Übungen zur Mathematischen Statistik Serie 5

21. Seien X_1, \ldots, X_n unabhängig mit positiver Dichte f_{ϑ} , sei $\vartheta \in \Theta \subset \mathbb{R}$ und sei S erwartungstreu für ϑ . Dann gilt

$$\operatorname{Var} S \ge \sup_{\tau \in \Theta} \frac{(\tau - \vartheta)^2}{\left(\int (f_{\tau}^2(x)/f_{\vartheta}(x)) dx\right)^n - 1}.$$

- **22.** Seien X_1, \ldots, X_n unabhängig und verteilt nach einer Gleichverteilung auf $(0, \vartheta)$ mit $\vartheta > 0$. Bestimmen Sie einen gleichmäßig besten Test zum Niveau α für $\tau \leq \vartheta$ gegen $\tau \geq \vartheta$. Berechnen Sie die Gütefunktion.
- **23.** Seien X_1, \ldots, X_n unabhängig und nach einer Exponentialverteilung E_{ϑ} mit Skalenparameter $\vartheta > 0$ verteilt. Bestimmen Sie einen gleichmäßig besten Test zum Niveau α für $\tau \leq \vartheta$ gegen $\tau \geq \vartheta$.
- **24.** Sei P_{ϑ} , $\vartheta \in \mathbb{R}$, die von einer Verteilung mit positiver Dichte erzeugte Lageparameter-Familie. Dann hat die Familie monotone Dichtequotienten in T(x) = x genau dann, wenn $\log f$ konkav ist.
- **25.** Sei Θ ein offenes Intervall und P_{ϑ} , $\vartheta \in \Theta$, eine Familie von Wahrscheinlichkeitsmaßen auf \mathcal{B} mit μ -Dichten f_{ϑ} . Existiert $\partial_x \partial_{\vartheta} \log f_{\vartheta}(x)$, so hat die Familie monotone Dichtequotienten in T(x) = x genau dann, wenn

$$\partial_x \partial_{\vartheta} \log f_{\vartheta}(x) > 0, \quad x \in \mathbb{R}, \quad \vartheta \in \Theta.$$