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In the 1940s, the Swiss mathematician Georges de Rham (1903-1990) introduced the notion of currents as

higher-dimensional generalisations of distributions. The theory of currents has become an indispensable part of

the development of various fields of mathematics, in a manner analogous to the fundamental role of distributions

in partial differential equations.

The notion of currents generalizes both differential forms and oriented submanifolds. They can be thought

of as differential forms with distribution coefficients. As de Rham explained in his book [1] (see footnote on

page 34), the term “current” has a physical interpretation as an electric current in the Euclidean 3-dimensional

space. Currents have played a vital role in geometric measure theory. A milestone is the solution of the

Plateau problem by Herbert Federer and Wendell Fleming within the framework of integral currents (see [4]).

A substantial portion of the theory of currents developed by Federer-Fleming, and later by Federer himself, is

essential for what are the main objects of pluripotential theory: closed positive currents.

Subharmonic functions are classical objects of analysis. Again around the 1940s, Pierre Lelong [7, 8] and

Kiyoshi Oka [9] independently introduced the notion of plurisubharmonic functions which are higher-dimensional

generalizations of subharmonic functions in the complex plane. Plurisubharmonic functions are now one of the

most widely used notions in complex geometry. Complex Hessians of plurisubharmonic functions are basic

examples of closed positive currents.

People are fascinated by geometry in general, e.g., counting objects, detecting intersections of patterns, etc.

Within the realm of algebraic geometry, the intersection of algebraic varieties has been a focal point of interest

(see [5]). Correspondingly, a fundamental question in pluripotential theory pertains to the intersection of closed

positive currents. From an analytic perspective, this entails the study of the wedge-product of closed positive

currents. This question has played a central role in the development of this theory since its inception. Major

contributions have been made by Chern-Levine-Nirenberg, Bedford-Taylor, Demailly, Boucksom-Eyssidieux-

Guedj-Zeriahi for the intersection of (1, 1)-currents, and by Dinh-Sibony for currents of higher bi-degree (see

[3]). In the following paragraphs, we discuss a number of applications of intersection of currents that are most

relevant to my research.

Complex geometry. Holomorphic line bundles over compact complex manifolds are basic objects in com-

plex geometry. Their sections are natural substitutes for holomorphic functions on compact complex manifolds.

For example, homogeneous polynomials can be interpreted as sections of suitable line bundles on complex pro-

jective spaces. Closed positive (1, 1)-currents already appear in complex geometry as singular positive Hermitian

metrics on holomorphic line bundles. Many important quantities associated with line bundles can be described

in terms of intersections of currents such as the volumes of line bundles or, more generally, restricted volumes.

Such descriptions are crucial for studying extensions of the classical theory on line bundles to transcendental

cohomology classes. A standard reference is Demailly’s book [2].

Another main subfield of complex geometry in which the pluripotential theory plays an essential role is the

study of special Kähler metrics on Kähler manifolds. The search for special Kähler metrics on compact complex

manifolds has been of central importance in complex geometry. A classical example is the uniformization theory

of Riemann surfaces where these surfaces are classified by using the existence of Kähler metrics with constant

Ricci curvature.
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(The Ricci curvature of each surface, from left to right, is +1, 0, -1, respectively)

Analogues of this uniformization for higher dimensional compact Kähler manifolds (or, more precisely, the

existence and uniqueness of special Kähler metrics) have attracted much of attention in complex geometry for

more than fifty years. Since the pioneering work of Yau [10] and others, it is well-known that finding such

metrics boils down to solving a so-called complex Monge-Ampère equation. With the fundamental work of

Ko lodziej [6], the pluripotential theory has entered the field as a very important tool.

Complex dynamics and probability. In dynamics, one is interested in understanding how systems evolve

in time (past or future). A main tool is the measure theory. In this regard, one speaks of measurable dynamical

systems or ergodic theory. In ergodic theory, constructing meaningful invariant measures of the dynamical

system in consideration is fundamental. In the context of higher dimensional complex dynamics, such measures

are usually obtained as the intersection of so-called Green currents which are closed positive currents (of higher

bi-degree). Pluripotential theory is hence indispensable for studying ergodic properties of these measures.

In the following picture, we see the image of the Julia set of the map f(z) = z2+c, z ∈ C with c = −0.8+0.156i

(the Julia set is the set where the dynamical system f behaves most wildly). Since the Julia set is usually very

difficult to describe geometrically, analytic methods are crucial here: one can depict the Julia set as the support

of (or of self-intersection of) the Green current, which is a canonical closed positive current associated with the

holomorphic dynamical system in consideration.

One of my main interests in dynamics is the equidistribution problem, in particular, the equidistribution

of periodic points or of forward or backward orbits of subvarieties. In complex geometry and probability, one

encounters very often similar questions. In my research, I study the equidistribution of Fekete points or zeros

of random polynomials as the degree tends to infinity. The pluripotential theory methods, which I employ,

can be applied to approach other problems from approximation theory and mathematical physics such as the

distribution of beta-ensembles and physical gases (e.g. Coulomb gas). We refer to this Wolfram Demonstrations

Project for a graphic illustration of the distribution of zeros of Kac polynomials.

https://demonstrations.wolfram.com/ZerosOfRandomKacPolynomials/
https://demonstrations.wolfram.com/ZerosOfRandomKacPolynomials/
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