Übungen zur Stochastik II

Serie 3

(Abgabe: Montag, den 10.11.2003, in der Übung)

Aufgabe 11

Seien (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum, X eine Zufallsvariable mit Verteilung $Q := P_X$ und $\mathcal{G} \subseteq \mathcal{F}$ eine σ -Algebra. Zeigen Sie, dass X genau dann von \mathcal{G} unabhängig ist, wenn Q die bedingte Verteilung von X gegeben \mathcal{G} ist, in dem Sinne, dass $P(X \in A'|\mathcal{G})$ fast sicher konstant ist.

Aufgabe 12

(i) Seien X und Y unabhängige Zufallsvariable, wobei Y reell und integrierbar sei. Zeigen Sie, dass dann

$$E(Y|X) = E(Y)$$
 P-f.s.

und

$$E(Y|X = x) = E(Y)$$
 P-f.s.

gelten.

(ii) Geben Sie ein Beispiel für integrierbare Zufallsvariable X und Y an, so dass $\mathrm{E}(Y|X)=\mathrm{E}(Y)$ gilt, X und Y aber nicht unabhängig sind.

Aufgabe 13

Sei X eine reelle Zufallsvariable mit Dichte f bezüglich eines σ -endlichen Maßes μ über \mathbb{R} , das symmetrisch ist, d.h. $\mu(-B) = \mu(B)$ für alle Borel-Mengen B.

Zeigen Sie: Mit $g: \mathbb{R} \to \{Q: Q \text{ W-Maß "über } \mathbb{R}\},$

$$g(x) := \left\{ \begin{array}{ll} \frac{f(-x)}{f(-x) + f(x)} \delta_{-x} + \frac{f(x)}{f(-x) + f(x)} \delta_x & \text{, falls } f(-x) + f(x) \neq 0 \\ Q_0 & \text{, falls } f(-x) + f(x) = 0 \end{array} \right.,$$

wobei δ_y das Dirac-Maß in y bezeichne und Q_0 ein festes Wahrscheinlichkeitsmaß, ist g(|X|) eine bedingte Verteilung von X gegeben $\mathcal{F}(|X|)$.

Aufgabe 14

Seien X_1,\ldots,X_n unabhängige, identisch verteilte, reelle Zufallsvariable. Seien Y_1,\ldots,Y_n die entsprechenden Ordnungsstatistiken, d.h. mit $o:\mathbb{R}^n\longrightarrow\mathbb{R}^n$,

$$o((x_1,\ldots,x_n)) := (y_1,\ldots,y_n),$$

wobei

$$y_j := \min\{x_k : 1 \le k \le n, \ x_k \geqslant y_i \text{ für } 1 \le i < j\}, \quad 1 \le j \le n,$$

gilt

$$(Y_1, \ldots, Y_n) := o((X_1, \ldots, X_n)).$$

Geben Sie eine bedingte Verteilung von $X=(X_1,\ldots,X_n)$ gegeben $\mathcal{F}((Y_1,\ldots,Y_n))$ an.

Aufgabe 15

Seien (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum, $X \in L_2(\mathcal{F})$ und $\mathcal{G} \subseteq \mathcal{F}$. Zeigen Sie: $\mathrm{E}(X|\mathcal{G})$ ist die beste L_2 -Approximation von X auf den Raum $L_2(\mathcal{G})$ der \mathcal{G} -messbaren Funktionen in $L_2(\mathcal{F})$.