Prof. Dr. W. Wefelmeyer Dipl.-Math. Markus Schulz

Sommersemester 2008

Übungen zur Stochastik I Serie 1

Abgabe: Dienstag, 15. April 2008, vor der Vorlesung

- **1.** Berechnen Sie $\liminf_{n\to\infty} 1_{A_n}$ und $\limsup_{n\to\infty} 1_{A_n}$.
- **2.** (5 Punkte) a) Berechnen Sie ($\liminf A_n$)^c und ($\limsup A_n$)^c.
- b) Zeigen Sie, dass gilt $\liminf A_n \subset \limsup A_n$.
- c) Wenn $A_n \uparrow A$ oder $A_n \downarrow A$, dann gilt $\liminf A_n = \limsup A_n = A$.
- d) Sei $A_n = (-1/n, 1]$ für ungerades n und $A_n = (-1, 1/n]$ für gerades n. Berechnen Sie lim inf A_n und lim sup A_n .
- e) Sei A_n das Innere der offenen Kreisscheibe mit Radius 1 und Mittelpunkt $((-1)^n, 0)$. Berechnen Sie $\liminf A_n$ und $\limsup A_n$.
 - **3.** Bestimmen Sie $\sigma(\{A\})$ und $\sigma(\{A_1,\ldots,A_n\})$ für $A,A_1,\ldots,A_n\subset\Omega$.
- 4. (3 Punkte) Beweisen Sie, dass eine Algebra abgeschlossen unter Differenzen und symmetrischen Differenzen ist.
- **5.** Sei μ eine nichtnegative und additive Mengenfunktion auf einer Algebra \mathcal{F} . Seien $A_1, A_2, \ldots \in \mathcal{F}$ disjunkt mit $\sum_n A_n \in \mathcal{F}$. Dann gilt

$$\mu \sum_{n} A_n \ge \sum_{n} \mu A_n$$