z,ry ) X oo X D(2p, 7 )€ D(27,7m1) X - x D(z, 7).

n

Thus by the submean inequality we get
M,(z, 7{1‘*)71, T <ML )
provided that 2’ is closed enough to z. Letting 2’ — z gives

M,(z, T§1_/\)71, o ,7‘(1_’\)71) < liminf M, (2", r1,..., 7).

n ’
2=z
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This combined with (2.5.8) yields

My (2,71, ... yrn) < (1= X)liminf My (2',r1, ..., r0) + AMyu(2,1,...,1).
2=z
Letting A — 0 in the last inequality gives the desired lower semi-continuity. This finishes
the proof. O

Lemma 2.5.9. Let f : U — V be a biholomorphism between to open subsets in C". Let u be
a psh function with zero Lelong number everywhere on V. Then u. — (uo f).o f~* converges
uniformly on compact subsets in U to 0 as € — 0.

Here u. and (u o f). denote the standard regularisations of v and u o f by using the
same cut-off function.

Proof. It suffices to work on relatively compact subsets of V' as in the proof of Lemma
2.5.8. Consider z € K € V. Note that

ue(z) = My(z,erq, ... erp)xa(r1) -« Xn(rp)dry -+ - dry,
[0,1]"

where f[o j Xj(r)dr =1for1<j<n.Put

Ue(2,71, ..., 15) = / My (z,er1, ... ern)xj41(Tj41) -+ Xn(Tn)drjpr - - dry,.
0,13
We claim that

Claim. For every 1 < j <mn, u.(z,71,...,7rj) —uc(2,71,...,7rj4+1) converges uniformly to 0
ase— 0.

We prove Claim. We present the proof when n = 1. The general case is similar: we
only have to write more cumbersome formulae. Write x for x; and r for r;. Fix ro > 0
a constant such that D(z,7y) € 2. As usual we can assume r, = 1. By convexity for
O0<r<il,
My (2,€) — My(z, er) < log e — log(er)
log 1 — log(er)
—logr

(M, (z,1) = My (z,er)) (2.5.9)

~ log 1 — log(er) (My(z,1) = My (2, er)).

Integrating the last inequality against x(r)dr over |0, 1] gives

M, (z,1) — M (z,er)
—loge — logr

M,(z,€) —u(z) < /0 —logr x(r)dr.

Since
M, (z,1) — My(z,er)

—loge —logr
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decreases to v(u, z) = 0 everywhere. This convergence is uniform by Dini’s theorem. This
combined with Lebesgue’s dominated convergence theorem shows that M, (z,€) — u.(2)
converges uniformly to 0 as ¢ — 0. The Claim is proved. Letting ¢ — 0 in (2.5.9), we also
obtain that

M(z,€6,...,¢) — My(z,er,... er) =0 (2.5.10)

uniformly in z € K as e — 0.
By Claim for 1 < j < n, we see that u. — M,(-,€,...,€) converges uniformly to 0 as
e — 0. Now since f is diffeomorphism, there exists a constant C' > 0 such that

f(D"(z,€") €D"(f(2),Ce), D"(z,¢) € [(D"(f(2),Ce))
for every z. Using this and the maximum principle, we obtain
Myos(z,€,...,€) < M,(-,Ce,...,Cée) o f(2).

Consequently,

-1 -1

limsupsup((wo f)eo f7 —u.) = limsupsup(Myos (-, €,...,€) 0 f —u)

e—0 K e—0 K
which is

< limsupsup (M,(+,Ce,...,Ce) — My(-¢,...,€)) =0
e—0 K

by (2.5.10). Similarly by considering f~! instead of f we can show that

lim sup sup(ue — (wo f)eo f71) = 0.
e—0 K

Hence the desired assertion follows. The proof is finished. O

Theorem 2.5.10. (Regularisation of quasi-psh functions) Let X be a complex manifold.
Let X' be a relatively compact open subset on X. Let w be a Hermitian metric on X,
and n be a continuous real (1,1)-form on X. Let u be an n-psh function on X such that
the Lelong numbers of u are all zero. Then there exist (¢;); C Rs( converging to 0 and
u; € PSH(X',n+ €jw) N €>°(X’) such that u; decreases to u on X'.

Proof. Fix a constant § > 0. Cover X by a finite number of local charts Uy, ..., U,
biholomorphic to D". Let f; : D" — U; be the biholomorphism defining the local chart
U;. Let U] € U/ € U; be open subsets in X such that (U}); covers X. By dividing U; into
smaller similar local charts and the continuity of 7, we can assume that there is a smooth
psh function ; on U; such that

0 <dd¢; —n < ow

on U;. Put

vji=uo fj+of;
which is psh on D". Let v;. be the standard regularisation of v; (using the same cut off
function y for every j). We need to glue v; . to obtain a global quasi-psh function. Let w;
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be a smooth nonpositive function on X such that w; = —1 outside U} and w; = 0 on U,
and dd“w; > C f;w on U; for some constant C' > 0. Let
R -1
Ue = lrggn 1y, (’ULG of; " —+ 5wj/C)
We have that u, decreases to u as ¢ — 0 (using w = 0 on U; and X = U;U7). Consider
1< 71,72 <m. Let 7 := fjgl o f; which is a biholomorphic from fﬂl(Uj1 N U,,) onto its
image in 2D" and

Pe 1= Vjy e — Vjpe OT = Vjy * Xe — ((% o7 1) % Xe) oT + ((%1 o fj, — i o fi,) * Xe) oT.

The third term tends uniformly to (i;, o f;, —;, © f;,) as € — 0. Whereas the difference of
the first two terms converges uniformly to 0 by Lemma 2.5.9. Hence we deduce that for
every 1 < ji, jo < m, the function v;, . o fj‘1 — Vj,e O fj;l converges uniformly to ¢;, — 1,
ase — 0on U;, NU;,.

Let zp € X. Let J, the set of 1 < j < m such that zy € 9U;. Let W be a small open
neighborhood of x, such that W N U;/ = o for every j € J,. By the above arguments and
the fact that w; = —1 outside U}’ € Uy, if ¢ is small enough, then

o —1
Ue i= Mmax Ly, (vje 0 f; 1 =4 + 0w, /C)

on a small open neighborhood W of x,. For j € J,, on W, we have
]-Uj (Uj,e O f;l — %‘ -+ 511}]/0) = Uj,e o fjil — w]’ + 5?1)]/0

which is (n + ew)-psh. Hence wu, is ( + ew)-psh on W, and hence on X because z is
arbitrary. The above arguments also show that u, is continuous. To get u. smooth, one
just need to use a regularisation of the max function to replace the max function in the
definition of u.. One can see [13, Page 43] for a specific construction: the function

Gty ..., tm) == max{ty,...,tm}

is convex and increasing in each variables, so the standard regularisation G5 of G by a
separate-variable cut-off function as we do before for psh function is also convex and
increasing in each variable; put

ul = Gé(lUj (UL6 o fit — 1+ 5w1/C’), U 1 (vm6 oft— +5wm/C)>

We leave it as an exercise to the readers to check that «. is a smooth (1 + ew)-psh function
decreasing to u This finishes the proof. O

Corollary 2.5.11. Let X be a compact complex manifold and w be a Hermitian metric on
X. Let u be an w-psh function on X. Then there exist u; € PSH(X,w) N €>°(X) such that
u; decreases to u on X.
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Proof. Assume for the moment « is bounded. Applying Theorem 2.5.10 to X’ = X and u,
we obtain a sequence of smooth (1+¢;)w-psh (u;); decreasing to u, where ¢; decreases to
0. Using Proposition 2.5.7, and subtracting a big constant from u; and u, we can assume
u; < 0and v < 0. Hence w;/(1 + €;) > uj+1/(1 + €;+1) which decreases to u. So the
desired assertion holds if « is bounded.

Consider now the general case. Let uj := max{u, —k}. Observe u; bounded and
decreases to u as k — oo. By the first part of the proof, we can find a sequence (uy;);
of smooth w-psh functions decreasing to u;, as j — oco. Put u( := uy;. We define wu

inductively as follows. By Theorem 2.4.2 applied to uy, uy; (locally), we get

lim sup sup(up; — te—1)) < sup(up — wg-1)) < sup(ug — up—1) < 0.
jooo X X X

Hence uy; < ug—1) + 1/k? for j > j. Put Uy = uyj,. We see that the sequence

k

Uy =gy — > L7+ 1/47
j=1

J=1

is decreasing and converges to u as k — oo. This finishes the proof. O

Notes. Lemma 2.5.3 is from [14]. Proposition 2.5.5 was proved in [37]. Theorem
2.5.10, Corollary 2.5.11 and their proof are taken from [10]. The other results are all
standard; see [13, 24, 28].



Chapter 3

Monge-Ampere operators

3.1 Closed positive currents

Let (2, ..., 2,) be the standard coordinates on C". We orient C" by using the standard
volume form vol,, := (i/2dz A dz) A--- A (i/2dz, A dZz,). Let Q be an open subset in C".
Recall that a simple positive continuous (p, p)-form on Q is (i1 AJ;) A- - A(iv, A5, ), Where
Y, ..., are (1,0)-form (with complex coefficients) on (). Every simple positive form is
real. A positive continuous (p, p)-form is a form which is locally the limit of a sequence
of linear combinations with nonnegative coefficients of simple positive continuous (p, p)-
forms in ¢ topology.
A continuous real (p, p)-form ¥ is said to be weakly positive if

(U, @) >0

for every positive continuous (n— p, n—p)-form & with compact support in 2. In standard
literature on complex geometry, the notion of positivity corresponds to our weakly positivity,
whereas strong positivity corresponds to our positivity. The choice of terminology in the
lecture is consistent with the literature in complex dynamics.

Note that weakly positive (n,n)-form is indeed positive by a bi-degree reason. And
the positivity in this case means that for every real (n,n)-form ® on €, ® is positive if
and only if for = € (2, we have ®(x) > 0, i.e, (x) = cvol, for some constant ¢ > 0.

Lemma 3.1.1. Positive forms are weakly positive. The wedge products of positive forms are
positive, the wedge product of a weakly positive form with a positive form is weakly positive.

Note that the wedge product of weakly positive forms may fail to be weakly positive;
see [13, Page 132].

Proof. 1t suffices to check that for every simple positive (n,n)-form a with compact sup-
port, we have [, a > 0. Write

a = (7 AT A A (i AT),

where ~4,...,7, are (1,0)-form; v; = >/ _, a;rdz;,. Let S, be the set of permutations of
{1,...,n}. For o € S,, put a, := Gu(1) - As(n), and a, is the complex conjugate of a,.

46
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Direct computations show that

o = ( Z alkdudzk A dzl) VANCIVAN < Z ankdnldzk A d§l>

1<k,l<n 1<k,I<n

= Z aU&T(idzo(l) N di.r(l)) N A (z'dzo(n) A dZT(n))

o,TESR

= Z ang(—l)n(n_l)/Qindzo(l) VAN dzg(n) A dET(l) VANRIERWAY dZT(n)
o,TESY

= Z sign (o)sign (7)aga, (—1)" " V/2"dzy A - ANdzy NdZL A - N dE,
o,TESy

= { det[ajk}1§j7kgn‘2 UOln Z 0.
The desired assertion follows. ]

The notions of weak positivity and positivity are dual as shown by the following
lemma.

Lemma 3.1.2. Let ¥ be a continuous (p,p)-form. Then the following two conditions are
equivalent:
(1) We have
(U, ®) >0

for every weakly continuous (n — p,n — p)-form ® with compact support on €2,
(ii) We have
U(z) AND(2) >0

for every z € Q) and every weakly continuous (n — p,n — p)-form ® on Q.
We also have similar statement by exchanging "weakly positivity” with "positivity” in the
above statements. In particular, if V satisfies the condition (i) or (ii), then U is positive.

Proof. Clearly (ii) implies (i). We prove the converse assertion. Without loss of gener-
ality, we can assume z = 0. Let y be the standard cut-off function and y. as usual. Put
U(z) A ®(z) = f(2)wvol,. Observe that

0 < (W, x.(0)®) = / F(2)xe(2) voln — £(0)

as z — oo because of the continuity of f. Hence f(0) > 0. This shows the equivalence
between (i) and (iz).

We check the last desired assertion: if W satisfies (i7), then it is positive. Assume ¥
satisfies (i7). Let 2, € €. Let A, be the real vector space of constant real (p, p)-forms in
C". For every differential (p, p)-form ® on €2, then ®(z,) belongs to A,. Note that 4, is a
real vector space of finite dimension.

Let C be the set of constant weakly positive continuous (n — p, n — p)-form. Let C’ be
the set of constant positive (p, p)-forms in C". Observe that C' and C" are closed convex
sets, and (" is the closure of the convex hull of constant simple positive forms.
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We note here a fact that we will not use that every element in C’ can be written as
a linear combination with nonnegative coefficients of constant simple positive forms (by
Carathéodory’s theorem on the convex hulls in finite dimensional Euclidean spaces).
Observe A, and A,,_, are dual vector spaces by the scalar product

(a, B) == e\ Bvol,,.

By the equivalence between (i) and (ii), for every o € C and § € C’ we have («, 5) > 0,
and
C={acd,,: (o,p3)>0, VBeA,l

Thus by the Hahn-Banach theorem,
C'={8€eA,:{(,8) >0, VaeA,,}

It follows that ¥(z) € C’ for every z € . Combining this with an argument of partition
of unity yields that ¥ is approximated by linearly combinations with nonnegative coeffi-
cients of simple positive forms in ¢ topology. In other words, ¥ is positive. This finishes
the proof. O

Corollary 3.1.3. Let U be a real continuous (p, p)-form. Then V is positive if and only if for
every constant weakly positive (n—p,n—p)-form ® we have V(z) A®(x) > 0 for every z € ().
Similarly V is weakly positive if and only if for every constant positive (n — p,n — p)-form ®
we have V(z) A ®(x) > 0 for every x € (.

Proof. Follow directly from Lemma 3.1.2. O

Lemma 3.1.4. (i) Let ( be a continuous (p,0)-form. Then the form (i*° A B) is weakly
positive.

(ii) Let a = i), ajrdz; A dzy, be a real (1,1)-form. Then o is weakly positive if and
only if the Hermitian matrix [a;i]1<jr<n 1S positive semidefinite. The last condition is also
equivalent to the statement that « is positive. In particular, the notions of weak positivity
and positivity coincide for forms of bidegree (1,1) and (n — 1,n — 1).

Proof. We prove (i). Let o be a simple positive (n — p,n — p)-form. By Lemma 3.1.2,
we need to check that i?5 A 8 A o > 0 at each point in (2. Hence we can assume « is a
constant form. By using a linear change of variables, we can assume that

a=(idxy NdZ) N+ A (idzp—p AN dZ,_p).
Write 5 = Zl:m:p ardz;. Thus for Iy := {n—p+1,...,n}, we have
P BABANa =i |ag|Pdz, Adz A (idzy Adz) A A (idzg_p A dZa_p)

which is equal to
laz,|? vol, > 0.

Hence we get (7).
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Let o be a real (1,1)-form. By similar arguments, we can check that « is weakly
positive if and only if the Hermitian matrix A := [a;x]1<;k<n iS positive semidefinite. To
see why this means also that « is positive, we use the fact that every Hermitian matrix
can be diagonalizable. Let (\;):<;<, be eigenvalues of A. Since A is positive semidefinite,
its eigenvalues )\; are all nonnegative. Hence there exists a unitary matrix U = [bj;]1<j1<n

(UUT = 1d and U = U') such that UAUT is the diagonal matrix whose diagonal is
A, An). Let UT = [bf)];;. We have by = b}, and by, = by;. Put z; = Y bz for
1 < j < n. We obtain new coordinates (21, ..., z,,) on C". Direct computations give

a=> Y aububrdz AdZ, =Y > apbbudz) A dz]

7k s gk s
n

= SN andly)badsd A dz = 3 AdZL A dZ,
l,s k J s=1

because UAU” is the diagonal matrix whose diagonal is [\;,...,\,]. So the notion of
positivity and weak positivity coincide for (1, 1)-forms, this is also the case for (n—1,n—1)
forms because of duality (Corollary 3.1.3). This finishes the proof. O

Lemma 3.1.5. Let f : ' — Q be a holomorphic map. Let ® be a (weakly) positive
continuous (p, p)-form. Then f*® is also (weakly) positive.

Proof. When & is positive, the positivity of its pull-back by f is clear. We consider ¢
weakly positive. By Corollary 3.1.3, it suffices to check that the constant form f*®(z) is
weakly positive for every z € . Fix zy € Q. By the formula f*®(zy) = (df(20))*®, the
question is reduced to the case where f is linear.

As the next step, we use the following criteria: a constant real (p, p)-form is weakly
positive if its restriction to every complex vector p-dimensional subspaces of C" is so
(proved by direct arguments from definition). This allows us to reduces the question to
the case where (' is a vector space of dimension p and f is linear. In this case note that
f(€') is a complex vector space of dimension at most p. If L := f(€') is of dimension
< p, then since f*® = f*(®|.), we get f*® = 0 because ®|, = 0. If dim L = p, then ®|, is
a weakly positive form of maximal bi-degree, hence ® is positive. The desired assertion
follows. O

Let T be a real current of bi-degree (p,p). We say that 7' is positive if (7', ®) > 0 for
every weakly positive smooth (n — p,n — p)-form ®. This extends the notion of positivity
to currents by Lemma 3.1.2. Le g be a smooth function with compact support in €2. The
convolution of T with g is defined by

Txg:= Z<T1J x g)dzr NdzZy.

