Übungen zur Stochastik I Serie 5

Abgabe: Dienstag, 20. Mai 2008, vor der Vorlesung

21. Sei f integrierbar bezüglich eines Maßes μ auf einer σ -Algebra \mathcal{F} . Definiere ν durch $\nu A = \mu(1_A f), A \in \mathcal{F}$. Dann gilt

$$\nu^+ A = \mu(1_A f^+), \quad \nu^- A = \mu(1_A f^-).$$

- **22.** Sei $(\Omega, \mathcal{F}, \mu)$ ein beliebiger Maßraum. Sei weiterhin $f: \Omega \to [0, \infty)$ eine messbare Funktion. Definiere ν als das Maß mit μ -Dichte f.
 - a) Beweisen Sie, dass für jede messbare Funktion $\varphi:\Omega\to[0,\infty)$ gilt

$$\nu\varphi = \mu(\varphi f).$$

b) Zeigen Sie: Eine messbare Funktion $\varphi:\Omega\to\mathbb{R}$ ist genau dann ν -integrierbar, wenn φf μ -integrierbar ist. In diesem Fall gilt wie in a)

$$\nu\varphi = \mu(\varphi f).$$

- c) Seien nun zusätzlich $g:\Omega\to[0,\infty)$ eine messbare Funktion und ϱ das Maß mit ν -Dichte g. Zeigen Sie, dass dann ϱ die μ -Dichte gf besitzt.
- **23.** Auf einem messbaren Raum (Ω, \mathcal{F}) seien μ und ν zwei Maße mit $\nu \leq \mu$; ferner sei μ σ -endlich. Beweisen Sie, dass ν eine μ -Dichte f mit Werten $0 \leq f \leq 1$ besitzt.
- **24.** Sei (Ω, \mathcal{F}) ein messbarer Raum. \mathcal{F} enthalte die Einpunktmengen. Seien μ und ν diskrete Maße auf \mathcal{F} .
 - a) Sind μ und ν immer σ -endlich?
 - b) Geben Sie eine notwendige und hinreichende Bedingung für $\nu \ll \mu$ an.
 - c) Berechnen Sie alle μ -Dichten von ν .

Hinweis: Ein Maß μ heißt diskret, wenn es höchstens abzählbar viele $\omega_i \in \Omega$ und $p_i \in [0, \infty)$ gibt, so dass

$$\mu A = \sum_{\omega_i \in A} p_i \quad \text{für } A \in \mathcal{F}.$$

- **25.** Seien μ und ν stetige Maße auf der Borel-Algebra \mathcal{B}^n des \mathbb{R}^n .
- a) Sind μ und ν immer σ -endlich?
- b) Geben Sie eine notwendige und hinreichende Bedingung für $\nu \ll \mu$ an.
- c) Berechnen Sie alle μ -Dichten von ν .

 $\mathit{Hinweis}\colon \text{Ein Maß}\ \mu$ heißt stetig mit $\mathit{Dichte}\ a,$ wenn $a:\mathbb{R}^n\to\mathbb{R}$ Borelmessbar ist mit

$$\mu A = \lambda^n (1_A a)$$
 für $A \in \mathcal{B}^n$.