Prof. Dr. W. Wefelmeyer Dipl.-Math. Markus Schulz

Sommersemester 2008

Übungen zur Stochastik I Serie 2

Abgabe: Dienstag, 22. April 2008, vor der Vorlesung

- **6.** Seien Ω abzählbar unendlich und \mathcal{F} die Menge aller Teilmengen von Ω . Definiere $\mu A = 0$ für A endlich und $\mu A = \infty$ sonst.
 - a) Die Mengenfunktion μ ist additiv, aber nicht σ -additiv.
- b) Der Grundraum Ω ist Limes einer aufsteigenden Folge von Mengen A_n mit $\mu A_n = 0$.
- 7. Die offenen Teilmengen von \mathbb{R} sind Borel-messbar. Bemerkung: Wenn wir das System der offenen Teilmengen von \mathbb{R} mit \mathcal{O} bezeichnen, dann gilt sogar $\sigma(\mathcal{O}) = \mathcal{B}$.
- 8. Seien Ω abzählbar und \mathcal{F} die Menge aller Teilmengen von Ω , die endlich sind oder endliches Komplement haben.
 - a) Das Mengensystem \mathcal{F} ist eine Algebra, aber keine σ -Algebra.
- b) Definiere $\mu A = 0$ für A endlich und $\mu A = 1$ sonst. Die Mengenfunktion μ ist additiv, aber nicht σ -additiv.
- **9.** Seien Ω beliebig und \mathcal{F} die Menge aller Teilmengen von Ω . Definiere $\mu A = \#\{\omega : \omega \in A\}$ für $A \subset \Omega$.
 - a) Die Mengenfunktion μ ist ein Maß, das $Z\ddot{a}hlma\beta$.
 - b) Ist Ω unendlich, so gibt es eine Folge von Mengen $A_n \downarrow \emptyset$ mit

$$\lim_{n\to\infty} \mu A_n \neq 0.$$

10. Sei μ ein endliches Maß auf einer σ -Algebra \mathcal{F} . Seien $A_1, A_2, \ldots \in \mathcal{F}$ mit $A_n \to A$. Dann gilt

$$\mu A_n \to \mu A$$
.