1,0

Let (7}); be a sequence of currents, and T is a current. We say that 7; — 7" weakly if
(T, @) — (T, @) for every smooth ¢ with compact support.
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Lemma 3.1.6. The following statements are true:
(7) the convolution T x g is smooth, and

d(T x g) = (dT) * g,
(ii) for every smooth ® with compact support in 2,
(T'x g,®) = (T, D% gy),

where g1(z) := g(—2),

(#44) let x be a smooth function with compact support in [, x vol, = 1 and x.(z) :=
e 2"x(z/¢), then T % x. converges weakly to T as ¢ — 0 and if T is (weakly) positive, then
T * x. 1S so,

(tv) if (T;), is a sequence of currents converging weakly to T'as j — oo, then T;xg — T'xg
in € topology.

Proof. Everything follows from Lemma 1.5.5 except the positivity in (ii7). To check it we
argue as follows. By Corollary 3.1.3, if ® is (weakly) positive, then ® x g is so. Hence if
T is positive, then 7" g is also so because (ii). O

Lemma 3.1.7. T is positive if and only if T' A\ ® is a positive distribution (hence a positive
measure) for every constant weakly positive (n — p,n — p)-form .

Proof. The implication = is clear. We check the converse one. Let 7. be as in Lemma
3.1.6. We see from the proof of the last lemma that 7, A ® is positive form for every every
constant weakly positive (n — p,n — p)-form ®. By Corollary 3.1.3, 7, is positive. Letting
¢ — 0 implies the desired assertion. O

We define weakly positive currents similarly, and a similar version of Lemma 3.1.7
also holds for weakly positive currents. Let w := } 7, idz; A dz;.

Lemma 3.1.8. For every constant simple (p, p)-form «, there exists a constant ¢ > 0 such
that cwP — « is positive.

Proof. Let o := (i1 A7) A--- A (i, A7,). Since ~; has constant coefficients, and the
form w is strictly positive (in the sense that its coefficient matrix is positive definite),
using Lemma 3.1.4, we infer that cw — iv; A %, is positive for some big enough constant
c. Hence (cw —iv; A7¥;) A (cw — i; A7;) is again positive by Lemma 3.1.1. This finishes
the proof. O

For every (p, p)-current T of order 0, and a compact K € (2, we define

|7l = sup(T, @)

for every Borel (n — p,n — p)-form ® whose coefficients are < 1 and supported on K.

Proposition 3.1.9. Every weakly positive (p, p)-current T is of order 0, hence is a form with
measure coefficients. Moreover, for every compact K in (Q, there is a constant C' > 0 such
that

T2k < ClIT AWk
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We call T' A w" P the trace measure of T.

Proof. By Lemma 2.3.4, we can fix a basis of the space of constant (n — p,n — p)-forms
which consists of constant simple positive (n — 1,n — 1)-forms ay, ..., ays. By rescaling
and Lemma 3.1.8, we can assume that «; < w"? for every j. By positivity, 7' A «; is a
positive measure. By writing dz; A dZ; as a linear combination of these constant simple
positive forms, we see that 77, can be written as a linear combination of 7'A ;. It follows
that for every function f, we get

(10, Y] S D AT Mg, If) SAT AW |f).

J

Consequently, 77; are Radon measures and the desired inequality follows. This ends the
proof. O

By the last result, for every positive current 7, we can define (7', ®) for every con-
tinuous function ¢ with compact support, or more generally for every bounded (Borel)
measurable form ® on 2. The following result is simple but fundamental.

Lemma 3.1.10. (Compactness of the space of positive currents) Let (1), be a sequence
of weakly positive currents of mass on compact subsets bounded uniformly. Then we can
extract a subsequence (T3,) of (Tx)r such that T}, converges weakly to some current T' as
k — oo.

Proof. The proof is a direct consequence of Proposition 3.1.9 and Lemma 1.6.2. O

Here are some basic operations on currents.

Lemma 3.1.11. Let f : X — Y be a proper holomorphic map between complex manifolds.
Let T be a current of bi-dimension (p,p) on X. Put

(f.T,®) := (T, [*®)

for every smooth form ® with compact support in Y. Then f,T is also a current of bi-
dimension (p,p) which is (weakly) positive if T is so and f, commutes with d, 0, 0.

Proof. Direct. We leave it to readers. ]

Lemma 3.1.12. Let f : X — Y be a holomorphic submersion between complex manifolds.
Let T' be a (p,p)-current on Y. Put

<f*T7 (I)> = <T7 f*CI>>

for every smooth form ® with compact support in X. Then f*T is also a (p,p)-current
which is (weakly) positive if T is so and f, commutes with d, d,0. Moreover f* is the usual
pull-back operator if acting on smooth forms.

Here f,® is defined by integrating ¢ along fibers of f.

Proof. It suffices to check that f,® is well-defined and commute with d, 9, 9. This can be
directly seen by using partition of unity. O
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We admit the following important results. Let X be a complex manifold. A subset A
in X is said to be pluripolar if A C {u = —oo} for some quasi-psh function « on X. Such
a set A is complete pluripolar if A = {u = —oo} for some quasi-psh function u on X.

Theorem 3.1.13. Let A be a complete pluripolar subset in X. The following statements are
true:

(¢) For every closed (weakly) positive current T' on X, the currents 1,1 and 1x\4T are
closed positive,

(7i) Assume that A is closed. Let T be a closed (weakly) positive current on X\ A. Then T
has locally finite mass around every point in A, and hence extends trivially through A to be
a closed positive current on X. To be precise, for every smooth form ® with compact support
on X, put

(T, @) == (T, 1x\a®).

Then T" is a well-defined closed positive current on X.

We refer to [13, 34] for proofs and historical works. We knew that for every psh
function u then dd°u is closed positive. Another important source of closed positive
currents are currents of integration along analytic subsets defined as follows. We admit
basic properties of analytic sets. Let (2 be an open subset in C". Recall that a subset A in (2
is an analytic subset in (Q if for every = € () there exists a small neighborhood U, of x and
a collection of holomorphic functions ( f;)cs defined on U, such that ANU, = Njc {f; =
0}. An analytic subset A in (2 is said to be irreducible if there exist no non-empty analytic
subsets A;, A, in Q such that A = A; U A,.

Proposition 3.1.14. (i) Let A be an analytic subset in ). Then A = U;c;A,, where A, is
an irreducible analytic subset in €2 and the family (A;);e; is locally finite.

(1i) Let A be an irreducible analytic subset in ). Then there exists an analytic subset
Sing(A) in Q) such that Sing(A) is a proper subset of A and for every x € Reg(A) :=
A\Sing(A), there exists a small open neighborhood U, of x in () satisfying that AN U, is a
submanifold of dimension k independent of k in U,.

We call Sing(A) in (ii) the singular part of A, and Reg(A) the regular part of A. The
number £ is called the dimension of A. The notion of analytic sets and Proposition 3.1.14
are obviously extended to the setting where 2 is replaced by a complex manifold.

The support of a current 7" on X is the smallest closed subset B on X such that for
(T, ®) = 0 for every & compactly supported on X\ B. We will not use the following result
in the next two chapters.

Theorem 3.1.15. Let A be an irreducible analytic subset in X.

(1) If dim A < p, then every closed positive current of bi-dimension (p, p) has no mass on
A.

(1) If the support of a closed positive current of bi-dimension (p, p) is of zero 2p-dimensional
Hausdorff measure then this current is zero.

(73) If dim A < p — 1, then every closed positive current of bi-dimension (p,p) on X\A
can be extended trivially through A to be a closed positive current on X.
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(7i1) for every closed positive current T' of bi-dimension (p,p) on X, if T is supported
on A, then T is a current on A, that means there exists a closed positive current T" of
bi-dimension (p,p) on A, and for i : A — X the natural inclusion, we have i, T" = T.

We need to do a bit more to define currents on analytic subsets. But we ignore this
detail here. In the lecture we only use Theorem 3.1.15 (7ii) when A is smooth. We refer
to [2, 5] for a proof of Theorem 3.1.15 and information about historical works.

Theorem 3.1.16. ([8, 23, 39]) (Hironaka’s desingularisation of analytic sets) Let X be
a complex manifold and A an analytic subset in X. Then there exist a complex manifold
X' of dimension dim X, and a surjective proper holomorphic map p : X' — X and a
simple normal crossing hypersurface E in X' such that p is biholomorphic on X'\ E, and
Reg(A) N p(E) = @, and the Euclidean topological closure of p~'(A\p(FE)) is a smooth
complex submanifold of X'.

Let A be an irreducible analytic subset of dimension k in X. For every smooth 2k-form
® with compact support in X, we put

([A], ) = /RegA o,

Corollary 3.1.17. (Lelong) [A] is a well-defined positive closed (k, k)-current.

Proof. Assume for the moment A is smooth. By Stokes’ theorem, [A] is a closed current.
Since the weak positivity is preserved by holomorphic maps, we get the positivity of
[A]. Consider now the general case. Let p : X’ — X be a map as in Theorem 3.1.16
desingularizing A. Put A’ := p~!(A\p(F)) which is a smooth submanifold of X’. Since p
is isomorphic outside £ and Reg(A) N p(E) = @, we see that

ey = e[ re= (e

Thus the desired assertion follows. ]

We call [A] the current of integration along A.

3.2 Monge-Ampere of bounded psh functions

Let T be a closed positive current on an open subset 2 in C". Let u be a psh function on
). Our goal is to study situations in which the product dd“u A T' can be defined.

Let o7 be the trace measure of 7. Let K be a compact subset on (2. Since oy is of
finite mass on K and u is bounded from above on K (and is a Borel function defined
everywhere on (), the Lebesgue integral [, uoy is well-defined but it can be equal to
—co. When w is locally integrable with respect to or (that means [, uor > —oo for
every K & (1), the current T is well-defined because every coefficients of 7" are (signed)
measures whose variations are bounded by a constant times or. Hence in this case we
can put

dd°u AT := dd°(uT).
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Lemma 3.2.1. Let (uy)x be a sequence of Radon measures converging weakly to a Radon
measure p in . Let u be a psh function and (uy ), be a sequence of psh functions converging
towin L}, in Q. Let ;' be the limit of a convergent subsequence (uyux)x as k — oo. Then
we have 1/ < up. If additionally uy, > v and py, < p for every k, then ugpy, — up as k — oc.

Here we view (positive) measures as functionals from the space of continuous func-
tions with compact support in €2 to [0, co| (in particular the functional identically equal
to oo is also considered as a measure).

Proof. Without loss of generality we can assume uyu; — p' as k — oo. Let uf,u are
standard regularisations of uy, u respectively. Observe that u{, — u° uniformly on compact
subsets in (2 as k — oo and ¢ fixed. Moreover we have u;, < u, and u < u°. Hence

p o= lm uppy, < Hm ugpuy, = up.
k—o00 k—o0

Letting ¢ — 0 gives the desired inequality. Now if we have v, > u and u;, < p, then (we
can assume u; < 0 by using Hartog’s lemma)

up < ugp < ugpu, —> @

Thus 1/ = up for every limit measure ' of the sequence (uypuy),. Hence uyguy — up as
k — oo. This finishes the proof. O

Corollary 3.2.2. Let (T} ), be a sequence of closed positive (p, p)-currents converging weakly
to a current T and Ty, < T for every k. Let u be a psh function locally integrable with respect
to the trace measure of T. Let (uy)x be a sequence of psh functions converging weakly to u
in L} as k — oo and uy, > u for every k. Then u, T}, — uT as k — oo.

loc

Proof. Let w be the standard Kéhler form in C". By Hartogs’ lemma and the local nature
of the question, we can assume uy, u are negative. Since 0 > uy > w and T}, < T, we
get |ug|T, < |u|T. Hence the sequence (u;T})x is of mass bounded uniformly in compact
subsets in 2. Let 7" is a limit current of the sequence (u;7}); (the limit of a convergent
subsequence of (u;T}),). Arguing as in the proof of Lemma 3.2.1, we obtain 7" < uT.
Let up := Tp Aw™ P and p := T A w"P. Applying Lemma 3.2.1 to ug, u, jix, pt gives
T'ANw" P =uT ANw" P, Hence T" = uT. It follows that u; T}, — uT as k — oo. O

Lemma 3.2.3. Assume that u is locally integrable with respect to the trace measure of T.
Then dd°u AT is a closed positive current of bi-degree (p+ 1,p+ 1) and it coincides with the
usual wedge products of continuous forms with currents when u is >, Moreover if (uy)y is
a sequence of psh function converging to u in L} . and u; > u, then we have

loc

ddup NT — dduN'T

weakly as k — oo.

Proof. The first desired assertion is a direct consequence of the second one and the stan-
dard regularisation of psh functions. By Corollary 3.2.2, we get ;T — uT as k — oc.
We leave details for readers. O
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Lemma 3.2.4. Let u, v be psh functions which are locally integrable with respect to the trace
measure of T. Assume that u = v on an open subset U in €. Then dd‘u AT = dd°v AT on
U.

Proof. Using regularisation ., v. of u, v by using the same convolution. Let U; € U be an
open subset. Observe that u. = v, on Uj if € is small enough. Hence dd“u. AT = dd“v. AT
on U;. Letting ¢ — 0 gives the desired assertion. O

Now consider the following problem: let u,...,u,, be psh functions such that u; is
locally integrable with respect to dd“u;_y A --- A dd°uy AT, and uj; a sequence of psh
functions as in Lemma 3.2.3, is dd“u,, A - -+ A dd“u; AT (which is defined inductively)
symmetric and continuous under (u;;);? What follows will give us some partial answer
to this question.

Here is the first main result in this section.

Theorem 3.2.5. Let S be a closed positive current on €). Let v be a psh function on §) such
that v is locally integrable with respect to the trace measure of S and (vy,); a sequence of psh
functions on Q such that v, — v in L}, as k — oo and vy > v for every k. Let T := dd°v A S
and T}, := dd°v; A S. Let u; be a bounded psh function on Q for 1 < j < m. Let (u;)ken
be a sequence of uniformly bounded psh functions such that u;, — u; in L}, as k — oo and

loc
u;, > u; for every j, k. Then we have
U1 pddugy A - - N ddUpp N Ty, — urddug A -+ A ddu, N'T (3.2.1)

as k — oo.

The above result was proved in [38]. It is a slightly more general version of a well-
known convergence theorem in [6] when v, v are locally bounded.

Proof. By Hartog’s lemma, vy, v, are uniformly bounded from above in £ on compact
subsets of () for every j. Since the problem is local, we can assume that () is relatively
compact open set with smooth boundary in C", every psh function in questions is defined
on an open neighborhood of ©, v,,v < 0 on U for every k and wu;y, u; are all equal to a
smooth psh function ¢ outside some fixed compact subset of 2 such that ¢/ = 0 on 0f2.
To be more precise, we do it as follows.

