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Around 1940s Georges de Rham (Swiss mathematician, 1903-1990) coined the notion
of currents as a higher-dimensional generalization of the notion of distributions by Lau-
rent Schwartz (French mathematician, 1915-2002). Distributions have been nowadays an
indispensable part of partial differential equations. We will see that currents also play an
important role in developments of various fields in Mathematics.

De Rham had used currents to prove his famous theorem that the de Rham cohomology
of a smooth compact manifold (defined using differential forms) is isomorphic to the singu-
lar cohomology (a purely topological objects). Another non-trivial application of currents
by de Rham is his proof of Hodge theory. At the present time there are other standard
proofs of these just-mentioned fundamental results by tools which were not available at the
time of proofs of these theorem by de Rham: the first one is proved by sheaf theory, and the
second one is proved by using elliptic operators. These examples are, however, to mention
an already wide range of applicability of currents at time of its birth.

The notion of currents generalize both differential forms and oriented submanifolds.
They can be viewed as differential forms with distribution coefficients. As de Rham ex-
plained in his book [1] (see Footnote in Page 34), the term "current" has a physical in-
terpretation as an electrical current in the Euclidean 3-dimensional space. Currents have
played an vital role in geometric measure theory. A milestone is the solution of Herbert
Federer and Wendell Fleming of the 200 years old Plateau’s problem in the framework of
integral currents (see [6]). Much of the theory of currents developed by Federer-Fleming
and Federer himself later is essential for what forming the main objects of pluripotential
theory: closed positive currents.

Subharmonic functions are classical objects in analysis. Around 1940s again, Pierre
Lelong [9, 11] and Kiyoshi Oka [12] independently introduced the notion of plurisubhar-
monic functions which are higher-dimensional generalization of subharmonic functions on
complex plane. Plurisubharmonic functions are now one of the most spoken terms in com-
plex geometry. The notion of positivity for currents is due to Pierre Lelong [10]. One thus
can speak of closed positive currents generalizing effective analytic cycles (i.e., linear com-
binations of complex submanifolds with positive coefficients) and closed positive forms.
Complex Hessians of plurisubharmonic functions are basic examples of closed positive cur-
rents.

Humans are fascinated by geometry in general: counting objects, detecting intersection
of patterns, etc. In algebraic geometry, one is interested in studying intersection of algebraic
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varieties (see [7]). Correspondingly a fundamental question in pluripotential theory is to
understand how closed positive currents intersect. In terms of analysis, it means one wants
to study the wedge-product of closed positive currents. This question has occupied a central
part in this theory since its birth. Fundamental contributions are made by Chern-Levine-
Nirenberg, Bedford-Taylor, Demailly, Fornaess-Sibony, etc., for the question of intersection
of currents of bi-degree (1,1) (see [2]) and by Dinh-Sibony [5] for intesection of currents
of higher bi-degree. In the next paragraphs, we discuss a few applications of intersection
of currents which most pertain to my research.

Complex geometry. Holomorphic line bundles over compact complex manifolds are
fundamental objects in complex geometry. Their sections are good replacements for "holo-
morphic functions" on compact complex manifolds. For example, homogeneous polyno-
mials can be interpreted as sections of suitable line bundles on complex projective space.
Closed positive (1, 1)-currents already appear in complex geometry as singular positive Her-
mitian metrics on holomorphic line bundles. Many important quantities associated to line
bundles can be described in terms of intersection of currents such as volume of line bundles
or more generally restricted volumes. Such descriptions are crucial to study extension of
classical theory on line bundles to transcendental cohomology classes. A standard reference
is Demailly’s book [3].

Another main topic for which the pluripotential theory has an essential role is the study
of special Kähler metrics on Kähler manifolds. The quest of finding special Kähler metrics
on compact complex manifolds has been of central importance in complex geometry. A
classical example is the uniformization theory of Riemann surfaces where these surfaces are
classified by using the existence of Kähler metrics with constant Ricci curvature. Analogues
of this uniformization for higher dimensional compact Kähler manifolds (or to be more
precise, the existence and uniqueness of special Kähler metrics) have occupied much of
attention in complex geometry since more than fifty years. Since the pioneering work of
Yau [13] and others, it is well-known that finding such metrics can be boiled down to
solving a so-called complex Monge-Ampère equation: such an equation is highly non-linear
and of order 2. With the fundamental paper of Kołodziej [8], the pluripotential theory has
entered the field as a very important tool.

Complex Dynamics. In dynamics, one is interested in how systems evolve in time (past
or future). A main tool is the measure theory. In this case one speaks of measurable dy-
namical systems or ergodic theory. In ergodic theory, constructing meaningful invariant
measures of the dynamical system in consideration is fundamental. In the context of higher
dimensional complex dynamics, such measures are usually obtained as the intersection of
so-called Green currents which are closed positive currents (of higher bi-degree). Pluripo-
tential theory is hence indispensable for studying ergodic properties of these measures such
as equidistribution of periodic points or of forward or backward orbits of subvarieties. A
standard reference is the lecture note [4] by Dinh-Sibony.
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