Prof. Dr. W. Wefelmeyer Dipl.-Math. K. Tang

Übungen zur Statistik für Zeitreihen Serie 10

- **46.** Sei (Z_t) ein weißes Rauschen mit positiver Varianz und (X_t) ein Prozeß mit der Darstellung $X_t = \sum \vartheta_j Z_{t-j}$ mit $\sum |\vartheta_j| < \infty$. Dann sind die Koeffizienten ϑ_j eindeutig bestimmt.
- 47. Sei \mathcal{H} ein Hilbertraum und \mathcal{M} ein abgeschlossener linearer Teilraum. Bezeichne I die Identität auf \mathcal{H} .
- a) Der Operator $P_{\mathcal{M}}$ ist linear und stetig und bildet \mathcal{H} auf \mathcal{M} ab, und $I P_{\mathcal{M}}$ bildet \mathcal{H} auf \mathcal{M}^{\perp} ab.
- b) Es gilt $x \in \mathcal{M}$ genau dann, wenn $P_{\mathcal{M}}x = x$, und es gilt $x \in \mathcal{M}^{\perp}$ genau dann, wenn $P_{\mathcal{M}}x = 0$.
- c) Sind \mathcal{M}_1 und \mathcal{M}_2 abgeschlossene lineare Teilräume von \mathcal{H} , so gilt $\mathcal{M}_1 \subset \mathcal{M}_2$ genau dann, wenn $P_{\mathcal{M}_1}P_{\mathcal{M}_2} = P_{\mathcal{M}_1}$.
- **48.** Sei (X_t) ein schwach stationärer und zentrierter Prozeß, und sei seine Autokovarianz-Funktion die eines ARMA(p,q)-Prozesses. Dann hat (X_t) eine ARMA(p,q)-Darstellung.
- 49. Sei (Z_t) ein weißes Rauschen mit Varianz σ^2 . Ein $MA(\infty)$ -Prozeß $X_t = \psi(B)Z_t$ ist schwach stationär und zentriert mit Autokovarianz-Funktion

$$\gamma(s) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|s|}.$$

50. Sei (X_t) ARMA(p,q), $\varrho(B)X_t = \varphi(B)Z_t$, mit $\varrho(z) \neq 0$ für |z| = 1 und Autokovarianz-Funktion $\gamma(s)$. Dann gibt es ein C > 0 und ein $\delta < 1$, so daß $|\gamma(s)| \leq C\delta^{-s}$ gilt. Insbesondere gilt

$$\sum_{s=-\infty}^{\infty} |\gamma(s)| < \infty.$$