Let B be the unit ball in C" and = the standard coordinate system in C". We can
assume () = B, the ball of radius 1/2 centered at 0 in C"* and —2 < wuj;, u; < —1 are
defined on an open neighborhood of B, put

o= macugp, M(J2I2 = D}, ) i= max{uy, M(J12]2 — 1)},
where M is a big enough constant such that M (||z]|* — 1) < —3 on By . We see that
Ui = Uj

on By, and uf;,, = M]||z||* on a small neighborhood of B (because ||z[* — 1 = 0 on OB).
Using Lemma 3.2.4 inductively, we obtain

Urpddugy A -+ A dd Uy, A Ty, = uydduly A -+ A ddCul . ATy,
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on B/, and similarly
urddug A -+ - Nddup, AT = uydduy A -+ - Addul, N'T

on B, /. So we can reduce the setting to the case where we describe in the beginning of
the proof. We claim that

Qr = vpddur A - - A ddUpp NS — vdduy A - N ddu, NS (3.2.2)

as k — oo. In particular, this implies that v is locally integrable with respect to ddu; A
<o Addu, NS. We will prove (3.2.1) and (3.2.2) simultaneously by induction on m.
When m = 0, this is a direct consequence of Lemma 3.2.1. Assume that (3.2.1) and
(3.2.2) hold for (m — 1) in place of m. Let

Rj,k = ddcujk VANERIVAY ddcumk VAN Tk
for 1 < j < m. By induction hypothesis, we have
Rng — Rj = ddCUj VANEREIVAY ddcum AT

for j > 2. Since uy;, is uniformly bounded on €, the family u,; R, is of uniformly
bounded mass. Let R, be a limit current of the last family. Without loss of generality, we
can assume R, = limy_,o u1xR2 and S is of bi-degree (n —m,n —m). By Lemma 3.2.1,
we have R, < u;Rs. Thus, in order to have R, = uj Ry, we just need to check that

Q Q

(both sides are finite because of the assumption we made at the beginning of the proof).
Since ¢ = 0 on 0f2 and uy, = 1 on outside a compact of 2, we have

/U1k32,k—>/Roo, /@Z)RQ,]C_)/'@DRQ. (3.2.4)
0 0 Q 0

Let u§;, ¢ be standard regularisations of w;, 1) respectively. Since u;, = 1 outside some
compact of (2, we have u§, = ¢ outside some compact K of (), for e small enough and
K independent of j, k, e. Consequently, u§, — ¢ is supported in K € (2. Note that since
1 is smooth, ¢ — 1 in €*°- topology. By integration by parts and the fact that u;;, > u;

for j = 1,2, we have

/(u1 — )Ry < lim/(uik — )Ry = lim [ wadd(uj, — ¥°)R3
Q e—0 Q e—0 Q

< lim
e—0 Q

= lim [ (uS, — ¥°)ddus,, A Ry + 0pse0(1)
e—0 Q

= v°)Ra + Ty | (55— ua)dd" "\ P



CHAPTER 3. MONGE-AMPERE OPERATORS 57

by induction hypothesis for (m — 1) of (3.2.1) and the fact that ||dd°i). — dd“y||40 = O(e).
We now apply similar arguments to us; in place of uoy. Precisely, as above we have

/(uik — Y°)dduy, N Ry = / ugdd®(ul, — ) A ddusy, A Ry
Q Q

< / uSdd (uS, — ¥°) A dduly, A Ry
Q

+ / (uSy, — us)ddy A dd°usy, A Ry.
Q

Letting ¢ — 0 and applying the induction hypothesis to the second term in the right-hand
side of the last inequality (noticing again that ||dd“i. — dd°¥||40 = O(€)), we obtain

lim [ (u5, — ¥°)ddugy A Ry < lim / Sy dde(uSy, — 1) A dduSy, A Ry + 0psee(1)
=0 Jq

e—0 Q

<lim [ (ufy, = ¥) A dd°ugy, A ddugy, A Ry + 0yso0(1).
€E— Q

Put R5,; := dduf, A - - Add°uy,, . Repeating the above arguments for every w;;, (j > 2)
and v, v, gives

/(u1 — )Ry < lim/(uik — YVRy . AddvN S + 0p00(1)
QO e—0 Q ’
<lim [ vdd®(uj, — ) A Ry NS+ 0p—00(1)
e—0 Q )

< lin% vrdd®(ufy, — ) A Ry A S+
€e— ’

Q
+lim [ (v — 0)ddP A RS NS + 0ks00(1)
e—0 Q ’
=lim [ (uj, — ¥°) A Ry Addvi NS + 0—00(1)
e—0 Q ’

= /Q(ulk — ) A Ra g + 0500(1)

by (3.2.2) for (m — 1) and the usual convergence of Monge-Ampere operators. Letting
k — oo in the last inequality and using (3.2.4) give (3.2.3). Hence (3.2.1) for m follows.

It remains to prove (3.2.2) for m. Put R), = dd®ug; A -+ A dd°up), and R, =
ddus A - -+ A ddu,,. We check that ), is of uniformly bounded mass. Decompose

Q1 = vpdd*(ury — ) A Rh A S + vpddsh A Ry A S.

The second term converges to vdd“y A Ry, A S as k — oo by induction hypothesis for
(m — 1). Denote by () the first term. Let vj, be standard regularizations of v,. By
integration by parts, we have

/ Q1 = / v dd(uy, — ) A R,2,k NS
Q U

_ / (wnk — D)V, A Ry A S = (s — )Ry A dd0f A S
Q
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which converges to fQ(ulk — )Ry ), Addvp A S as e — 0 by (3.2.1) for m. Thus,

/ Qr1 = /(um — w)R’M A ddv, N S.
Q U

This combined with (3.2.1) for m again implies that [, Q1 — [, (u1 — )Ry A ddv A S
as k — oo. The last limit is equal to [, vdd(u; — 1) A R}, by integration by parts which
can be performed thanks to (3.2.1) for m. Thus, we have proved that @, is of uniformly

bounded mass and
/Qk%/le
Q U

as k — oo. This combined with the fact that vR; > @, for every limit current (), of the
family (Qy)r gives the desired assertion (3.2.2) for m. This finishes the proof. O

The following two corollaries follow from the proof of Theorem 3.2.5.

Corollary 3.2.6. Let S be a closed positive current on €. Let uy, ..., u,, be psh function on
2 such that u; is locally bounded for every 1 < j < m except possibly for one index. Then
the current dd‘uy A - - - A dd“u,, N\ S, which is defined inductively as usual, is symmetric with
respect to uq, . . ., u,, and satisfies the convergence under decreasing sequences.

Corollary 3.2.7. Let S be a closed positive current on €. Let uy, ..., u,, be psh function on
U such that u; is locally bounded for every 1 < j < m except possibly for one index. Let w
be another psh function locally integrable with respect to S such that uy is locally bounded if
there is an index 1 < j < m so that u; is not locally bounded. Then uodd®ui A- - - Add°u, NS
is convergent under decreasing sequences and for every compact K in ), if we have 0 <
Uty ..., Uy < 1, then

(Chern-Levine-Nirenberg inequality) for some constant C' independent of uq, . .., Uy, S, in
particular, in this case
|dduy A -+ A ddUup AN S| knfue<—ary < C/M |lupS]|o (3.2.6)

for every constant M > 0.

Proof. Everything follows from the proof of Theorem 3.2.5 except (3.2.6). To see why
(3.2.6) is true, one just notices that

Hddcul JANEIIVAN ddcum N S”Kﬂ{ugﬁ—M} S M_1HU0ddCU1 JANEIIVAN ddcum A SHK
which is < C'/M||uoS||q by (3.2.5). O

Note that the usual Chern-Levine-Nirenberg inequality ([11]) was stated for uy = 1.
The inequality (3.2.5) was proved in [13] and [29].

Lemma 3.2.8. (Cauchy-Schwarg inequality) Let 1,1 be continuous (1,0)-form on (). Let
T be positive current of bi-dimension (1, 1) with compact support on ). Then we have

1/2 1/2
/m/\ﬁz/\TS(/mAﬁMT) (/772/\%/\71) .
Q Q )
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Proof. Consider the following positive semi-definite Hermitian form on the space of con-
tinuous (1, 0)-forms on :

(M, m2) 3:/771 ATy ANT.
Q

The desired inequality follows from the Cauchy-Schwarz inequality for the last Hermitian
form. O

Let u be locally bounded psh and T be a closed positive current. We define (as in [6])

du Ndu AT := ddu> NT — uddu N T.

Note that since u is locally bounded, 2 is the difference of two locally bounded psh

functions (write u? = (u+ M)?—2Mu— M?, where M is a constant such that u+ M > 0).
Hence dd‘u® A T is well-defined in the above sense. Let w be another locally bounded
psh function. When 7' is of bi-dimension (1, 1) we define

2du A dw AT = dd*(u+w)> AT — (u+w)dd“(u+w) AT —du Adu AT — dw AdwAT.

One can see that the above definitions agree with the smooth case.

Lemma 3.2.9. (i) The current du A d°u A T is positive, and if psh functions wu; decreases to
u then duj Ad°uj NT — du ANd°uNT as j — oo. We also have a similar continuity property
for du A d°w AT when T is of bi-dimension (1,1).

(71) (Cauchy-Schwarz inequality) if T is of bi-dimension (1, 1), then

1/2 1/2
/du/\dcw/\Tg(/du/\dcu/\T) (/dw/\dcw/\T) )
Q Q 0

(zi1) (Integration by parts formula) if T is of bi-dimension (1,1) and x is a smooth
function with compact support in €2, then

/Xdu/\dcw/\T:—/udx/\dcw/\T,
Q Q

and if v’ is a locally bounded psh function such that u — v’ is compactly supported on ) then

/d(u—u’)/\dcw/\T:—/(u—u/)ddcw/\T.
Q Q

Proof. Direct consequence of Theorem 3.2.5. O

3.3 Capacity and quasi-continuity

Let €2 be an open subset of C". Let F be a Borel subset of (2. The capacity cap(F, 2) of E
in 2, which was introduced in [6], is given by

cap(F£,2) := sup { / (ddu)™ :uispshon Qand 0 < u < 1}.
E
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For a closed positive current 7" of bi-dimension (m,m) on 2 (0 < m < n), we define
cap,(E, Q) :=sup { / (ddu)™ AT :uispshon Qand 0 < u < 1}.
E

We say that a sequence of functions (ug)reny converges to u with respect to the capacity
cap; (relative in ) if for any constant ¢ > 0 and K € U, we have capT({\uk —u| >
e} NK,U) — 0as k — co. We call cap,. the T-capacity. When T' = 1, we simply refer to
cap, as capacity. The notion of relative cap, was introduced in [29, 40]. By Corollary
3.2.7, cap,(F, Q) < oo if E is relatively compact in ).

Lemma 3.3.1. Let E be a Borel subset in ). The following are true:
(i) for every Borel set E' C E, then cap,(E',2) < cap,(FE, ).
(1) If Borel sets E; increases to E, then cap,(E, ) = lim;_,o, cap,(E;, ).
(ii1) for every Borel set E C ), we have

cap,(E, Q) = sup{cap, (K, Q) : K compact subset in E}.

(iv) if Borel sets E; converges to a set E (in the sense that 1, converges pointwise to 1
as j — oo), then
cap;(E,Q) < lijrgiogf capr(Ej;, ).
Proof. The property (i) is clear. We check (ii). We can assume cap,(F,(2) < oco. The
proof when cap,(E,()) = oo is similar. Let ¢ > 0. There exists a psh function 0 < u < 1
such that

00 > /(ddcu)m AT > cap;(E,Q) —e.
E

Since L increases to E, for j big enough we get

capy (£, ) > |

Ej

(dd°u)™ AT > / (dd°u)™ AT — c.

E

Hence the desired assertion (ii) follows. The (iii) is done analogously by using an extra
property that (dd°u)™ AT is a Radon measure: hence

/ (dd°u)™ AT > / (ddeu)™ AT — ¢
K E

for some compact K in E. Similarly we get (iv). O

Let U be an open subset in C". We say that a subset A in U is locally complete
pluripolar set if locally A = {¢) = —oo} for some psh function .

Lemma 3.3.2. Let A be a locally complete pluripolar set in 2. Let T be a closed positive
current of bi-dimension (m,m) on ). Assume that T has no mass on A. Then, we have
cap;(A, Q) = 0.
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Proof. The proof is standard. We present the details for readers’ convenience. Since the
problem is of local nature, we can assume that there is a negative psh function v on
Q2 such that A = {¢ = —oc}. Let uq,...,u,, be bounded psh functions on 2 such that
0 <wu; <1lforl < j < m. Letw is the standard Kéhler form on C". Let £ € N and
Y = k~*max{e, —k}. We have —1 < /5, < 0. Let y be a nonegative smooth function
with compact support in 2. Let 0 <[ < m be an integer. Put

I, = / XWYpdduy A -+ - N ddup N WUAT.
Q

Since ¢y = —1 on {¢» < —k}, in order to prove the desired assertion, it is enough to show
that for every 0 < [ < ¢, we have

I, — 0 (3.3.1)

as k — oo uniformly in u4, . .., u;. We will prove (3.3.1) by induction on /. Firstly, (3.3.1)
is trivial if [ = 0 because 7" has no mass on A. Assume that it holds for (I — 1). We prove
it for [. Put

R:=dduy A -+ Adduy Aw™ AT

By integration by parts, we have

@:/ﬁumm%AR+/UWMJXAR+2/UMWAJXAR
Q Q Q

Denote by I 1, I 2, I} 5 the first, second and third term respectively in the right-hand side
of the last equality. Since u,; is bounded by 1, by integration by parts, we get

[Lea| <C —UkRAw, |Iio| <C —pR A w,

Suppx Suppx

for some constant C' depending only on y. By induction hypothesis, we have

lim VR Aw = 0.

Thus limy,_, I}, ; = 0 for j = 1, 2. To treat I, 5, we use the Cauchy-Schwarz inequality to

get
1/2
uk,g!s(/ dkadkaR) |
Suppx

Let 0 < x; < 1 be a smooth cut-off function compactly supported on U such that y; = 1
on Suppy. Let U; € U be an open subset containing Suppy;. Since dy, A d“y, A R > 0,
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we have

/ A N d“YP N R < / X1dvr A dclpk AR
Suppx Q
= / Xl(ddcwz — Ypdd“Pr) N R
Q
= / x1ddvg A R — / X1UeddYy, N R
Q Q
= / Yrddx1 AR — / X1¢¥rdd“Pp AN R
Q Q
«S / - R AW+ / x1dd“yr N R
Suppx1 Q
5/ — s RAw~+ | —tpRAw.
Suppx1 Uy

because —1 < ¢y, < 0 and —w < ddx; < w. We infer that

1/2
’[k’gy Sj ( —ka/\W) .

U
By induction hypothesis, limj_,, fUl YrR ANw = 0. So limy_, I3 = 0. In conclusion,
(3.3.1) follows. This finishes the proof. O

Lemma 3.3.3. Let u and u’ be locally bounded psh function such that 0 < v’ < u < 1. Let
K € U & () be open subsets. Let T be a closed positive current of bi-dimension (m,m) such
that ||T'||y < 1. Then for every constant e > 0, we have

—m

capp(K N {u—u >e}) < 6_10(/U(u — /) (ddu')™ A T)2 ,

where C > 0 is a constant independent of u, v’ and T.

Proof. We follow ideas presented in [29, Proposition 1.12]. Let 0 < vy,...,v,, < 1 be
psh function on €. Since the problem is local and —1 < u,u',v; < 0 (1 < 57 < m), we
can assume that 2 € C”, the functions u,«’, v; are defined on an open neighborhood of
Q and there exist a smooth psh function v defined on an open neighborhood of © and an
open neighborhood W of 92 such that K ¢ Q\WW and v’ = v = v; = ¢» on W for every j.
Let

T) :=ddva A+ Nddvy, N T.

Observe v’ — u is of compact support in some open set U; € ) containing K. Hence, by
integration by parts, we get

/ (u —u")ddvy NT] = —/ d(u—u') Ndvy AT
U1 Ul

1/2 1/2
< (/ d(u—u')/\dc(u—u’)/\Tl’> (/ dvl/\dcvl/\Tl'>
U1 Ul
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1/2
which is < fUl dlu—u)Nd(u—u') NT] by the Chern-Levine-Nirenberg inequality.

Denote by [ the integral in the last quantity. We have
I= —/ (u—u)YANdd(u—u')NT §/ (u—u") Nddu NT.
Uy Uy

Applying similar arguments to vs, . . . , v, consecutively and the right-hand side of the last
inequality, we obtain that

—m

2
/ (u — u/)ddcvl VANEERWAN ddc'Um AT S C(/ (U — ul>(ddcul)m A T) y (33.2)
K Ui

where C is independent of u, v, vy, ..., v,, and T. This finishes the proof. O

We now give a definition which will be important later. Let (7)), be a sequence of
closed positive currents of bi-dimension (m, m) on €. We say that (7} ), satisfies Condition
() if (T} )x is of uniformly bounded mass on compact subsets of (2, and for every open set
U C Q and every bounded psh function v on U and every sequence (uy ) of psh functions
on U decreasing to u, we have

]ﬁlggo(uk —u)(ddu)" AT, =0 (3.3.3)
An obvious example for sequences satisfying Condition (x) is constant sequences: T}, = T’
for every k. By Theorem 3.2.5, for every sequence of psh functions (vy); on 2 such that
vy, converges to some psh v in L}, as k — oo and v > v for every k, then the sequence
Ty == ddv A S satisfies Condition (x).
Theorem 3.3.4. (Strong quasi-continuity of bounded psh functions) Let (T}), be a sequence
of closed positive currents satisfying Condition (x). Let u be a bounded psh function on U
and (uy ), a sequence of psh functions on (2 decreasing to u. Then for every constant ¢ > 0
and every compact K in U, we have capy,({|uy — u| > ¢} N K) — 0 as k — oo uniformly
in . In particular, for every constant ¢ > 0, there exists an open subset U of () such that
capy, (U, Q) < e for every | and the restriction of u to Q\U is continuous.

Consider the case where 7} = T for every [. Then, the above theorem give a quasi-
continuity with respect to cap,. for bounded psh function which is stronger than the usual
one for general psh functions with respect to cap (see [6]). We refer to Theorem 3.3.4
as a (uniform) strong quasi-continuity of bounded psh functions.

Proof. Let K € U; € (). Let T} be of bi-dimension (m,m). By Hartog’s lemma and the
boundedness of u, we obtain that u; is uniformly bounded in & in compact subsets of ().
Hence this allows us to apply Lemma 3.3.3 to u,, u to obtain

p—
CaPTl(K N{up —u>e€}) < C(/ (up — u)(ddu)™ A TZ) , (3.3.4)
Uy
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where C'is independent of £ (note that the mass of 7; on compact subsets of 2 is bounded
uniformly in 7). Let

Hyy = / (g — ) (dd°u)™ A T,.
Uy

We need to prove that Hj; converges to 0 as k¥ — oo uniformly in [. Suppose that this is
not the case. This means that there exists a constant ¢ > 0, (ks); — oo and (/5)s — oo such
that Hy_ ;. > e for every s. However, by Condition (x), we get (uy, — u)(dd“u)™ AT, — 0
as s — oo. This is contradiction. Hence the first desired assertion follows.

