Prof. Dr. W. Wefelmeyer Dipl.-Math. K. Tang SS 2005

Übungen zur Stochastik 1 Serie 10

Abgabe: Montag, 18.07.05, Ab 10:00 im Zimmer 221

46. Der Erwartungswert einer Zufallsvariablen X existiert genau dann, wenn

$$\sum_{n=0}^{\infty} P(|X| \ge n) < \infty$$

47. (Der bedingte Erwartungswert ist eine Projektion.) Sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeits-Raum und \mathcal{G} eine Sub- σ -Algebra. Sei $X \in L_2(P|\mathcal{F})$. Dann gilt

$$E[YX] = E[YE[X|\mathcal{G}]]$$

für alle $Y \in L_2(P|\mathcal{G})$, also $X - E[X|\mathcal{G}] \perp L_2(P|\mathcal{G})$.

48. (Selbstadjungiertheit des bedingten Erwartungswerts.) Sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeits-Raum und \mathcal{G} eine Sub- σ -Algebra. Ist $X, Y \in L_2(P|\mathcal{F})$, dann gilt:

$$E[E[X|\mathcal{G}]Y] = E[E[Y|\mathcal{G}]X].$$

49. Sei $P|\mathcal{B}$ ein Wahrscheinlichkeitsmaß mit Lebesgue-Dichte f und X eine integrierbare Zufallsvariable auf $(\mathbb{R}^k, \mathcal{B}^k)$. Ferner sei $a \in \mathbb{R}^k$, V eine symmetrische positiv definite $k \times k$ -Matrix und \mathcal{G} die von den Ellipsen $E_c = \{x \in \mathbb{R}^k : (x-a)^\top V(x-a) \leq c\}, c > 0$, erzeugte σ -Algebra. Berechnen Sie $E[X|\mathcal{G}]$.

50. Seien Y_1,Y_2,\ldots unabhängig mit Erwartungswert 0. Setze $X_n=\sum_{j=1}^n Y_j$ und $\mathcal{F}_n=\mathcal{F}(X_1,\ldots,X_n)$. Dann gilt

$$E[X_n|\mathcal{F}_{n-1}] = X_{n-1}$$
 fast sicher.

Bemerkung Die Nachklausur findet am Dienstag, den 18.10.05, um 16:00 s.t. im Seminarraum I des Mathematischen Instituts statt. Melden Sie sich frühzeitig vor der Nachklausur entweder bei Frau Anderka im Raum 210 oder bei Herrn Tang im Raum 221.