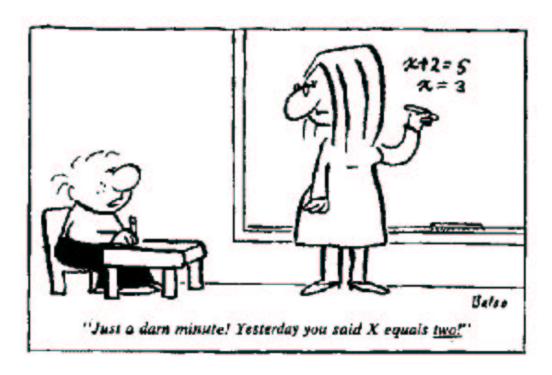
Prof. Dr. W. Wefelmeyer Dipl.-Math. K. Tang

WS 2004/05


Übungen zur Einführung in die Stochastik Serie 6 Abgabe: Ab 29.11.04 in den jeweiligen Übungen

- **31.** Sind $X_n, n \in \mathbb{N}$, Zufallsvariablen auf einem meßbaren Raum (Ω, \mathcal{F}) , so auch die Funktionen $\inf_{n \in \mathbb{N}} X_n$, $\sup_{n \in \mathbb{N}} X_n$ und $\lim_{n \in \mathbb{N}} X_n$ (sofern letztere existieren und reellwertig sind).
- **32.** (Stetigkeit von Maßen) Ist P ein Wahrscheinlichkeitsmaß auf einer σ -Algebra \mathcal{F} , und sind $A, A_n \in \mathcal{F}$ für $n \in \mathbb{N}$ mit $A_n \uparrow A$, so gilt

$$PA_n \xrightarrow[n \to \infty]{} PA$$

- **33.** Seien (Ω, \mathcal{F}) und $(\widetilde{\Omega}, \widetilde{\mathcal{F}})$ Mengen mit σ -Algebren, und sei $X : \Omega \to \widetilde{\Omega}$ eine Abbildung. Sei $\widetilde{\mathcal{S}}$ ein Erzeugendensystem von $\widetilde{\mathcal{F}}$, und gelte $X^{-1}S \in \mathcal{F}$ für alle $S \in \widetilde{\mathcal{S}}$. Dann ist X meßbar.
- **34.** Zeigen Sie, dass für $m \in \mathbb{N}$ offene Mengen von \mathbb{R}^m in \mathcal{B}^m enthalten sind. (Vorlesung vergleichen.)
- **35.** Stetige Funktionen von \mathbb{R}^m nach \mathbb{R} sind meßbar, wenn die beiden Grundräume mit den Borel-Algebren versehen werden.
- **36.** Sie wählen zufällig drei (nicht notwendig verschiedene) Zahlen zwischen 1 und 9. Was ist (a) die Verteilung und (b) der Erwartungswert der Anzahl der geraden Zahlen unter den gewählten?

Mathematische Karikatur