We prove the second desired assertion, let X' € €2 and (uy); a sequence of smooth psh
functions defined on an open neighborhood of K decreasing to u. Let ¢ > 0 be a constant.
Since uj, — u in cap;, as k — oo uniformly in /, there is a sequence (j,.); converging to
oo for which

capy, (K N {u;, >u+1/k},Q) <e27*

for every k,l € N*. Consequently, for K. := K\ U2, {u;, > u+ 1/k}, we have that
capr, (K\ K, ) < e and uj, is convergent uniformly on K.. Hence u is continuous on K..

Let (Uy)s be an increasing exhaustive sequence of relatively compact open subsets of
Qand K, := U,\U,_, for s > 1, where U, := &. Observe that K is compact, 2 = U> | K,
and

Ks N Us’zs+2Ks’ =y (33.5)

for every s > 1. By the previous paragraph, there exists a compact subset K of K such
that capy, (K,\K, ) < €27° and u is continuous on K. Observe that K’ := UZ, K|
is closed in 2 and u is continuous on K’ because of (3.3.5). We also have Q\K’ C
U2, (K\KY). Hence capy, (U\K', Q) < e for every [. The proof is finished. O

As one can expect, the above quasi-continuity of bounded psh functions allows us to
treat, to certain extent, these functions as continuous functions with respect to closed
positive currents.

Corollary 3.3.5. Let Ry := dd°vix A - -+ A ddvp, AN Ty, and R := ddvy A -+ - A ddv,, AT,
where v, v; are uniformly bounded psh functions on Q2 and Ty, T closed positive currents of
bi-degree (p,p). Let u be a bounded psh function on 2 and x a continuous function on R.
Assume that R, — R as k — oo on Q and (1})y, satisfies Condition (x). Then we have

X (u) R = x(u) R

as k — oco. In particular, the last convergence holds when T, = T for every k or T}, =
ddwi N S, T = dd“w A S, where S is a closed positive current, w is a psh function locally
integrable with respect to S and wy, is a psh function converging to w in L}, as k — oo so
that wy, > w for every k.

Proof. The problem is local. Hence we can assume (2 is relatively compact in C". Since
u is bounded, using Theorem 3.3.4, we have that u is uniformly quasi-continuous with
respect to the family cap;, with k¥ € N. This means that given ¢ > 0, we can find an
open subset U’ of 2 such that cap;, (U',(2) < e and u|g\y is continuous. Let @ be a
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bounded continuous function on U extending u|o\p» (see [32, Theorem 20.4]). We have
x(@) Ry, — x(u)R because x,u are continuous. Moreover,

| (e(@) = x(w) Be|| S IRkl < capy, (A\U', Q) < e

(we used here the boundedness of 2) and a similar estimate also holds for (x(@)—x(u))R.
The desired assertion then follows. This finishes the proof. O

The following result is a well-known convergence property of Monge-Ampeére opera-
tors in [6].

Theorem 3.3.6. Let u; be a locally bounded psh function on 2 for 1 < j < m. Let (u;)ken
be a sequence of locally bounded psh functions increasing to u; in L}, as k — co. Then we
have

Upddugy A -+ N ddUpy — urddus A -+ A ddu,y,
as k — oc.

Proof. The proof follows that of [29, Theorem 1.15]. First of all, observe that if u;, * u;
almost everywhere then, we have u;;, < w41y < u; pointwise on U. Since the problem
is local, as in the proof of Theorem 3.2.5, we can assume that v, u; are all equal to some
smooth psh function v outside some set X' € (2 on ). Let

Sik = ddujp A\ - ANddUpg, S = ddu; A - A ddupy,.
We prove by induction in j that
U,(jfl)ijk — U(jfl)Sj (336)

k and for every 2 < j < m + 1 (by convention we put S(,11)r = Sm41 := 1). The claim
is clear for j = m + 1. Suppose that it holds for (j + 1). We need to prove it for j. Let
Rj« be alimit current of u(;_1),S;jr as k — oo. By induction hypothesis (3.3.6) for (j +1)
instead of j, Sj; — S; as k — oo. This combined with the fact that the sequence (u;x)s
converges in L}, to u; gives
Rjoo S Uj_lsj

(one can see [19, Proposition 3.2]). Fix s € N. Let w be the standard Kéahler form in C".
For k > s, by integration by parts,

lim inf/ U(i—1)kSjk AW > Tim inf/ U(j—1)s9jk Aol
Q Q

k—o0 k—o0
Q
= / u(j,l)sddcuj A S(]‘+]_) A wn—m-‘,—j—l
Q

= / ujddcu(j—l)s) A S(j—H) A wnierjil
Q
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which converges to
/ ujddcu(j—l) N S(j+1) N wnierjil = / U’(j—l)sSj A wnierjil
Q Q

by induction hypothesis and Corollary 3.3.5. This finishes the proof. O

Lemma 3.3.7. (Negligible sets are of zero capacity) Negligible sets are Borel sets of zero
capacity.

Proof. Let (u;);e; be a family of psh functions bounded uniformly from above. Let £
be the set of x € € such that (sup;c;u;)*(r) > sup;c;u;(x). We nede to prove that
cap(F£, ) = 0. By Choquet’s lemma, we can assume .J is countable, and u := (sup;.; u;)*
is L' limit of an increasing sequence (u;); of psh functions. Observe that

E =Useqf{z: (supuy)* > s>t > sup u; }.

jeJ jedJ

Since each of these sets in the last union is Borel, so is £. We first assume that (u;); is
uniformly locally bounded on 2. By Theorem 3.3.6, we get

w;(ddv)" > u(ddv)"

as j — oo for every bounded psh function v. On the the hand, by Lebesgue’s mono-
tone convergence theorem, u;(dd°v)” — (lim;_ u;)(dd°v)". Hence the set {z : u(x) >
lim; .o u;(z)} is of zero measure with respect to (dd‘v)".

Consider the general case where (u;); is not necessarily uniformly locally bounded.
Let u be as above, and J is countable, the family (u;); is uniformly bounded from above.
Let A := {u; = —oo}. We already know that A is of zero capacity by Lemma 3.3.2. Let
M be a big integer. Consider u;y, := max{u;, —M}, and uys := (sup; u;)*. Observe that

{z :u(zx) > sgpuj(x)}\/l C U {z€Q:uy(z) > sgpujM(x)}.

MeN

This combined with the first part of the proof implies that {z : v > sup,u;} is of zero
capacity. ]

Just by replacing the usual quasi-continuity of psh functions by the stronger one given
in Theorem 3.3.4 for bounded psh functions, we immediately obtain results similar to
those in [7]. We state here results we will use later.

Lemma 3.3.8. (similar to [7, Lemma 4.1]) Let Q) be an open subset in C". Let T be a
closed positive current on € and uy, u i, u};, u};, bounded psh functions on  for k € N and
1 < j <m, where m € N. Let ¢ € N* and v;, v; bounded psh functions on 2 for 1 < j < ¢.

Put W := Ni_,{v; > vj}. Assume that
Ry = dduy, N - NddUpp, NT — R := dd°uy A -+ Ndduy,, N'T

and
o= ddul, A NddCul, NT — R = dduy A+ Addul, N'T
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as k — oo and
1wRr = 1w R, (3.3.7)
for every k. Then we have 1w R = 1y R'.

Proof. The problem is clear if IV is open, for example, when v; is continuous for 1 < j <
¢. In the general case, we will use the strong quasi-continuity to modify v;. Since the
problem is local, we can assume that (2 is bounded. Let ¢ > 0 be a constant. By Theorem
3.3.4, we can find bounded continuous functions v, on €2 such that cap,({9; # v,},U) <
e. Put W := Ni_,{9; > v}} which is an open set. The choice of 7; combined with the
definition of cap, yields that

We also have similar estimates for /', R;.. By this and (3.3.7), we get || 1 Ry — 15 R [lo <
2e. This combined with the fact that IV is open yields that ||[1; R — 13, R'||q < 2¢. Thus
|1wR — 1w R/||o < 4e for every e. The desired equality follows. This finishes the proof.

]

Theorem 3.3.9. Let 2 be an open subset in C™. Let T be a closed positive current on 2 and
uj, u; bounded psh functions on () for 1 < j < m, where m € N. Let vj,v; be bounded psh
functions on () for 1 < j < q. Assume that u; = uj; on W := ﬂ‘}:l{vj > v} for 1 < j < m.
Then we have

Tydduy A -+ - ANdduy, AT = Lydduy A--- ANddu,, NT. (3.3.8)

Proof. We give here a complete proof for the readers’ convenience. Let ¢ > 0 be a
constant. Put uj = max{uj,u; — e} and W := N {u; > u} — e}. By hypothesis,
W C W. We will prove that

1y dduy A -+ Addup, NT = 1y dduf A--- A ddu,, AT. (3.3.9)

Since the problem is local, we can assume there is a sequence of uniformly bounded
smooth psh functions (u;;); decreasing to u; for 1 < j < m. Since W}, := {u;, > ui — €}
is open, we have

Ly, ddurg A - A ddUupp, AT = 1y, dd° max{uy, u; — e} A Add{umg, u; — et AT
This together with the inclusion W c W, gives
Ly ddue A -+ AddUupp AT = 1dd® max{uig, uj — €} A - - Add“{ump, uj — e} AT.

Using this and Lemma 3.3.8, we obtain (3.3.9) by considering k£ — oo. In particular, we
get
Twddus A -+ AN dduy, AT = Lyddu) A--- Addul, ANT.

Letting ¢ — 0 and using Lemma 3.3.8 again gives
Ly dd®uy A -+ Add®up AT = Lyydd® max{uq, u}} A -+ A dd® max{u,, u,,} AT.

The last equality still holds if we replace u; in the left-hand side by u) by using similar
arguments. So the desired equality follows. The proof is finished. O
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Remark 3.3.10. Recall that a quasi-psh function u on 2 is, by definition, locally the sum
of a psh function and a smooth one. We can check that results presented above have their
analogues for quasi-psh functions.

Here is an integration by parts formula which will be useful later.

Lemma 3.3.11. (Integration by parts formula II) Let x € ¢*(R) and wy,w, bounded psh
functions on an open subset ) of C™. Let () be a closed positive current of bi-dimension (1, 1)
on ). Then we have

ddx(w2) A Q = X" (wg)dws A dwy A Q + X' (w2)ddws A Q (3.3.10)

and the operator wydd°x(ws) A @ is continuous (in the usual weak topology of currents)
under decreasing sequences of smooth psh functions converging to w;, ws. Consequently, if
f is a smooth function with compact support in U, then the equality

/ fwiddx(we) N Q = / X(wa)dd(fwy) A Q (3.3.11)
0 e

holds. Moreover, for f as above, we also have

/ Ix(wg)ddwy A Q = — / X (we)df A dwy AQ — / X (we)dws A dwi A Q. (3.3.12)
0 0 0

Proof. Clearly, all of three desired equalities follows from the integration by parts if wy, ws
are smooth. The arguments below essentially say that both sides of these equalities are
continuous under sequences of smooth psh functions decreasing to wy, wo. This is slightly
non-standard due to the presence of () even when y is convex.

First observe that (3.3.11) is a consequence of the second desired assertion because
both sides of (3.3.11) are continuous under a sequence of smooth psh functions de-
creasing to w,. We prove (3.3.10). The desired equality (3.3.10) clearly holds if w, is
smooth. In general, let (w5),. be a sequence of standard regularisations of w,. Recall that
dd®x(ws) A Q is defined to be dd(x(w-)Q) which is equal to the limit of dd®(x(w$)Q) as
e — 0. By (3.3.10) for w§ in place of w,, we see that dd*(x(w$)Q) is of uniformly bounded
mass. As a result, dd®y(ws) A @ is of order 0. Thus w;dd®y(ws) A @ is well-defined. Put

I{wy, w, we) := wi X" (w)dwy A d°we A Q + wy ) (w)ddwy A Q.
Recall that 7(1, ws, ws) — ddx(ws2) A Q. By Corollary 3.3.5, we have
I(wy, we, ws) — I(wy, ws, ws) (3.3.13)
as ¢ — 0. On the other hand, since \” is in ¢!, we get
X (wh) = X" (w2)] S (wh —wa), X' (wy) — X' (w2)| S (wy —wa).

This combined with the convergence of Monge-Ampere operators under decreasing se-
quences tells us that

(1 (wy, ws, ws) — I(wy, we, ws)) — 0 (3.3.14)

as ¢ — 0. Combining (3.3.14) and (3.3.13) gives that I(wy, wS, w§) — I(wy, ws, ws) as
e — 0. Letting w; = 1 in the last limit, we get (3.3.10). The second desired assertion also
follows. We prove (3.3.12) similarly. The proof is finished. O
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3.4 Comparison principle

Let 2 be a bounded domain in C". Let w, be the standard Kahler form on C". Let u, v be
bounded psh functions on (2.

Theorem 3.4.1. (Comparison principle I) Let 1 < k < n be an integer. Let T be a closed
positive (n — k,n — k)-current on §). Assume that liminf, ,sq(u(z) — v(z)) > 0. Then we
have
/ (ddv)* AT < / (dd°u)* AT,
{u<v} {u<v}

Proof. By considering u + ¢ in place of u, and letting ¢ — 0, we can assume that
liminf, ,q(u(z) —v(z)) > € > 0 for some constant . Hence the set A := {u < v+ §/2} is
relatively compact in 2. Hence there exists a relatively compact subset U in (2 such that
A C U. Take a cut-off function x with compact support in €2 such that 0 < x; < 1 and
x = 1 on A. By integration by parts and the fact that dd®y = 0 on U and Theorem 3.3.9,
we get

/ x(dd® max{u,v})* AT = / ddx A (dd® max{u,v})* P AT
Q Q
= / ddx A (dd°max{u,v})* AT
{u>v}

= / ddx A (dd°u)* P AT.
{u>v}
Letting {y = 1} converge to () gives
/ (dd® max{u,v})* AT = / (dd“u)* AT.
Q Q
By this and Theorem 3.3.9 again,
/ (dd°0)* AT = / (dd° max{u, v} AT
{u<v}

{u<v}

_ /Q (dd° masc{u, v} )F A T — / (dd° masc{u, v})F A T

{u>v}

c k — ¢ max{u, v})*
S/Q(dd max{u,v})* AT /{ (dd {u,v})" AT

u>v}

< /Q(ddc max{u, v})F AT — /{ (dd®max{u,v})* AT

u>v}
= / (ddu)* AT — / (dd® max{u,v})* AT = / (dd“v)* AT.
Q {u>v} {uv}
We replace u by u + ¢ in the last inequality, and by letting ¢ — 0 we obtain the desired
inequality. O

Corollary 3.4.2. (Domination principle) Let the notations and the hypothesis be as in The-
orem 3.4.1. Then if (dd°u)* AT < (dd°v)* AT and T > cwi™" for some constant ¢ > 0, then
u > .
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Proof. Let p > 0 be a smooth psh function on C" such that dd°p > wy on ). Suppose
that £ := {u < v} is non-empty. Observe £ C {u < v + p}. We claim that E is
of strictly positive Lebesgue measure. Consider =, € E. We have u(xy) < v(zo). Let
0 :=wv(xg) — u(xo) > 0. By the upper semi-continuity of u,

u(z) < u(zg) +9/3

for © € B(zo,€s) for some constant €5 > 0. On the other hand, applying the submean
inequality to v at z, yields that v(z) > v(zo) — /3 for = in a subset A of positive Lebesgue
measure in B(xg, ¢5). Thus A C E. Since A is of positive Lebesgue measure, so is E.

By Theorem 3.4.1 applied to v + p, u, we get

/ (dd°v + dd°p)* AT < / (ddu)* AT < / (ddv)E A T.

{u<vtp} {u<vtp} {u<vtp}

On the other hand by the choice of p and the hypothesis the left-hand side of the last
inequality is

> / (ddv)* AT + / wy > / (ddv)* AT.
{u<vtp} {u<vtp} {u<vtp}

This gives a contradiction. Hence E' is empty. The desired assertion follows. O

Let w be a Hermitian metric on ). Let ug,...,u,, be bounded w-psh function on €.
By using a local smooth psh function ¢ such that dd“) > w and writing dd‘u; + w =
dd“(u + ¢) + w — dd°yp, we can define R := (dd“u; + w) A - -+ A (dd°u,, + w) as in the
case where u;’s are psh. In particular, R is continuous under decreasing sequences to u;’s
(see [15]). By Theorem 2.5.10, we can find smooth w-psh functions (u,;); decreasing
to u. Hence (dd°uy, + w) A -+ A (dd°umi + w) converges weakly to R as k — oco. As a
consequence, R is independent of the choice ) and R > 0. We thus obtain a well-defined
positive current R.

Corollary 3.4.3. ([15]) (Domination principle II) Let u,v be bounded w-psh functions on
Q2 such that liminf, ,gq(u(x) —v(z)) > 0, and (ddu+ w)"™ < (dd“v+w)™ on 2. Then u > v
on €.

