

EXERCISES 1

1. BASIC LEVEL

Problem 1. Let $\bar{B}(0, 1)$ be the unit disk in \mathbb{R}^2 . Calculate $\Theta_2(\bar{B}(0, 1), x)$ the 2-dimensional density of $\bar{B}(0, 1)$.

Here we describe a version of Hausdorff measure where we use coverings by balls instead of coverings by arbitrary sets.

Definition 1. For a metric space X , $s \in [0, \infty)$ and $A \subset X$ we set

$$B_\delta^s(A) = \inf \left\{ \sum_1^\infty \omega_s \left(\frac{\text{diam } A_i}{2} \right)^s : A \subset \bigcup_i A_i, \text{ where } A_i \text{ are balls of diam } < \delta \right\},$$

$$B^s(A) = \lim_{\delta \rightarrow 0} B_\delta^s(A).$$

The following simple facts were discussed in the lecture

- (1) $B^s(A) \geq H^s(A)$,
- (2) $B^s(A) \leq 2^s H^s(A)$.

Problem 2. Using the theorem of Besicovitch show that in the case of Euclidean space $X = \mathbb{R}^n$,

$$B^n(A) = H^n(A),$$

for every set A .

2. INTERMEDIATE LEVEL

Problem 3. Let S^2 be the unit sphere in \mathbb{R}^3 . Calculate $\Theta_2(S^2, x)$ the 2-dimensional density of S^2 .

3. ADVANCED LEVEL

Problem 4. Let $A = \bigcup_{k=0}^\infty [\frac{1}{2}10^{-k}, 10^{-k}] \subset \mathbb{R}$. Does A have a 1-dimensional density at 0?