Übungen zur Statistik für Zeitreihen Serie 2

Eine Abbildung $s \to a_s$ von \mathbb{R} nach $L_p(P)$ heißt $L_p(P)$ -differenzierbar in t mit Ableitung \dot{a} , wenn

$$||a_s - a_t - (s - t)\dot{a}||_p = o(s - t).$$

Eine Abbildung $s \to f_s$ von \mathbb{R} in die Dichten auf \mathbb{R} heißt Hellinger-differenzierbar in t mit Ableitung \dot{a} , wenn

$$\lambda \Big(f_s^{1/2} - f_t^{1/2} - \frac{1}{2} (s - t) \dot{a} f_t^{1/2} \Big)^2 = o((s - t)^2).$$

- 1. Sei $1 \leq p < q$. Ist $s \to a_s L_q(P)$ -differenzierbar in t, so auch $L_p(P)$ -differenzierbar, mit derselben Ableitung.
- **2.** Ist $s \to f_s/f_t$ $L_2(f_t)$ -differenzierbar in t, so ist $s \to f_s$ Hellinger-differenzierbar, mit derselben Ableitung. (*Hinweis:* $f_s f_t = (f_s^{1/2} f_t^{1/2})(f_s^{1/2} + f_t^{1/2})$.)
- 3. Ist $s \to f_s$ Hellinger-differenzierbar in t, so ist $s \to f_s/f_t$ $L_1(f_t)$ -differenzierbar, mit derselben Ableitung.
 - 4. Die Produktmaße $N^n_{\mu+n^{-1/2}t,1}$ und $N^n_{\mu,1}$ sind benachbart.
- 5. Ist P_{τ} Hellinger-differenzierbar in $\tau = \vartheta$ und $\vartheta_{nt} = \vartheta + n^{-1/2}t$, so sind die Produktmaße $P_{\vartheta_{nt}}^n$ und P_{ϑ}^n benachbart.