Consider from now on a compact complex manifold X, and a Hermitian metric w on
X. For every Borel set A C X, define

cappri(A) :=sup { /A(ddcgp +w)" : ¢ w-psh,0 < o < lonX}.

By Lemma 3.4.6 below, capg,,(A) is always finite. It is also clear that if we use
another Hermitian metric to define cap,,, then the resulted capacity is equivalent to
that associated to w.

Let (U;)1<j<n and (U})1<;< be finite open coverings of X such that U; is smooth and
contained in some local chart of X biholomorphic to a polydisc for every 1 < j < N,
U; = {1; < 0} for some psh function v; defined on an open neighborhood of U; with
OU; = {1; = 0} and U; € U; for 1 < j < N. In practice, it suffices to take Uj, U’ to be
balls and ¢; are the differences of radius functions and constants.



CHAPTER 3. MONGE-AMPERE OPERATORS 71

Lemma 3.4.4. ([29, 15]) There exists strictly positive constants c, co such that for every
A C X we have

clzcap (ANU,U;) <cappry(A <022cap (AnULU;).

Proof. Put A := AN Uj which is a relatively compact subset of U;. We have U; A} = A.
The second desired inequality is obvious from the definitions of capacities. We prove
now the first desired inequality.

Fix an index 1 < j < N. By our choice of Uj, for every psh function 0 < « < 1 on Uj,
we can find another psh function —1 < @ < 0 on U; satisfying & = u — 1 on some open
neighborhood of U;- and @ = 0 on 9U;. Such a @ can be chosen to be max{u — 1, Ay, } for
some constant A big enough. Clearly,

/ /1 (dd“u)* = / /_(ddca)k.

Since —1 < @ < 0 and @ = 0 on 90U}, there is a quasi-psh function u#; on X such that
dd°ti; + Cw > 0 for some constant C' independent of & and @; = % on some open neigh-
borhood of U; and |, | is bounded by a constant independent of . We deduce that

/ / (dd°u)* = / / (dd“iiy )* < / (ddeiny + Cw)* < C'cap gri (A)),

for some constant ¢’ independent of u. Consequently, capy, (A}, U;) < C*capgp(Af).
Summing over 1 < j < N in the last inequality gives the first desired inequality. This
finishes the proof. O

Proposition 3.4.5. ([30, Theorem 0.2]) Let p, 1 be bounded w-p.s.h functions on X. Let
0 <e<land m. :=infx(p — (1 — €)t). Then there exists a big constant B > 0 depending
only on w,n such that for every constant 0 < s < ¢3/(16B) we have

/ (1 —e)ddy +w)" < (14 Ce*s) / (ddp + w)",
{p<(l—e)p+me+ts} {o<(l—e)p+mets}

where C'is a constant depending only on n, B.
A consequence of the last result is the following.

Lemma 3.4.6. ([15, 30]) Let M be a positive number. Then there exists a constant c,; > 0
such that for every w-psh function ¢ with |¢| < M, we have

0< / (ddp +w)" < . (3.4.1)
X

However, we don’t know whether

/ (dd°p +w)" > 07

in
{o:lp|<M} Jx
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Proof. The second desired inequality is proved in [15] by using integration by parts. The
first one is observed in [30]. To see it, it is enough to notice that by choosing ¢ := 1/2
and s > 0 small enough in Proposition 3.4.5, for every w-psh ¢ with 0 < < s and ¢ as
in the hypothesis, we have

/ (ddy +w)" < c/ (1= e)ddy +w)" < cs/ (dd°p 4 w)"
{p<infx p+s} {p<(1—€)tp+me+2s} X

because
{<p<i)n(fg0+s} C{e < (1—e€)+me+2s},

where ¢, ¢, are constants independent of ¢ and ¢, might depend on s. It follows that there
is a strictly positive constant ¢, satisfying

/ (dd°p + w)" > ccappryk ({p < igl(f @+ s}) (3.4.2)
X

which is strictly positive because it is the capacity of a non-empty open set. The proof is
finished. O

3.5 Locally pluripolar sets

We assume the following important result. Let w be a Hermitian form on C". Let B be
the unit ball in C".

Theorem 3.5.1. (Dirichlet’s problem) Let ¢ be a continuous function on 0B and let [ €
£P(w™). Then there exists a unique u € PSH(B) N ¢°(B) such that (dd°u + w)" = fw™ and
u = @ on JB.

This is a special case of [30, Theorem 4.2] (see references in this paper for historical
works).

Corollary 3.5.2. Let ¢, f be as in Theorem 3.5.1. Then there exists a unique u € PSH(B) N
¢°(B) such that (dd°u)" = fw™ and u = ¢ on OB.

Proof. Let w := dd°||z||* which is Kéhler. By writing dd“u = dd“(u — ||z|| + 1) + w and
noticing that v — ||z|| + 1 is equal to v on 0B, we see that the desired assertion is a direct
consequence of Theorem 3.5.1. O

Let X be a compact complex manifold of dimension n. Let w be a Hermitian metric
on X.

Proposition 3.5.3. Let ¢ be an w-psh function on X. Let B be a local chart in X biholo-
morphic to a unit ball in C". Then there exists a bounded w-psh function u on X such
that

(ddu+w)" =0

on Band u = pon X\B, and u > ¢ on X.
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Using Corollary 3.5.2 as the proof below, we see that this result also holds if we
consider psh functions in place of w-psh functions on X and dd“u in place of dd‘u + w.

Proof. By Corollary 2.5.11, there exist a sequence of smooth w-psh functions ¢; on X
decreasing to . Applying Theorem 3.5.1 to ¢; and B gives an w-psh function «; on B such
that u; is continuous on B and (dd“u; +w)" = 0 and u; = ¢; on dB. Let u; := max{u;, ¢;}
on B and v} := ¢; on X\B. By Lemma 2.5.6, v, is an w-psh function on X.

Since u; > wu;4; on OB and (ddu; + w)* < (dd‘uj+; + w)™ on B, using Domination
principle (Corollary 3.4.3) implies u; > u;;; on B. It follows that (u}); is a decreasing
sequence, and u; > ¢; > ¢ for every j. Hence u := lim; ., v exists and is an w-psh
function on X. By Theorem 3.2.5, (dd°u + w)" = lim;_,(dd“u; + w)™ = 0. It is also clear

by construction that u = ¢ outside B. This finishes the proof. O

A subset A of X is locally pluripolar if for every point x in A there is an open neigh-
borhood U, of x in X and a psh function ¢ on U, for which ANU, C {9 = —oc}. A
subset A of X is pluripolar if A C {¢ = —oo} for some quasi-psh function ¢ in X.

Since we already know that if A is locally pluripolar in U;, then cap(A, U;) = 0, we get
cappri (A) = 0if A is locally pluripolar in X. Let (u;) be a family of psh functions on an
open subset U of C* locally bounded from above. Define u := sup; u; and u* := supj u;
the upper semi-continuous regularisation of w. The set {u < u*} is of zero capacity cap
by Lemma 3.3.7. For A C X,

cap pg(A) = inf{exp(sup ¢) : ¢ w-psh on X, sup ¢ = 0}.
A X

Lemma 3.5.4. cap ,,4(A) = 0 if and only if A is pluripolar on X.

Proof. If A C {¢ = —oo} for some quasi-psh ¢, it is clear that cap,,4(A) = 0. Consider
now

cap,pg(A4) = 0. (3.5.1)

Recall that there exists a constant ¢ such that for every w-psh function ¢ with the nor-
malization condition sup , ¢ = 0, we have

ol < e (3.5.2)

We refer to [24, 16, 15] for a proof. Using (3.5.1), there exists a sequence of w-psh
functions (y,,) with supy ¢, = 0 such that sup 4 ¢, < —n®. Put

sozzzln”

which is a well-defined quasi-psh function because of (3.5.2). On the other hand,

L[$

sup ¢ < — = —00.

It means that A C {¢ = —oo}. This finishes the proof. O
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Let (¢;);es be a family of w-psh functions on X uniformly bounded from above. De-
fine
@g = sup QOJ
jeg
Lemma 3.5.5. ¢ is an w-psh function.

Proof. We will use Proposition 2.5.5 to check the desired claim. It is enough to work
locally as in the situation of Proposition 2.5.5. Note that we already have that ¢% is
upper semi-continuous by its definition. Let v € C*¥\{0} and ¢ a small positive constant.
Applying Proposition 2.5.5 to ¢; gives

1 27 » € dt
pi(x) < 2—/ @i(r + ee”v)df +/ 7/ Wi
T Jo 0 {Is|<t}

where w, , is the restriction of w to the line L, , := {z+tv : t € C}. Taking the supremum
over j € J in the last inequality implies

1 2 ] € dt
py(x) < —/ goj(x—ireezav)dQ—i—/ —/ Wa,p- (3.5.3)
21 Jo ot Jysi<ty

Let z, € X. Consider a sequence (z,,) C X converging to x, such that

SOTJ(IEOO) = lim @ (z,).

n—o0

Applying (3.5.3) to = = z,, and letting n — oo, we obtain

21
O (rs) < limsup—/ @z, + ee®v)dh —|—hmsup/ / Wi -
{Is|<t}

n—oo n—o0

The second term in the right-hand side of the last inequality is equal to

[
- wxoo,'u
o t Jysi<

because w is smooth. This combined with the fact that

lim sup @7 (z, + ee?v) < % (v + €€'v)

n—oo

and Fatou’s lemma yields

1 2 0 € dt
05 (Te) < —/ O (Too + €€"v)db +/ —/ Waeo v-
21 Jo o t Jysi<y

The desired assertion now follows by Proposition 2.5.5. This finishes the proof. O

As in the local setting, {¢% > ¢} is of zero capacity (see Lemma 3.3.7). We will
present below an important case of (p;);cs and its associated extremal function ¢%.
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Let A be a non-pluripolar subset of X. As in the local setting or in the Kéhler case, we
introduce the following extremal w-psh function:

Ta:=sup{p w-psh:p <0on A}.

It is clear that 74 > 0. Let T"; be the upper semi-continuous regularisation of 7s. We can
check that

cap s pg(A) = exp(— Sl)l(p Ty). (3.5.4)

Thus 74 is bounded from above because A is non-pluripolar. We deduce that 77 is a
bounded w-psh function and Q4 := {7 > T4} is of zero capacity. Since 74 = 0 on A, we
get 7% = 0 on A\Qa.

Proposition 3.5.6. Let A be a nonpluripolar compact subset of X. We have
(dd°Ty +w)" =0 (3.5.5)
on X\A.

Proof. By Choquet’s lemma (Lemma 1.2.5), there exists an increasing sequence of w-psh
function ¢, for which 7% = (lim;_,~, ¢;)*. Let B be a ball in X such that BN A = & . By
Proposition 3.5.3, we obtain an w-psh function ¢} such that (dd°y; + w)" = 0 on B and
©; > pjon X and ¢ = ¢; on X\B. Observe that ’; increases to T4 by the construction
and the definition of 74. It follows that (dd°T + w)™ = 0 on B by Theorem 3.7.4. The
desired assertion hence follows. O

Proposition 3.5.7. Let A be a nonpluripolar compact subset of X. Then there exist strictly
positive constants ci, \; independent of A such that

exp (= Mcapyh(A)) < cappg(A) < erexp (— My cappil(A)). (3.5.6)
where M, = [, (dd°T% + w)" > 0.
Note that M, > 0 because of Lemma 3.4.6.

Proof. Since A non-pluripolar, 7% is a bounded w-psh function. By (3.5.4), the desired
inequalities are equivalent to the following:

Aicapgrg(A4) > Sl)l(p Ta>c) + Mi/”capng/,?(A), (3.5.7)

where ¢} := —log .

We prove now the first inequality of (3.5.7). We can assume supy 74 > 0 because
otherwise the desired inequality is trivial for any A\; > 0. Put ¢4 := T} — supy 7% which
is an w-psh function with sup ¢4 = 0. It follows that

loallr S 1 (3.5.8)

~y

for every p > 1 by Proposition 2.5.7.
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Let ¢ be an w-psh function such that 0 < ¢ < 1. Since (supy T4) 'oa4 = —1 on A\Q 4,
and cap g (Q4) = 0, we obtain

[t sor < ez [

[—pa](ddp +w)" < (St}l{p Ta) allr (3.5.9)
X

for every p with 0 < ¢ < 1 by the Chern-Levine-Nirenberg inequality (Corollary 3.2.7).
Combining (3.5.9) with (3.5.8) gives the first inequality of (3.5.7). It remains to prove
the second one.

Recall that —1 < (supy T4)'pa < 0 and (supy Ta) ‘4 is an (supy T4) 'w-psh
function. Hence (supy T4) ‘¢4 is w-psh if (supy T4)~! < 1. Consider the case where
(supy T4)~* < 1. By definition of cap g, we get

capgri(A) > (sup TA)”/(ddch + w)" = (sup TA)"/(ddCTZ + w)" (3.5.10)
X A X A

By Proposition 3.5.6, we have

/ (dd°T% + w)" = / (dd°T” + w)™.

A X

Hence the second inequality of (3.5.7) follows if (supy 74) ' < 1. When (supy 7T4) ™ > 1,
then 7 — 1 <0on X and < —1 on A\Q4. We infer that

cappri(A) = capprp(A\Qa) > /(ddCTZ +w)" >0
A
which combined with the fact that supy 74 > 0 yields the second inequality of (3.5.7) in
this case. The proof is finished. O

Theorem 3.5.8. A subset on a compact complex manifold is pluripolar if and only if it is
locally pluripolar.

One can apply this result to subsets of C" because C”" is an open subset of P" a com-
pact complex manifold. By the above theorem, there exist abundantly non-continuous
quasi-psh functions on a compact complex manifold. This is a fact which probably can-
not be seen directly because unlike projective manifolds, a general compact complex
manifold might have very few hypersurfaces.

Proof. First observe that a countable union of pluripolar sets is again a pluripolar set.
Indeed, let (V})ren be a countable family of pluripolar sets on X. Hence we have V,, C
{¢r = —o0} for some w-p.s.h function ¢, with supy ¢x = 0. Define

pi=> o)k’
n=1

which is of bounded L'-norm because [|¢y||;: is uniformly bounded in k. Hence ¢ is a
quasi-psh function and V}, C {¢ = —o0} for every k.
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Let V be a locally pluripolar set. We need to prove V is pluripolar. If V' is compact,
the desired claim is a direct application of (3.5.6). For the general case, we need some
more arguments.

By Lindel6f’s property, we can cover V' by at most countably many sets of form {¢; =
—oo} for some p.s.h functions ¢; on some open subset U; of X. Hence in order to prove
the desired assertion, we only need to consider V' = {¢ = —oc} for some psh function ¢
in an open subset U of X which is biholomorphic to a ball in C*.

Let U; be a relatively compact open subset of U. Suppose that V' N U; is not pluripolar.
Hence Ty, is a bounded w-p.s.h function. Consider a decreasing sequence of smooth
psh functions (¢, )ren defined on an open neighborhood of U; converging pointwise to
. For every positive integer N, put

Vk,N = {50].3 S —N} ﬂUl

which is a compact subset increasing in k. Hence (77, | )ien is a decreasing sequence of
w-psh functions which converges pointwise to an w-psh function Ty.

Since {¢x < —N} is open, Ty, = Ty, y = 0 on {p; < =N} NU;. Thus Ty = 0 on
{¢ < =N} N U; which contains V' N U;. We infer that

0 < Ty < Ty,
for every N. This combined with the fact that (T )yen is increasing gives
0< T := (lim Ty)* < Ty, (3.5.11)
and T, is an w-psh function. Applying (3.5.6) to A := V), vy we get
sup T > ¢y + Mycap gy (Vi) 7" (3.5.12)

where M,y = [ +(dd°Ty;, + w)™. By the convergence of Monge-Ampere operators, we
have ‘

k—o0

lim Mk,N = / (ddCTN + w)" =: MN7 lim MN = / (ddcToo —i—w)" =. Moo (3513)
X N—o0 X

Note that M., > 0 by Lemma 3.4.6. On the other hand, since y; decreases pointwise to

v as k — oo, there exists a constant ¢ independent of k, N such that

cappri (Vi,n) < eN~!

by the Chern-Levine-Nirenberg inequality (Corollary 3.2.7). This together with (3.5.13)
and (3.5.12) implies

supTy > ¢} + cM]i,/an/”, (3.5.14)
X

for some constant ¢ > 0 independent of N. Letting N — oo in the last inequality and
using (3.5.13), (3.5.11), we get

sup Tyqy, = sup o, = o0.
X X

This is a contradiction. Hence V N U, is pluripolar for every relatively compact open
subset U; of U. It follows that V' is pluripolar. This finishes the proof. O
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3.6 Regularity of capacity

We recall the following important theorem due to Choquet. Let X be a locally compact
separable metric space. Let ¢ be a nonnegative real function defined the set of all subsets
of X. The function c is said to be a generalized capacity if the following properties are
satisfied:

(1) for By C FEs, ¢(Ey) < c(FEy),

(77) if E; increases to E, then ¢(E}) increases to c¢(E),

(¢14) if compact K; decreases to K, then ¢(kK;) decreases to ¢(K).

