Übungen zur Stochastik II

Serie 8

(Abgabe: Montag, den 15.12.2003, in der Übung)

Aufgabe 36

Seien $0 und <math>f_n \in L^p$, $n \in \mathbb{N}_0$, mit $f_n \xrightarrow{L^p} f_0$. Zeigen Sie, dass dann $\{|f_n|^p : n \in \mathbb{N}_0\}$ gleichgradig integrierbar ist.

Aufgabe 37

Sei $(Y_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger, identisch verteilter, reellwertiger, nicht f.s. konstanter Zufallsvariablen. $\phi: \mathbb{R} \to (-\infty, +\infty]$ sei definiert durch

$$\phi(u) := \log E(\exp(uY_1)), \quad u \in \mathbb{R}.$$

Setze $X_n:=\sum\limits_{k=1}^nY_k$ für $n\in\mathbb{N}_0$ $(X_0\equiv0)$ sowie $\mathcal{F}_n:=\sigma(X_0,X_1,\ldots,X_n)$ für $n\in\mathbb{N}_0.$ Zeigen Sie:

- (i) ϕ ist strikt konvex.
- (ii) $\{\phi < \infty\}$ ist ein Intervall in \mathbb{R} mit $0 \in \{\phi < \infty\}$.
- (iii) Mit $Z_n:=\exp[uX_n-n\phi(u)],\ n\in\mathbb{N}_0$, ist $(Z_n,\mathcal{F}_n)_{n\in\mathbb{N}_0}$ für jedes $u\in\mathbb{R}$ mit $\phi(u)<\infty$ ein positives Martingal, das in 1 startet.
- (iv) Ist $u \in \mathbb{R} \setminus \{0\}$ mit $\phi(u) < \infty$, so konvergiert $(Z_n)_{n \in \mathbb{N}_0}$ fast sicher gegen 0.

Aufgabe 38

Sind X_1, X_2, \ldots Zufallsvariablen, so konvergiert die Folge $(X_n(\omega))_{n \in \mathbb{N}}$ für fast alle ω genau dann, wenn für alle $\varepsilon > 0$ gilt:

$$P\bigcup_{j,k\geq n} (|X_j-X_k|>\varepsilon) \longrightarrow 0 \quad \text{ für } \quad n\longrightarrow \infty.$$

Aufgabe 39

Seien $a_n \in \mathbb{R}, n \in \mathbb{N}$, und $(Y_n)_{n \in \mathbb{N}}$ eine Folge unabhängiger Zufallsvariablen mit $P(Y_n = a_n) = P(Y_n = -a_n) = \frac{1}{2}$. Zeigen Sie: $\sum_{n=1}^{\infty} a_n^2$ konvergiert genau dann, wenn $\sum_{u=1}^{\infty} Y_n$ fast sicher konvergiert.

Aufgabe 40

Zeigen Sie:

- (i) Die Produkt- σ -Algebra $\mathcal{B}^{\otimes [0,\infty)}$ auf $\mathbb{R}^{[0,\infty)}$ besteht aus den messbaren Zylindern mit abzählbarer Basis.
- (ii) Die Menge der stetigen Pfade $\omega=(\omega(t))_{t\geqslant 0}$ in $\mathbb{R}^{[0,\infty)}$ ist nicht Borel-messbar.