Übungen zur Stochastik I Serie 4

Abgabe: Dienstag, 6. Mai 2008, vor der Vorlesung

16. Für jede Abbildung $f: \Omega \to \Omega'$ einer Menge Ω in eine Menge Ω' und jedes Mengensystem $\mathcal{E}' \subset \mathcal{P}(\Omega')$ zeige man:

$$f^{-1}(\sigma(\mathcal{E}')) = \sigma(f^{-1}(\mathcal{E}')).$$

17. Sei (Ω, \mathcal{F}) ein beliebiger Maßraum. Definiere für jedes $A \in \mathcal{F}$

$$\varepsilon_{\omega}(A) := \begin{cases} 1 & \text{, falls } \omega \in A \\ 0 & \text{sonst} \end{cases},$$

das sogenannte $Dirac-Ma\beta$ im Punkt ω . Seien weiterhin $\omega_1, \omega_2, \ldots \in \Omega$, $a_1, a_2, \ldots > 0$ und $f: \Omega \to \mathbb{R}$ eine messbare Abbildung. Wann ist f bezüglich des Maßes $\mu := \sum_{j=1}^{\infty} a_j \varepsilon_{\omega_j}$ integrierbar? Berechnen Sie in diesem Fall μf .

18. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $\varphi : [0, \infty) \to (0, \infty)$ aufsteigend. Dann ist $\varphi : ([0, \infty), \mathcal{B} \cap [0, \infty)) \to ((0, \infty), \mathcal{B} \cap (0, \infty))$ messbar. Für eine Borel-messbare Funktion f gilt zudem

$$\mu(|f| \ge a) \le \frac{1}{\varphi(a)} \mu(\varphi \circ |f|).$$

19. Definition 1: Gegeben sei ein Maßraum $(\Omega, \mathcal{F}, \mu)$. Eine Menge $N \subset \Omega$ heißt eine μ -Nullmenge, wenn $N \in \mathcal{F}$ und $\mu(N) = 0$ ist.

Definition 2: Es sei E eine Eigenschaft derart, dass für jeden Punkt $\omega \in \Omega$ definiert ist, ob ω diese Eigenschaft besitzt oder nicht. Wir sagen " μ -fast alle Punkte $\omega \in \Omega$ besitzen die Eigenschaft E" oder "E gilt μ -fast überall auf Ω ", wenn es eine μ -Nullmenge N gibt, so dass alle Punkte $\omega \in N^c$ die Eigenschaft E besitzen.

Sei nun f eine nichtnegative Borel-messbare Funktion auf dem Raum (Ω, \mathcal{F}) . Zeigen Sie, dass dann gilt:

$$\mu f = 0 \Leftrightarrow f = 0$$
 μ -fast überall.

20. a) Sind f_1, f_2, \ldots nichtnegativ und Borel-messbar, so gilt

$$\mu \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \mu f_n.$$

- b) Sei f eine Borel-messbare Funktion. Zeigen Sie, dass f genau dann integrierbar ist, wenn |f| integrierbar ist.
- c) Sind f und g Borel-messbar mit $|f| \leq g$, und ist g integrierbar, dann ist auch f integrierbar.