For every subset F in X we put

c*(E) = inf{c(U) : U open subset in X containing F'}

and
¢«(E) = sup{c(K) : K compact subset in F'}.

Here is a well-known result of Choquet.

Theorem 3.6.1. ([9, 12]) Let c be a generalized capacity on X. Then for every Borel subset
E, we have

c(E) = c.(E). (3.6.1)

This result is true for any locally compact topological space X. But in the scope of the
lecture, it is enough for us to consider locally compact separable metric spaces.

Proof. We give a sketch of the proof for readers’ convenience. Recall that a F,, subset in
X is a countable union of closed subsets in X, and F,; is a countable intersection of F,
subsets in ). Using Property (ii) of ¢, we get ¢(E) = ¢.(F) if E is a closed subset in X
because F'is a countable union of compact subsets in X. Similarly (3.6.1) holds true if £
is I, and F,s set. The desired assertion follows from it and the following claim asserting
that every Borel set is the image of a F|,5 set under a continuous map.

Claim. For every Borel subset £/ in X, there exist a compact metric space Y and a con-
tinuous map f : Y — X and a F,; subset A in Y such that f(A) = E.

We prove the Claim. We avoid using Tychonoff’s theorem in this proof. Let <7 be the set of
subsets F in X satisfying the claim. Observe that open subsets of X belong to <. In order
to obtain the desired assertion, it suffices to check that .7 is an o-algebra. Let (E;),cn be
in /. Put £ = N;E;. Let f; : Y; — X be a continuous map such that f(A;) = E; for
some F,; subset A; in Y;. Consider the space Y := [],Y; with the usual topology which
is the coarsest topology making every projection p; : Y — Y} to its component Y; to be
continuous. Recall that open subsets in Y is given by [ [, ; U; x [, Y;, where U; are an
open subset in Y;. This topology is metrizable by the following metric:

o0

Z l’w%)
2J 1+d x];?Jj))’

J=1
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where d; denotes the metric on Y}, and z = (z;);ey and y = (y;),;en are elements in Y.
With this metric, one can check that Y is compact because Y] is so. Let

Aj = mjozl Uiozl Kskjv

where K, is compact in Y; (notice Y; is compact) and K,;; is increasing in k as s, j
fixed. Hence
HAj:msUlq ..... ksKskllx"'XKskssXK’+lX"'

which is a F,; in Y. Put

A={ye HAj  fj Opj(y) = [y Opj/(y),Vj,j/}

which is closed subset of Hj A;. Let f: A — X be given by f(y) := fi o p1(y). Using the
metric structure, we extend f naturally to a continuous map from A to X. Note that A4 is
a compact metric space, and f(A) =N, f;(A;) = N;E;. Hence E € /.

Consider now E := U, E;. Let {¢°} be a point-set. Let Y/ := Y; U {y°} which is again a
compact metric space, and Y’ := [[,Y]. Let p; : Y’ — Y] be the natural projection from
Y/ toY]. Set

A=U {0 x o x [y x Ay x {0 x -

which is formally the disjoint union of A;. Observe A is Fi,; in Y'. Consider f : A — X
given by
f(yoa s 7y07yj7y07 e ) = f](y])

We see that f(A) = U,;E;. Extends f to A as before. We thus proved Claim. This finishes
the proof. O

Recall that a domain 2 is said to be hyperconvex if there exists a continuous psh
function 2 < 0 on Q such that for every constant ¢ < 0, the set {h < ¢} is relatively
compact in 2. From now on we assume that 2 is bounded and hyperconvex. We follow
partly the presentation in [9, 29]. Let F be a subset in (). The relative extreme function
of £/ in € is defined by

upg:=sup{upshinQ:u <0,u<—1on E}.

Note that up o = —1 on £ and —1 < ug o < 0. By Choquet’s lemma, uf g 18 the limit of
an increasing sequence of negative psh functions on 2. Hence u}, ;, is bounded psh on (2.

Lemma 3.6.2. (i) If £y, C E,, then ug, o < ug, o,
(ZZ) IfE c Q) C QQ, then UE Qs < UE 0y
(¢11) If compact K; decreases to K, then (lim; uj o)* = uj o

Proof. The first two desired claims are trivial. It remains to prove the third desired claim.
Put

U= (li]m Uk, 0)"
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Since ug; o < uxq, we get u < ug . It remains to prove the converse inequality. By Cho-
quet’s lemma, there is a sequence of psh functions (u), increasing almost everywhere
to up ¢ such that u;, < 0 on Q and v, < —1 on K. Let ¢ > 0 be a constant. Since K;
compact decreases to K and K C {u; < 1— ¢}, we see that for k fixed, and j big enough,
Kj C {uy, < 1—¢}. It follows that (1—€)~'uy < uj, . Letting j — oo gives u > (1—€) uy
for every k. Letting k¥ — oo and then e — 0, we obtain that u > uj; o almost everywhere.
Hence u > u}; . This finishes the proof. O

Proposition 3.6.3. Let E be a relatively compact subset in a bounded hyperconvex domain
). We have

cap*(E,Q) = /(ddCuEQ)".
Q
If compact K; decreases to K, then

lim cap(K;,Q?) = cap(K, Q) = cap™ (K, Q).

J—00

Proof. Since —1 < up o < 0, we get

cap(F.) > [ (upe) = [ (@)

We prove the converse inequality. Let i be a psh function on 2 such that 4 < 0 on {2
and {h < ¢} € Q for every constant ¢ < 0. Since F is relatively compact, by rescaling,
we can assume i < —1 on E. Thus h < uj, . We infer that uj;  is an exhaustion psh
function for (), i.e, the open set {u},, < c} is relatively compact in 2 for every constant
¢ < 0. In particular, liminf, .90 u}; o = 0 (hence limsup, _, 5o uf; o = 0 because uj o < 0).
Let —1 < wu < 0 be a psh function on Q. Let A := {u} o > upq}. We already know that

cap(A,Q) =0 (3.6.2)

by Lemma 3.3.7. Let 0 < € < 1 be a constant. Observe that £ C {ug o < (1 —€)u}. Using
this and the comparison principle (Theorem 3.4.1) gives

(1— e / (ddu)" < / (dduy )" < / (dduy )"
{uj‘E,n<(l—e)u} {u*E752<u}

Combining this with (3.6.2) yields

-0 [ wawr < [ @uor

Taking the supremum over every u and letting ¢ — 0 give

cap(£,) < | (ddu )"
Q
Hence we obtain

cap(E, Q) = [E (dduy )" (3.6.3)
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if £ is compact. Consider now a relatively compact open subset U in ). Let K, be a
sequence of compact subsets increasing to U. Observe ug, o decreases to uyq. By a
similar equality as (3.6.2), u, , decreases to a psh function ue > uj;o. Moreover for
every open B € U, we have uj o = —1 on B if j big enough. Hence u,, = -1 on U. It
follows that u = uq, and uj, o decreases to uj;,. Using this and applying (3.6.3) to
K; and taking j — oo gives

cap(U, Q) = hmsup/(ddcu}‘(jﬂ)" = /(ddcuag)"
j=oo  JQ Q
by Theorem 3.2.5 (notice here that (dd“uj, )" is supported on a fixed compact subset in
) because U & ).
Let £ € () be an arbitrary set, and U & () open set containing £. Observe that
0 > upq > ufq on ). Hence using comparison principle, we get

[t < [ @dug) = cap(u.0)
Q Q

Taking the infimum over every open U containing F gives

[ o) < cap'(£,9).
Q

Now let (u;); be a sequence of psh functions increasing to ug . Hence E is contained in
the open subset GG := {u; < —\;}, where the constant )\; increases to 1. We can assume
that u; is an exhaustion psh of Q2 (by replacing u; by max{u;, h}). We infer that G; € Q
and ug;, o increases to uj, o almost everywhere. Theorem 3.3.6 implies that

/ (dduts o) = lim [ (ddout o) = lim cap(Gy, Q) > cap™(E, Q).
Q ’ J—=o Jo 7 j—o0

The last desired assertion follows from the first part of the proof and Lemma 3.6.2. This
finishes the proof. O

Lemma 3.6.4. Let E € ). The following statements are equivalent:
(1) E'is pluripolar in €,
(ZZ) U, = 0,
(1) cap*(E, ) = 0.

Proof. The equivalence between (i) and (ii) can be obtained by using directly the defini-
tion of ug . By Proposition 3.6.3, we get

cap*(E,Q) = /(ddcu}i;,g)”,
Q
and we see that (77) implies (7ii). Assume now (iii). Hence (dd“uj o)" = 0 Recall that
lim, g0 up o = 0, see the proof of Proposition 3.6.3. Using this and Corollary 3.4.2
implies (ii). O
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Theorem 3.6.5. Negligible sets are pluripolar.

Proof. Let (u;);ecs be a family of psh functions bounded uniformly from above on §2. Since
the problem is local, we can assume ¢ is hyperconvex. Let E be the set of = € {2 such that
u = (sup,e;u;)*(z) > sup,c;y u;(x). By Choquet’s lemma, we can assume .J is countable,
and u := (sup;c;u;)* is L' limit of an increasing sequence (u;); of psh functions. Let
e > 0 be a constant. By quasi-continuity, there is an open subset U = U (¢) in X such that
cappri(U) < e and u, u; is continuous on X\U. Observe that

E\U = Ugpeqf{z € X\U :u(z) > s >t > supu;} = Uy eq Koy
jeJ
Observe that K, are compact. Hence

E CUUU, oK., K., CE.

Since cap(F,?) = 0 (Lemma 3.3.7), we get cap(Ky, ) = 0. Thus cap*(Ky,2) = 0 by
Proposition 3.6.3. This combined with the fact that cap(U,, 2) < e yields that there is an
open subset U’ in (2 such that cap(U’,2) < 2¢ and F C U’. We infer that cap*(£,2) = 0.
In particular cap*(E N K,2) = 0 for every compact K in ). Combining this with Lemma
3.6.4 shows that £ N K is pluripolar in Q2. Hence £ = U,;(E N K,) is pluripolar, where
Q) =U;K; and K; € . This finishes the proof. O

Theorem 3.6.6. The function cap*(-,2) is a generalized capacity on §), and we have
cap(E,Q)) = cap™(E, Q) = cap,(E, Q) (3.6.4)

for every Borel subset F in §). If E is relatively compact Borel subset in €, then

cap(E,Q) = /(ddcu*E@)". (3.6.5)
Q
Proof. The first and third desired properties for a generalized capacity holds for cap*(-, 2)
thanks to Proposition 3.6.3. Let E; be subsets in (2 increasing to £. We need to prove that
cap*(E;, 1) increases to cap*(FE, §2). Without loss of generality, we can assume E; € (.
Let ¢ > 0 be a constant. By the proof of Theorem 3.6.5, we know that there is an open
subset U in 2 such that cap*(U, §2) < e such that

Uz {up, o > ug 0} C U

Let 0 < r <1 be a constant. Put U; := {u}; o < —r}. By the proof of Proposition 3.6.3,
we know that U; € 2 and

lim v o = lim 4}, o =0.
amoq Bl T a0 Uit

This combined with the fact that rflu*Ej,Q < uj;, o and the comparison principle implies
that

cap*(U;, Q) = /Q (ddeuy, o) < " /Q (ddeuy, )" = r"cap* (E;, ).
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Note that U, is increasing in j, and V' := U UU,U; contains £. Hence U U U; increases to
V. We obtain thus

cap*(E, ) <cap(V,Q) < cap(U, Q) + r "liminf cap(E;, Q).
Jj—o0
Letting » — 1 in the last inequality yields that cap*(E}, {2) increases to cap* (£, (2). Hence
cap*(-,2) is a generalized capacity. The equality (3.6.4) is deduced immediately from
this and the fact that
cap*(K,€)) = cap(K, Q)

for every compact K in ().
The equality (3.6.5) follows directly from (3.6.4) and Proposition 3.6.3. This finishes
the proof. O

3.7 Continuity of Monge-Ampere operators: continued

Let 2 be an open subset in C™.

Theorem 3.7.1. Let uj, u;; be as in Theorem 3.3.6. Let (u};)r be a sequence of locally
bounded psh functions on € for 1 < j < m such that v}, > uy, and u}, — u; in Ly, as
k — oco. Then we have

uypddCusy, A -+ A ddoul,, — updd®ug A - A ddugy,
as k — oo.

Proof. Since the problem is local, as usual, we can assume that u;, u;;, u; are all equal
to some smooth psh function ¢ outside some set K € 2 on (2. Let

U= ddOuy, N Nddu,y, Sy = ddCug A - A dd gy,
We let S;;, as in the proof of Theorem 3.3.6. We prove by induction in j that

w1y Sin = U-1)S;
as k — oo and for every 2 < j < m + 1 (by convention we put ngﬂ)k =S5, :=1).The
claim is clear for j = m + 1. Suppose that it holds for (j + 1). We need to prove it for
j- Let Rjo be a limit current of w; ,,, 57, as k — oo. By induction hypothesis (3.3.6) for
(j +1) instead of j, S}, — S; as k — oo. This combined with the fact that the sequence
(u};)x converges in Lj,. to u; gives

loc

Rjoo S Uj_lsj.
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On the other hand, since Wy, > ujk, We get

/ / —m+j5—1 / —m—+j—1
/Qu(jl)ksjk/\wn Tz /Q%—nksjk/\w” m

= / UjkddCU(jfl)k VAN SEj-i-l)k A w”_m+j_1
Q

> / u(j—l)ijk A wnfm+j71 — / uj,lSk A\ wnfm+j71
Q Q

as j — oo by Theorem 3.3.6. Hence R;., = u;_1S;. This finishes the proof. O

Corollary 3.7.2. Let (u;); be a sequence of psh function uniformly bounded increasing to a
psh function u. Let (u’;); be a sequence of psh function uniformly bounded such that u); > u;
and u; converges to u in Lj,.. Then u; converges to u in capacity.

Proof. Let € > 0 be a constant. Observe that
{lu—uj| > 6} C{uj —u; >0} U{u—u; > 5}

Let K € U € (2 be open sets. Since (u;);, (u}); are uniformly bounded, using Lemma
3.3.3 gives

—-n

cap(K N {u—u; > 0},8) < 610(/U<u —~ uj)(ddcuj)n>2

and

—n

cap(K N{uj —u; > 6},Q) < 5‘1(,‘(/(](% _ Uj)(ddcuj)n>2

where C > 0 is a constant independent of j. The right-hand sides of both inequality tend
to 0 as j — oo thanks to Theorem 3.7.1. The desired assertion hence follows. O

Proposition 3.7.3. Let (u;);es be a family of uniformly bounded continuous psh functions,
and u := (sup; u;)*. Let € > 0 be a constant. Then there exists a closed subset A in ) such
that cap(A, Q) < e and u is continuous on 2\ A.

Note here that the usual quasi-continuity of psh functions implies that psh function
are continuous outside an open subset A with small capacity. In the above statement, A
is closed. This fact might be useful in practice.

Proof. One just needs to use Corollary 3.7.2 and argue as in the proof of Theorem 3.3.4.
We will obtain a closed subset A in U such that cap(A, U) < e and u is continuous on U\ A.
Notice that the exceptional set A is closed because in the current setting the sequence
u’; increases to u (almost everywhere), while in the setting of Theorem 3.3.4 we have a
sequence decreasing to u. O
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The following continuity property of Monge-Ampeére operators covers both those for
increasing and decreasing sequences (Theorems 3.3.6 and 3.2.5).

Theorem 3.7.4. Let ) C C" be an open set. Let (T}); be a sequence of closed positive
currents satisfying Condition (x) so that T}, converges to a closed positive current T on ) as
k — oo. Let u; be a locally bounded psh function on €2 for 1 < j < m. Let (u;x)ken, (W), )ken
be sequences of locally bounded psh functions converging to u; in L}, as k — oo such that
u;k > ;. Then, the convergence

uypddudy, A -+ A ddCul,, ATy, — wddCug A -+ - A ddum AT (3.7.1)

as k — oo holds provided that one of the following two conditions is fulfilled for each j:

(1) wjr(z) /" u;(z) for every x € Qas k — oo,

(1) u;i(z) / uj(x) for almost everywhere x € () (with respect to the Lebesgue measure)
and T has no mass on pluripolar sets.

