Übungen zur Mathematischen Statistik Serie 3

11. Sind X_1, \ldots, X_n unabhängig mit Verteilungsfunktion F, so ist die Verteilungsfunktion F_r der r-ten Ordnungsstatistik $X_{r:n}$ gegeben durch

$$F_r(x) = \sum_{i=r}^n \binom{n}{i} F(x)^i (1 - F(x))^{n-i}.$$

Insbesondere gilt $F_n(x) = F(x)^n$ und $F_1(x) = 1 - (1 - F(x))^n$.

- 12. Seien X_1, \ldots, X_n unabhängig und gleichverteilt auf $\{1, \ldots, k\}$ für ein unbekanntes $k \in \mathbb{N}$. Bestimmen Sie einen suffizienten Schätzer für k.
- 13. Seien X_1, \ldots, X_n unabhängig und nach der von der Exponentialverteilung E erzeugten Lageparameter-Familie verteilt. Geben Sie eine möglichst niedrigdimensionale suffiziente Statistik für den Lageparameter an. Ist sie vollständig oder minimal?
- 14. Seien X_1, \ldots, X_n unabhängig und N_{μ,σ^2} -verteilt. Dann sind $\bar{X}=(1/n)\sum_{i=1}^n X_i$ und $\sum_{i=1}^n (X_i-\bar{X})^2$ unabhängig.
- 15. Seien X_1, \ldots, X_n unabhängig und verteilt nach einer kanonischen exponentiellen Familie in T. Bestimmen Sie einen erwartungstreuen Schätzer für den Wert $M_T(u)$ der momenterzeugenden Funktion von T.