

EXERCISES 5

Problem 1. Consider the following 2-dimensional analogue of Cantor set $A = \cap C_i$ given by the picture (C_0 is a regular triangle and we obtain C_{i+1} from C_i by removing bunch of regular hexagons). Show that

- (1) $\mathcal{H}^1(P_i(A)) = 1$, where P_i are orthogonal projections to sides of the original triangle C_0 ,
- (2) $\mathcal{H}^1(A) = 1$.
- (3) A is not 1-rectifiable.

Hint: Use area formula to see that $\forall E \subset \mathbb{R}, \forall f : E \rightarrow A$ Lipschitz map such that $0 < \mathcal{H}^1(f(E)) < \infty$ we have $\mathcal{H}^1((P_1 \circ f)(E)) < \mathcal{H}^1(f(E))$ or $\mathcal{H}^1((P_2 \circ f)(E)) < \mathcal{H}^1(f(E))$.

Problem 2. Construct $A \subset \mathbb{R}^2$ such that A is 1-rectifiable, $\mathcal{H}^1(A) < \infty$ and the set of points $x \in \mathbb{R}^2$ such that $\Theta_1(A, x) = 1$ is dense in \mathbb{R}^2 . Conclude that $spt(\mathcal{H}^1|A) = \mathbb{R}^2$.