Proof. Assume for the moment that (3.7.1) holds for wy;, in place of u};. Then arguing as
in the proof of Theorem 3.7.1 gives (3.7.1). Hence it remains to check (3.7.1) for u;; in
place of uj;. Let

Sik = ddujp A - - NddUpp ATy, Sj = dduj A -+ A dd Uy, N'T.
We prove by induction in j that
u(j—l)ijk — u(j—l)Sj (372)

k and for every 2 < j < m + 1 (by convention we put S(,,11), := T and S,, ;1 := T). The
claim is true for j = m + 1. Suppose that it holds for (j + 1). We need to prove it for j.
Let R be a limit current of u;_1),S;;, as k — oo. By induction hypothesis (3.7.2) for
(7 +1) instead of j, Sj; — S; as k — oo. This combined with the fact that the sequence
(ujx), converges in Lj,. to u; gives

loc
Rjoo S uj_lSj (373)

(Lemma 3.2.1). On the other hand, since (u;x) is increasing, using Corollary 3.3.5, we
obtain

hgn inf ug_1)rSje > hm mfu (i—1)sOjk = U(j—1)s9]
—00

for every s € N. Letting s — oo in the last inequality gives
Rjoo > (hm U(j—1)s)S; = uj—15; + (hm U(j—1)s — Uj—1)S;. (3.7.4)

Recall that the set of x € U with u;_(x) > lim,_, u(j_1)s(x) is empty in the setting of
(7) and is a pluripolar set in the setting of (i) by Theorem 3.6.5. Hence (3.7.2) follows
from Lemma 3.3.2, (3.7.4) and (3.7.3). The proof is finished. l

The following remark will be important in next chapters.
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Remark 3.7.5. By the above proof and Lemma 3.3.2, Property (ii) of Theorem 3.7.4 still
holds if instead of requiring T has no mass on pluripolar sets, we assume the following two
conditions:
(¢) T has nomasson A; == {z € U : uj(x) # limy_,o0 ujr(x)} for every 1 < j < m and,
(17) the set A, is locally complete pluripolar for every j.

We conclude this section with the following result.

Corollary 3.7.6. Let (u;); be a sequence of psh function uniformly bounded increasing to a
psh function u. Let (u};); be a sequence of psh function uniformly bounded such that u); > u;
and uj; converges to u in L}, Then u; converges to u in capacity cap, for every closed
positive current T having no mass on pluripolar sets.

Proof. Similar to the proof of Corollary 3.7.2. O

We now present an important setting where we can define Monge-Ampeére operators
for unbounded psh functions. Let w be the standard Kéhler form on C”. Let (2 be an open
subset in C". Let T be a closed positive current of bi-degree (p, p) with p < n on Q. Let
u be a psh function on 2. The unbounded locus L(u) of u is the set of z € 2 such that
u is unbounded in every open neighborhood of z. Observe that L(u) is closed, and it is
empty if u is bounded. When u = log ||z — a|| for a € ©, then L(u) = {a}.

Lemma 3.7.7. Assume that L(u) NSuppT is compact in 2. Then u is locally integrable with
respect to the trace measure of T. Hence the current dd“u AT := dd°(uT) is well-defined.

Note that the hypothesis that p < n is necessary. When p = n, take T be the the
Dirac mass at a, then log ||z — a|| is not locally integrable with respect to J,. A weaker
version of Lemma 3.7.7 was presented in [13, Page 151] requiring an extra assumption
that L(u) N SuppT is contained in a Stein open subset in 2. This condition is actually
superfluous as the proof below shows.

Proof. We give a sketch of proof, and refer to [13] for detailed arguments. By wedging
T with w"?~!, we can assume that 7" is of bi-dimension (1,1). Let K € U &€ () be open
subsets such that U contains L(u) N SuppT'. Since u is bounded from above on compact
subsets, the desired assertion is equivalent to checking that

/ ul N w > —00. (3.7.5)
K

Let 0 < x < 1 be a smooth cut-off function with compact support in U and x = 1 on
an open neighborhood of L(u) N SuppT'. Let v be a smooth psh function on 2 such that
dd“(z) > 0 for every z € (2. We can take for example (z) = ||z||?>. Since 1) is strongly
psh, in order to get (3.7.5), it suffices to check that

I Z:/XUT/\ddC1/J > —00.
Q
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By integration by parts we get
I, = /queT/\ dd‘) (3.7.6)
= /QX@/)ddcu6 AT + /Qddcx A upT + 2 /Q Ydu, Ndx N'T
= /waddcu6 AT + /Qddcx A u)T — 2 /Q uedp Ndx NT.

Let I, I, I3 be the first, second and third term in the right-hand side. Let 0 < x; < 1 be
a smooth cut-off function with compact support in 2 such that x; = 1 on U N Suppy. We
have

I, = / xYdduc NT < / xi1dduc AT
Suppx Q
= / ueddx1 N'T
Q
= / ueddx1 NT — udd®x1 AT > —o0
Suppx1\L(u) Suppx1\L(u)

because u is uniformly bounded on Suppy;\L(u). We treat I, I3 similarly. So we get
I :=lim,_,q I, > —o0. This finishes the proof. H

Note that similar arguments also allow us to prove the following. We leave it as an
exercises for readers.

Lemma 3.7.8. Let X be a complex manifold with a Hermitian metric w such that there
exists a bounded psh function i) on X such that for every compact K in X, there exists a
constant cy satisfying dd“t) > cxw on K. Let n be a continuous (1,1)-form. Then every
n-psh function is locally integrable with respect to every closed positive current of bi-degree
(p,p) with p < dim X.

As in the case of bounded psh functions, we have the following continuity property.

Theorem 3.7.9. Let T be a closed positive current of bi-degree (p, p) on Q with p < n. Let
Ui, ..., Uy (m < n—p) be psh functions on 2 such that L(u;) N SuppT" € € for every j. Let
(u;r)x be a sequence of psh functions on 2 converging to u; in L;,. and w;;, > u; for every
j, k. Then we have

Wi pddugp N - N ddUpp, AT — urddug A -+ A\ dduy,, N'T

weakly as k — oc.

Theorem 3.7.9 was proved in [13, Page 152] under an extra assumption that (2 is
Stein. We note that the usual arguments as in Theorem 3.2.5 or in [13, Page 152] don’t
work directly because 2 is not Stein.

Proof. Put

ij = ujkddcu(j+1)k VANRREIVAY ddcumk A T, Qj = Ujddcu]'+1 VANRRRIVAY ddcum ANT.
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We prove by induction on j that );; — Q); as k — co. When j = m, it is clear thanks
to Lemma 3.7.7. Assume it is true for j + 1. We prove the desired assertion for j. By
the proof of Lemma 3.7.7, the mass on compact subsets of the family (i), is uniformly
bounded. Let @} be a limit current of (Q;x), as k — oo. As usual we note that Q; < @Q);.
Let 0 < x < 1 be a cut-off function with compact support in €2 such that y = 1 on an open
neighborhood of L := UL, L(u;) N SuppT. We will prove that xQ} = xQ;. We already
have Q) < xQ;. We prove the converse inequality. By wedging 7" with w"~?~""/, we
can assume that ) is of bi-degree (n,n). Let u§ and u5, be standard regularisation of
uj, uj), respectively. Observe u; < u§ < u§,. By this and integration by parts as in (3.7.6)
one obtains

/ XQ; < / Xugpdd ugin) A dd°Qjyo
Q 0
= / XtjprdduSy, A dd°Qjn + / Ul 1ddox N dd°Qjy2
0 0
— 2/ uGpdujiy AN doX A dd°Qjy2.
Q

Letting ¢ — 0 and noticing that u; are locally bounded on an open neighborhood of the
supports of dd“x and dx ({x = 1} contains an open neighborhood of U7, L(u;) N SuppT
gives

/ XQj < lim 1nf/ XUj+1ddCU§k A dchj+2 + / Ujk;Uj+1ddCX A ddCQ]’+2
Q =0 Jg Q\L

- 2/ Ujkde+1 A ch VAN dchj+2.
Q\L

Let Ay, Aok, Az, be the first, second and third term in the sum in the right-hand side of
the last inequality. We define A5, , A5, by substituting u;,, by u;41) in the integral defin-
ing Ajy, Asi, respectively. By Corollary 3.3.5 and noticing again that u,;, u; are locally
bounded on 0\ L, we infer

k—o0

On the other hand, by induction hypothesis, the current dd“uf, A dd°Q;,» converges
weakly to dd“uj, A dd°Q;o as e — 0. This combined with the inequality u;;1 < g1y
gives

Ay < Ay = / XU+ 1)edd wjp N ddQ 4o
Q
Thus we conclude that

/Q XQj < lminf(Ay, + Ay, + Ay,) = /Q Xujkdd iy A dd°Qjya.

Repeating this procedure for u;,, ..., u,, we obtain that

/QXQJ S/QXij-

Hence x(@); = x@;i. This finishes the proof. O
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It is now a right time to introduce the following notion.

Definition 3.7.10. We say that the intersection of dduy,...,ddu,,,T is classically well-
defined if for every u; > u; for 1 < j < m, and every non-empty subset J = {ji,...,js} of
{1,...,m}, we have that u/;_is locally integrable with respect to the trace measure of T' and
inductively, /; is locally integrable with respect to the trace measure of A\;_, ., dd°u, AT

forr=s—1,...,1, and
UjlkddCUij VANCEIVAN ddc’u]'sk ANT — ujlddcujz VANCEIEIVAN ddCUjS ANT

as k — oo, where (uj; )y, is a any sequence of psh functions converging to u; in L}, such that

loc
Ujk 2 Uj.

The above definition is independent of the local potential of dd“u;. See [25, 27] for
variants of this definition.

Proposition 3.7.11. Let u4, ..., u,, be psh functions such that ddu,...,ddu,,, T have a
classical intersection. Let (uj i), be a sequence of psh functions converging to u; in L}, such

that uj, > ;. Then the sequence Qi = N_, dd°uj, A\ T satisfies the Condition (x). In
particular;, (Qy)y satisfies the property mentioned in Theorem 3.7.4.

Proof. We will use arguments similar to those in the proof of Theorem 3.2.5. Notice
that by hypothesis, the intersection A", dd°u; A T is symmetric in uy, ..., u,,. Let v be
a bounded function on 2 and (v;); a sequence decreasing to v as k — oo. We need to
check that

(v — u)(ddv)™ AT, — 0

as k — oo for every integer m’ > 0. As usually (by the uniform boundedness of v, v) we
can assume that v, < 0,0 <0, Q is a ball in C" and there is a smooth psh function v on
Q2 such that

V=0 =1

outside some compact subset in an open neighborhood of (2, and all functions and cur-
rents in consideration are defined on an open neighborhood of Q in C", . Since the
arguments are more or less standard modulo what we have gone so far, in what follows
we only present the complete proof for the case where m’ = 0 and m = 1, i.e, we will
prove that

vpQr — vQ. (3.7.8)

The general case follows from analogous argument with a bit more messy writing. Let R
be a limit current of the family (v, Qy)x as k — oo. Put Q) := dd“u; A T. We have R < u@
by Lemma 3.2.1. We will prove that the masses of R and u@ on () are equal. To this end,
without loss of generality, we can assume that () is of bi-dimension (n,n). Let vy, u., 1.
be standard regularisations of vy, u, ) (on an open neighborhood of €2). Since v — ¢ = 0
outside some compact subset in (2, we obtain

Vk,e = Ve = we
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outside some compact subset in (2 if € is small enough. Since v < v, < v, we get

/Q 0Q < /Q 04 @ = /Q (vhe — $)Q + /Q 5.Q.

By integration by parts, we get

/(Uk,e - 17/}6)@ = / ulddc(vk,e - we) AT
Q Q

= / wrddvge NT — / urddp. N'T
Q Q

< / upddvge NT — / urddspe N'T
Q Q

= / Uredd (Ve — V) NT + / Urpddte N'T — / urdd®ipe N'T
Q Q

Q

= / (Uhe — P )dduy, AT + / wipddp, AT — / wddy. AT
Q Q Q

because u; < uy. Letting ¢ — 0 yields

/QUQS/QUka-

The desired assertion hence follows. This finishes the proof. O

We have known that the intersection of dd“uy, ..., dd°u,,, T is classically well-defined
if L(u;) N SuppT € 2 C C". We present now another very important setting where the
classical intersection of closed positive (1, 1)-current is well-defined. We start with a basic
lemma. For every constant 0 < p < 1, let D, denote the disk of radius p centered at 0 in
C.

Lemma 3.7.12. Let 0 < p; < p2 < p3 < 1 be constants. Then there exists a smooth
subharmonic function v > 0 on D\DD,, such that Suppv € D and

v>0, ddv>0
n DPS \DPQ‘

Proof. Let vi(z) := 1/|z|>. We have dd‘v; > 0 on D,,\D,,. Let p3 < p; < 1 be a constant
and ¢ := 1/p/?. Let y be a smooth convex increasing function such that y = 0 on (—c0, (|
and y/'(t) > 0 for t > 1/p3. Put v := x(v;). Then v is subharmonic, v(z) = 0 for |z| > p}
and

ddv > x'(v1)ddvy > 0

on D,,\D,,. This finishes the proof. O

One can see that the above proof doesn’t work in higher dimension due to the Hartogs’
phenomena. Let n > 2. Let 0 < r,7; < 1 be constants. Let

H:={(z,w) e D"PxD": |w|]| <r}U{(z,w) e D" P xDP:r; < |z| <1},
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where z = (z1,...,2,—p), |2]| == max{|z1],...,|z—p|}, and w = (w1,...,wp), || =
max{|wi|,...,|w,|}. The set H is called the standard (n — p, p) Hartogs figure. Observe

D"\H = {(z,w) € D" : [|z[]" <7y, [Jwl" = 7}

We put H := D". Generally, the image H of every standard (n—p, p) Hartogs’ figure under
a biholomorphism ¥ from D" to a bounded domain in C”" is called a Hartog’s figure, and
we also put H = U (D"™). Here is a deep estimate concerning the mass of currents on
Hartogs figures.

Theorem 3.7.13. (Oka’s inequality for currents) ([19]) Let H be the standard (n — p,p)
Hartogs’s figure. Let 0 < p < 1 be a constant. Then there exists a constant C, such that for
every negative current () of bi-dimension (p, p) with dd°Q > 0, we have

1Q

We will apply the above result to ) := uT, where T is a closed positive current and u
is a negative psh function.

pn + ||dd°Q| D < CP”Q”H‘

Proof. Before going into details, we observe that the size of the Hartogs figure plays
no role here, that means that the specific values r;,r are not important for our below
estimates. At the end of the proof we will need to deform slightly our Hartogs figure but
this will cause no problem at all. Let

Wi = {(z,w) € D" XDV 2 p > |wy| > r}

for1 <j<pand
H :={(z,w) e D" P x DV : 1 <|z]| < 1}.

Observe that
]D)Z\H = U§:1Wj. (3.7.9)

Hence it suffices to estimate the mass of currents on ;. Put W := ;. We claim that

1Qllw + lldd°Qllw < Cpl| Q- (3.7.10)
Assume for the moment that (3.7.10) is true. Then one just needs to apply consecutively
(3.7.10) for ws, ..., wy in place of w; to get the desired inequality. It remains to check
(3.7.10).

Letr; <rj <land 0 <7 < r < p' <1 be constants. Let 0 < x1(2), x2(w) < 1 be
smooth cut-off functions such that

Suppy: € {||z]' <71}, Suppxe € {r' < |w| < '},

and x; = 1 on an open neighborhood of {||z||' < r}. We will choose x, explicitly later.
Let
0= ]D):”,;p x {r" < |lw|" < o'}
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Observe Supp(xi1xz2) € §2. Let S be a smooth closed positive form on (2. Observe that

[xadaQrs = [ artawens
0 Q
It follows that

0 0 Q

By Lemma 3.7.12, we can choose a smooth subharmonic function v(w,) on {|w;| > r/2}
such that dd“v(w;) > 0and v > 0 on {r' < |wy| < p'}. Let w’ := (wo,...,w;) and

Xz(w) = v(ws) + x3(w'),
where 0 < y3(w’) < 1 is a smooth function with compact support in D! and y; = 1 on
7Pt Let S := (dd°||w'||*)?~". Note that

ddxa A S 2 (dd°[lw]]*)”

on {r < |wy| < p'} x DP~! because every bad terms from ddy, are canceled when
wedging with S. Using this and (3.7.11), we obtain that

ldd°@ A (d*[[w'|*)Pllw + [|Q A (dd*Jwl*)Plw < /Qddc((l = x1)x2) (Q) A S S [1Qllmr
(3.7.12)
because dd°((1 — x1)x2) = 0 outside H'. The last inequality is almost what we want. The
remaining issue is that ||Q A (dd®||w||*)?|lw is less than ||Q|/w because we need to take

into account
Q A (dd*([lwlf® + ||2[*))”

when computing ||Q||w. We bypass this problem by applying (3.7.12) to small generic
perturbed coordinates of w. To be precise, we can consider

wj = wj; + €t;

for 1 < j < p, where ¢; is one of z,..., 2, ,, wq,...,w, Denote by A the set of such
coordinate systems and the original coordinate system w itself. Since ¢ is small, we still
have

|wy| > 7

for some fixed constant 7 > 0 for @w € W. This allows us to apply (3.7.12) to these new
coordinates w'. Hence we obtain

ldd“@ A (dd*|[w'|*)?llw + |Q A (dde||[*)" w < /Qddc((l —xx2) (@) A S S Q-
(3.7.13)

Summing up (3.7.13) over A and noticing that dd°||w||* 4+ dd°||w||* = dd°|t;|*, we get
(3.7.10). The proof is finished. O
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Lemma 3.7.14. Let u, v be psh functions on D". Let 1 < p < n — 1 be an integer. Let T' be a
closed positive current of bi-dimension (p+ 1,p+ 1) on D". Let 0 < p < 1 be a constant. Let
(ug)x and (vy)y, be sequences of psh functions converging to u,v in L}, (D") respectively such
that v, > v and uy;, > u for every k. Assume that v is locally bounded on H and wu is locally
integrable with respect to the trace measure of T. Then, the following two properties hold:

(1) v,vy are locally integrable with respect to the trace measure of T, and u,uy are
locally integrable with respect to the trace measure of dd°v AT, dd“vy A T, respectively, and
ugdd®vx AT converges weakly to udd‘v AT as k — oo in D",

(1) if (Tx )y s a sequence of closed positive currents of bi-dimension (p+1, p+1) such that
uy, 1s locally integrable with respect to the trace measure of T), and uyT, — uT as k — oo
and for every bounded psh function w, we have wdd‘u; N\ Ty, — wdd“u AT as k — oo, then
updd®v, AT, — udd“v AT as k — oo.

