W. Wefelmeyer M. Schölpen

Wintersemester 2003/04

Übungen zur Stochastik II

Serie 4

(Abgabe: Montag, den 17.11.2003, in der Übung)

Aufgabe 16

Seien $Y_i, i \in \mathbb{N}$, unabhängige Zufallsvariable mit Erwartungswert 0. Setze $X_n := \sum_{i=1}^n Y_i$ sowie $\mathcal{F}_n := \mathcal{F}(Y_1, \dots, Y_n)$. Zeigen Sie, dass $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ ein Martingal ist.

Aufgabe 17

Seien $Y_i, i \in \mathbb{N}$, unabhängige Zufallsvariable mit $\mathrm{E}Y_i =: a_i \neq 0$. Setze $X_n := \prod_{i=1}^n \frac{Y_i}{a_i}, \mathcal{F}_n := \mathcal{F}(Y_1, \dots, Y_n)$. Zeigen Sie, dass $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ ein Martingal ist.

Aufgabe 18

Es seien X_i für $i \in \mathbb{N}$ unabhängige, \mathbb{Z}^d -wertige Zufallsvariable mit $P[X_i = j] = \frac{1}{2d}$ für $j \in \mathbb{Z}^d$ mit |j| = 1. Setze $S_n := \sum_{i=1}^n X_i, \ n \in \mathbb{N}_0$. Zeigen Sie:

- (i) $(\|S_n\|^2, n \in \mathbb{N}_0)$ ist ein Submartingal.
- (ii) $(\|S_n\|^2 n, n \in \mathbb{N}_0)$ ist ein Martingal.

Aufgabe 19

Seien $X_n, n \in \mathbb{N}$, definiert wie in Aufgabe 8(ii), also X_1 gleichverteilt in (0,1) und X_n gegeben $X_1 = x_1, \dots, X_{n-1} = x_{n-1}$ gleichverteilt in $(0, x_{n-1})$. Zeigen Sie, dass $(X_n)_{n \in \mathbb{N}}$ ein Supermartingal mit $\mathrm{E}(X_n) = 2^{-n}$ ist. Folgern Sie $X_n \to 0$ f.s.

Aufgabe 20

Sei $(X_n,\mathcal{F}_n)_{n\in\mathbb{N}_0}$ ein Supermartingal. Definiere $Y_0:=X_0,Y_n:=Y_{n-1}+(X_n-\mathrm{E}(X_n|\mathcal{F}_{n-1}))$ für $n\in\mathbb{N}$ sowie $A_0:=0,A_1:=X_0-\mathrm{E}(X_1|\mathcal{F}_0)$ und $A_n:=A_{n-1}+(X_{n-1}-\mathrm{E}(X_n|\mathcal{F}_{n-1}))$ für $n\geqslant 2$. Zeigen Sie:

- (i) Es gilt $X_n = Y_n A_n$.
- (ii) $(Y_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ ist ein Martingal.
- (iii) Für fast alle ω ist $A_n(\omega)$ nicht fallend in n.