Prof. Dr. W. Wefelmeyer Dipl.-Math. K. Tang

Übungen zur Statistik für Zeitreihen Serie 9

- **41.** (Alternierende Markov-Ketten.)
- Seien Q, R Übergangsverteilungen auf (E, \mathcal{E}) und (X_t, Y_t) ein Prozeß mit Übergangsverteilung $Q \otimes R$ und invarianter Verteilung B. Welche Beziehungen gelten dann zwischen den Randverteilungen von B?
- **42.** (Alternierende autoregressive Prozesse.) Seien $(\varepsilon_{2t}, \eta_{2t+1})$, $t \in \mathbb{Z}$, unabhängige Zufallsvektoren mit Dichte f. Sei $X_{2t} = \vartheta X_{2t-1} + \varepsilon_{2t}$ und $X_{2t+1} = \tau X_{2t} + \eta_{2t+1}$. Dann ist (X_{2t}, X_{2t+1}) eine alternierende Markov-Kette. Bestimmen Sie die Übergangsdichte.

Für den Fall, daß ε_{2t} und η_{2t+1} Erwartungswerte 0 und endliche Varianzen haben: Unter welchen Annahmen haben (X_{2t}) und (X_{2t+1}) kausale Darstellungen?

- 43. (Partiell beobachtete autoregressive Prozesse.) Seien Z_t , $t \in \mathbb{Z}$, unabhängige Zufallsvariablen mit Dichte f. Sei $X_t = \vartheta X_{t-1} + Z_t$ ein zugehöriger autoregressiver Prozeß. Sie beobachten jede dritte Realisation nicht, also nur (X_{3t+1}, X_{3t+2}) , $t \in \mathbb{Z}$. Zeigen Sie, daß das ein alternierender autoregressiver Prozeß ist.
- 44. Sei $X_t = \sum_{j=1}^m A(\lambda_j) \exp(it\lambda_j)$ mit $-\pi < \lambda_1 < \dots < \lambda_m = \pi$ und komplex-wertigen Zufallsvariablen $A(\lambda_j)$. Sei $A(\lambda_m)$ reellwertig, und sei $\lambda_j = -\lambda_{m-j}$ und $A(\lambda_j) = \overline{A}(\lambda_{m-j})$ für $j = 1, \dots, m-1$. Zeigen Sie, daß dann X_t reellwertig ist.
- **45.** Konstruieren Sie unkorrelierte komplex-wertige Zufallsvariablen \underline{A} und B mit Mittelwert 0 und (positiver) endlicher Varianz, für die $A = \overline{B}$ gilt.