Proof. We first check (7). By Theorem 3.7.13 applied to v.T" (we can, as usual, assume
that v < 0 and here v, is the standard regularisation of v), the functions v, v, are locally
integrable with respect to 7. Combining this with Lemma 3.2.1 implies that v, 7 —
vT. In particular dd“vy A T converges to ddv AT as k — oo. By Theorem 3.2.5 or
Corollary 3.2.7, u is locally integrable with respect to the trace measure of ddv A T
and dd‘vy; AT on H. Since u, > u, we also obtain that u, is locally integrable with
respect to the trace measure of dd“v; AT on H. Using this and Theorem 3.7.13 again,
we see that the functions u;, u are locally integrable with respect to the trace measure of
ddv, AT, dd°v AT respectively.

Put @ := udd“v A T. Now let the notations be as in the proof of Theorem 3.7.13.
By Theorem 3.7.13 and the Chern-Levine-Nirenberg inequality and the fact that vy is
uniformly bounded on fixed compact subset in H, we see that the current uydd“vy AT
is of mass bounded uniformly on compact subsets in D". Let R be a limit current of the
family (urdd®vy AT)y as k — oco. As usual we get

R <uddvAT.

We check the inverse inequality. Since R = uddv AT on H by Corollary 3.2.7, using
(3.7.9), we see that it suffices to prove that

/XlXQR:/X1X2UddC'U/\T.
Q Q

Let u¢, u;, be standard regularisations of u, u; respectively. We define similarly v<, vf. Let
S := (dd®log ||w'||?)P~. Applying (3.7.11) to Q. := uiddvy A T gives

/ X1X2dd Qre NS + / ddxo N (—Qre) NS = / dd®((1 = x1)x2) (—Qre) A S.
Q Q 0

Let Ay ., Ay, A3 . be the first, second, and third term from left to right. We obtain similar
Al A AL for Q) = ufdd®v AT. Since dd°((1 — x1)x2) € H, we infer

lim lim(As. — A5 ) = 0.

k—o0 e—0
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We are going to prove a similar assertion for A, .. Using v < uy < uj, and dd°xa AS >0
(recall S = (dd°||w'||?)?~* and y- is chosen explicitly as in the proof of Theorem 3.7.13),
we get

Al = / x1vdd“xs A dduj, AT + terms with dy,
Q

which is
< / X10kddxe A ddus, N'T N S + terms with dy;.
Q

We don’t have to worry about terms with dy; because its support lies in H, so everything
is ok. We deduce that
lim lim(A; — A7) > 0.

k—o0 €e—0

It follows that
lim lim (A — A5 ) <0.

k—o00 €0

In other words,

lim lim (/ ddxo AN upddv, N'T NS — /
Q

k—o0 e—=0 0

ddxo N\ upddv NT A S) > 0.

Now by perturbing {2 and the Hartogs’s figure by using generic Euclidean change of
coordinates as in the end of the proof of Theorem 3.7.13, there exists a smooth strictly
positive (n — p,n — p)-form ® on an open neighborhood of Q (i.e, ® > w"P) such that

lim lim </ updd v NT NP — / upddv AT N (ID) > 0.
k—o0 €0 Q 0
Using this and the inequality u; > u gives

lim lim (/ upddvpy N TN P — / uddv AT N CID) > 0. (3.7.14)
k—o0 €e—0 Q Q

Now we perturb a bit ) such that the trace measures of ddv, A T,dd°v A T, R have no
mass on Jf2. Using this and letting ¢ — 0 in (3.7.14) yield

/R/\@—/uddcv/\T/\CI): lim lim(/ukddcvk/\T/\Q)—/uddcv/\T/\q)) > 0.
Q Q k—o00 €—0 0 Q
(3.7.15)

Hence R = udd“v AT, and (i) follows. The second desired assertion (ii) is obtained by
arguing similarly as above with Qhe := ugdd®v; AT}, in place of () .. Notice that we need
to use the hypothesis on 7}, when comparing A/LE and A, . (analogous versions of Al
and A, ). This finishes the proof. O

Let H,, denote the m-dimensional Hausdorff measure on C". Recall that #,, is pro-
portional to the Lebesgue measure on C". For basic material on Hausdorff measures, one
can consult [18].
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Lemma 3.7.15. Let € be an open subset in C". Let E be a closed subset in () such that
Ha,(E) = 0. Then for every x € E, there exists a (n — p, p) Hartogs’ figure H in Q such that
HNE=@andx € H.

Proof. Let L be an affine (n — p)-dimensional complex subspace in C". Let L; be a p-
dimension complex subspace transverse to L. Let 7 : C* — L; be the natural projection
along L. Recall that

Hap(E) = supinf { Z(diam(Es))Qp : E C UXEs, diam(E;) < 5}.

>0 B

Since 7 is Lipschitz on compact subsets in C", using the above formula, we infer that
Hap(m(E)) = 0. Hence for almost everywhere = € L, the (n — p)-dimensional complex
subspace 7 !(z) doesn’t intersect E.

Now fix zp € E. We can assume z, = 0. Let G,_, be the Grassmanian space of
(n — p)-dimensional complex subspaces of C". Note that dim G, , = p(n — p). Let G,
be the space of (z, L) where L € G,,, and x € L. Observe that G/ is a submanifold of
C" x G, of dimension (n — p)p +n — p. Let m;, 7, be the natural projections from G,
to the first and second components. For z # 0, the fiber ; *(x) is of codimension n. This
combined with the fact that H,,(E£\{0}) = 0 implies that

Ham-pp(m (E\{0})) = 0.
Arguing as in the first part of the proof, we deduce that

Ham—pyp (m2(m (E\{0}))) = 0.

Since my(m; (E\{0})) C G,_, which is of real dimension 2(n — p)p, we obtain that
mo(m;  (E\{0})) is of zero Lebesgue measure in G, . It follows that almost every affine
(n — p)-dimensional complex subspace L passing through x, doesn’t intersect F' except
at xg. Let L be such a subspace.

Let L' be the p-dimensional complex subspace passing through z, and orthogonal to
L. Let (z,w) be coordinates on C" such that {z = 0} = L+ and {w = 0} = L. For every
constant r > 0, let D?(zo,r) C L+ and D" P(xq,r) C L be polydisks. Since £ N L = {z,}
and E is closed, we can choose ' small enough such that B := D" ?(xq,r) x D,(zq,1")
doesn’t intersect E.

Since most of subspaces parallel to L doesn’t intersect £, we choose a sequence of
(n — p)-dimensional subspaces (L,); parallel to L such that L; — L as j — oo and
L; N E = @. Let x; be the intersection point of L; and L*. We have z; — zy as j — oco.
Put

Bj :=0D" P(x;,7) x Dy(z4,1").

Put D; := D" P(z;,r) x D,(x;,r) which is a polydisk containing =, if j is big enough.
Since B; is compact and B; — B which doesn’t intersect F, we infer that B, N E = @
as j big enough. Fix such a j. Hence by thickening a bit the set B; U (D" ?(x;,r) x {0})
inside D; (where D" ?(x;,r) is the polydisk in L; centered at x;), we can find a small
constant 0 < r” < r such that

H:={(z,w)eD;:r—r"<|z| <r}U{(z,w) € D; : |Jw|" <"}
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doesn’t intersect E. Clearly H is a Hartogs figure and H = D; containing z,. This
finishes the proof. O

Corollary 3.7.16. Let E be a closed subset in €2 such that H,(E) = 0. Let K be a compact
subset in Q). Then there exists a compact K, in Q\FE and a constant C' such that for every
closed positive current T of bi-dimension (p,p) on ) and every negative psh function u on
Q, we have

[uT [k < ClluT ||k,

Proof. This is a direct consequence of Lemma 3.7.15 and Theorem 3.7.13. O

Theorem 3.7.17. ([19]) Let Q2 be a domain in C". Let T be a closed positive current of
bi-dimension (p,p) on Q with p < n. Let L4, ..., L,, be closed subsets in ) such that for
every subset J C {1,...,m} we have

Hap—s1+2( Njes Lj N SuppT’) = 0.

Let uy, ..., un (m < p) be psh functions on 2 such that L(u;) C L; for every j. Then u; is
locally integrable with respect to the trace measure of dd“w;+1 A - -+ A dd°u,, N T for every
1 < j < m, and for every compact K in ) there exist a constant C and compact subsets
Ky, ..., K, dall independent of T, uy, ..., u, such that K, N L; = & forevery 1 < j < m,
and

[urdduy A -+ A ddup AT < Cllus |z - |t | ey | T - (3.7.16)

Furthermore, let (u i), be a sequence of psh functions on ) converging to u; in L}, and
u;i, > u; for every j, k. Then w;j is locally integrable with respect to the trace measure of

ddugji1ye A -+ - A ddUumip AT for every 1 < j < m, and we have
wipddugy N - N ddUpp, NT — urddug A -+ A dduy, AT

weakly as k — oc.

Here |J| denotes the cardinality of J. We refer to [13] for a weaker version of this
result where Hoj,_o)s)42 is replaced by Hop_o)jj41-

Proof. We prove by induction the desired assertions on m. Assume that they are true for
m — 1. We check them for m. Note that by induction hypothesis the operator dd“u;;, A
- Add®Up,p AT is symmetric in wj, . . ., upy for 2 < j < m, and they satisfy the Condition
(x) by Proposition 3.7.11. We will need this observation at the end of the proof.

Let Qjx, Q; be as in the proof of Theorem 3.7.9. We will prove that (); and @y, are
well-defined (Q;, @; are well-defined for j > 2 by induction hypothesis). Let

E :=nNi, Ly N SuppT.

Let K € Q. By hypothesis Ha, om12(E) = 0. By Lemma 3.7.15, there exists a compact
K, € Q\FE such that

1Q1llx S 1@, -
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Let z € K. We have either = ¢ N7, L, or ¢ Supp7'. If the latter case occurs, it is clear
that (), is zero on some small open neighborhood of x. We consider x ¢ N, L. Then
u; is locally bounded near z for some 1 < j < m. If u,; is locally bounded, then we are
done. If u; is bounded for some j > 2, then by symmetry, we can assume that v, is locally
bounded. Thus

Ql = UlddCUQ N dchg.

Since u, is locally integrable with respect to ()3 by induction hypothesis, using Theorem
3.2.5 or Corollary 3.2.7, we infer that (), is of finite mass on compact subsets, and

Q1B S w2l Lo @a,20)) [|u1 dd“Qs]|B(z,2¢)

where ¢ > 0 is a constant small enough so that u, is still bounded on B(x,2¢). By
induction hypothesis, we get

|urdd Q3 |Bee2e) S uall ooy ) llUslloemre) = tm | oo (1) | T |25

where K, is some compact subset having empty intersection with L,. Hence letting x
run over K and using the compactness of K, we deduce (3.7.16). Similar arguments
also show that )y is of mass bounded uniformly on compact subsets.

Let () be a limit current of (Q1x)x as k — oo. As usual we note that Q) < Q. Let xy €
Q. If xy & SuppT, then both @)}, Q); are zero in a small open neighborhood of x. Consider
xo € Supp7. By the hypothesis and Lemma 3.7.15, we can find a (n—(p—m+1),p—m+1)
Hartogs’ figure H such that H N (N7, L; N SuppT) = @ and =z € H. Hence there is
1 < jo < m such that u,, is locally bounded in H. If j, = 1, then we get )} = ), locally
near x, thanks to Proposition 3.7.11 and the induction hypothesis (the intersection of

dd‘us, . .., dd"u,,, T is classically well-defined and u, is bounded on a small neighborhood
of l’o) .
Consider j, > 2. Since dd°Q), is symmetric in us,...,u,, by induction hypothesis.

Without loss of generality we can assume j, = 2. We are now being exactly in the
situation in (ii) of Lemma 3.7.14 with dd°Q3, dd°Qsy, uq, us in place of T, Ty, u,v. Using
that lemma we obtain the desired convergence. This finishes the proof. O

In the last part of this section, we will define Lelong numbers of closed positive cur-
rents.

Proposition 3.7.18. Let u, ' be psh functions which are locally integrable with respect to
the trace measure of T and u > u'. Then we have

l{u:_oo}ddcu ANT < l{u/:_oo}ddcu ANT < l{u/:_oo}ddcu' ANT.

Proof. Since u > u/, we get {u = —oo} C {v/ = —oo0}. Let ¢ > 0 be a constant. Put
wj = max{(l — e)u — j,u'}. We have w; = (1 — ¢)u — j on {v/ < —j/e} because u > u'.
Using this and Theorem 3.3.9, we obtain

ddcwj AT Z 1{u/<,j/6}ddcwj AT
= (1 - e)l{u/<_j/6}dd‘:u ANT > (1 - e)l{u/:_oo}ddcu ANT.
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Letting j — oo, and then ¢ — 0 gives
ddu' AT > 1y ooyddu AT,
This finishes the proof. O

The last result was proved in ([1] and also [13]) when 7" is a Monge-Ampere of closed
positive (1, 1)- currents. We define the Lelong number of T at a € € to be

v(T,a) = /{ }(ddc log ||z —al)" P AT.

The last expression is well-defined thanks to Lemma 3.7.7. The following is a direct
consequence of Proposition 3.7.18.

Theorem 3.7.19. (comparison of Lelong numbers) Let uy,u}, ..., un,,u,, be psh functions
on X such that the intersections of dduy, . .., ddu,,, T and of dd“uy, ... ,dd“u,,, T are clas-
sically well-defined. Assume that u; > u} for 1 < j < m. Then we have

Lo uy=oc) [\ ddus AT < T = ooy [\ ddu AT (3.7.17)
Jj=1 j=1
and
v(dduy A -+ AN dduy, AT, z) < v(dduy A--- ANddu,, NT, x) (3.7.18)

for every x € Q. In particular for every a € ) and every psh function ¢ on an open
neighborhood of a in Q) such that p(x) — log ||z — al| = O(1) near a then we have

v(T,a) = /{ }(ddcgo)”*p AT.

The second assertion in Theorem 3.7.19 is due to Demailly [13]. The above result
implies that the notion of Lelong number is independent of the local coordinates ([13,
36]). Hence for every closed positive current 7' on a complex manifold X, for every
r € X, we can define the Lelong number v(7',z) of T" at z is that of 7" at z in any local
chart around z. Here is another way to calculate the Lelong number. We refer to [13,
Chapter 3] for proofs.

Lemma 3.7.20. We have
v(T,z) = (52("_p)77”_p/(n — p)!)fl / TAWP.
B(a,e)

Note that 2" P)g"~P/(n — p)! is the volume of a ball of radius e in C"?. So the
Lelong number is the infinitesimal quantity measuring the (n — p) dimension of the trace
measure of 7.

Proof. ???? O]
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Lemma 3.7.21. Let u be a psh function on ). Then for every x € (), we have v(u,x) =
v(ddu, x).

Proof. ??7? O
We admit the following fundamental result.

Theorem 3.7.22. (Siu [36], and [13, Chapter 3] for generalizations) (i) For every constant
¢, the set {x € Q : v(T,x) > c} is an analytic subset in ).

(17) There are irreducible analytic subsets (V;);en of dimension n — p on 2 and a closed
positive (p, p)-current R on ) such that for every constant § > 0 the set {z : v(R,x) > 0} is
of dimension < n — p, and

T=3% NVi+R,
j=1
for some constant A\; > 0.
(7i1) For every irreducible analytic subset V' in ), there exist a proper analytic subset W
in V and a constant A\ > 0 such that v(T,x) = X for every x € V\W, and v(V,x) > X for
every x € V. We call \ the generic Lelong number of 7" along V.

The above result can be deduced from a deep theorem due to Demailly saying that
one can approximate psh functions locally by those with analytic singularities. We refer
to [14, Section 14] for details.

Further notes. Lemma 3.2.1 is from [19]. Section 3.3 generalizing some results from [6,
7] is taken from [38]. Theorem 3.4.1 and Corollary 3.4.2 and Section 3.6 are essentially
from [6]. The proof of Theorem 3.4.1 is based on arguments from [21]. The case where
X = C" of Theorem 3.5.8 was proved in [26]. The proof was then simplified in [6] and
[4]. The case where X is projective or Kahler manifolds were proved in [16] and [20].
Finally Theorem 3.5.8 in the current form was proved in [37]. The capacity cap 3, was
introduced in [29] as an analogue to the local capacity cap. The capacity cap,,s was
introduced in [16], see [3, 35, 22] for related notions and more information. Theorem
3.7.4 generalizes a result from [38].
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