Prof. Dr. W. Wefelmeyer Dipl.-Math. K. Tang

Übungen zur Statistik für Zeitreihen Serie 8

36. Sei Σ symmetrisch und positiv semidefinit mit det $\Sigma = 0$, und sei X verteilt nach $N_{0,I}$. Beschreiben Sie die Verteilung von $\Sigma^{1/2}X$.

Eine Zeitreihe (X_t) heißt m-abhängig, wenn X_s , $s \leq t$, und X_s , s > t + m, für $t \in \mathbb{Z}$ unabhängig sind.

- **37.** Ist (X_t) *m*-abhängig, so sind $(X_{ik+1}, \ldots, X_{ik+p})$, $i \in \mathbb{Z}$, unabhängig, wenn $k p \ge m$ ist.
- **38.** Seien Z_t , $t \in \mathbb{Z}$, i.i.d., und sei $X_t = \varphi(B)Z_t$ eine MA(q)-Zeitreihe. Wie ist die Zeitreihe X_{tm} , $t \in \mathbb{Z}$, für m > q verteilt?
- **39.** Seien Z_t , $t \in \mathbb{Z}$, i.i.d. und normalverteilt mit Mittelwert 0 und Varianz σ^2 . Berechnen Sie die Übergangsdichte der AR(1)-Zeitreihe $X_t = \varrho X_{t-1} + Z_t$. Berechnen Sie für $|\varrho| < 1$ die stationären Dichten von X_t und (X_{t-1}, X_t) .
- **40.** Finden Sie für die allgemeine AR(1)-Zeitreihe $X_t = \varrho X_{t-1} + Z_t$ mit $|\varrho| > 1$ eine stationäre Lösung (der nicht-kausalen Form $X_t = \sum_{j=1}^{\infty} \psi_j Z_{t+j}$.)