Prof. Dr. W. Wefelmeyer Dipl.-Math. Markus Schulz

Sommersemester 2008

Übungen zur Stochastik I Serie 6

Abgabe: Dienstag, 27. Mai 2008, vor der Vorlesung

- **26.** Gegeben seien messbare Räume $(\Omega_i, \mathcal{F}_i)$, i = 0, ..., n, und eine Funktion $f: \Omega_0 \to \Omega_1 \times ... \times \Omega_n$. Die Abbildung $\pi_i: \Omega_1 \times ... \times \Omega_n \to \Omega_i$ sei die Projektion auf die *i*-te Komponente.
- a) Zeigen Sie, dass gilt $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n = \sigma(\bigcup_{i=1}^n \pi_i^{-1}(\mathcal{F}_i)).$
- b) Beweisen Sie, dass die Abbildung f genau dann \mathcal{F}_0 - $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$ -messbar ist, wenn jede der Abbildungen $\pi_i \circ f$ \mathcal{F}_0 - \mathcal{F}_i -messbar ist.
- **27.** Seien $(\Omega, \mathcal{F}, \mu)$ ein σ -endlicher Maßraum und $f: \Omega \to [0, \infty)$ eine messbare, nichtnegative reelle Funktion. Dann gilt:

$$\int f d\mu = \int 1_{[0,\infty)}(t)\mu(\{f \ge t\})\lambda^1(dt).$$

Hinweise: 1. Die Aussage von Korollar 8.4 ist symmetrisch in μ_1 und μ_2 , d.h. es gilt ebenfalls

$$\mu f = \iint f(\omega_1, \omega_2) \mu_1(d\omega_1) \mu_2(d\omega_2).$$

- 2. Man kann Korollar 8.4 auch für eine nichtnegative messbare Funktion f formulieren. Den sich ergebenden Satz bezeichnet man auch als "Satz von Tonelli".
- 3. Beachten Sie den Hinweis zu Aufgabe 29.
- **28.** a) Seien $\Omega_1 = \Omega_2 = \mathbb{N}$, $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{P}(\mathbb{N})$ und $\mu_1 = \mu_2$ das aus Aufgabe 9 bekannte Zählmaß. Ferner sei die Funktion $f: \mathbb{N}^2 \to \mathbb{Z}$ gegeben durch f(n,n) = n und f(n,n+1) = -n für alle $n \in \mathbb{N}$ und f(i,j) = 0, falls $j \neq i$ und $j \neq i+1$. Zeigen Sie, dass gilt

$$\int_{\Omega_1} \int_{\Omega_2} f(x, y) \mu_2(dy) \mu_1(dx) = 0 \quad \text{und} \quad \int_{\Omega_2} \int_{\Omega_1} f(x, y) \mu_1(dx) \mu_2(dy) = \infty.$$

Warum ist der Satz von Fubini (Korollar 8.4) nicht anwendbar?

b) Seien $\Omega_1 = \Omega_2 = \mathbb{R}$, $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{B}$, $\mu_1 = \lambda^1$ und μ_2 das Zählmaß aus

Aufgabe 9. Ferner sei $A=\{(\omega_1,\omega_2)\in\mathbb{R}^2:\omega_1=\omega_2\}\in\mathcal{F}_1\otimes\mathcal{F}_2$. Dann gilt

$$\int_{\Omega_1} \int_{\Omega_2} 1_A(\omega_1, \omega_2) \mu_2(d\omega_2) \mu_1(d\omega_1) = \infty \quad \text{und}$$

$$\int_{\Omega_2} \int_{\Omega_1} 1_A(\omega_1, \omega_2) \mu_1(d\omega_1) \mu_2(d\omega_2) = 0.$$

Warum ist der Satz von Fubini (Korollar 8.4) nicht anwendbar?

Hinweis: Beachten Sie die Hinweise 1 und 2 zu Aufgabe 27. In b) ist anzugeben, warum Korollar 8.4 in der Version für eine nichtnegative messbare Funktion f nicht angewendet werden kann.

29. (5 Punkte) Die folgenden Teilmengen von $\mathbb{R}^{\mathbb{N}}$ sind in $\mathcal{B}^{\mathbb{N}}$:

- a) $\{x \in \mathbb{R}^{\mathbb{N}} : \sup_{n \in \mathbb{N}} x_n < a\},\$
- b) $\{x \in \mathbb{R}^{\mathbb{N}} : \sum_{n=1}^{\infty} |x_n| < a\},\$
- c) $\{x \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_n \text{ existiert und ist endlich}\},$
- d) $\{x \in \mathbb{R}^{\mathbb{N}} : \limsup_{n \to \infty} x_n \le a\},\$
- e) $\{x \in \mathbb{R}^{\mathbb{N}} : \sum_{k=1}^{n} x_k = 0 \text{ für mindestens ein } n \in \mathbb{N}\}.$

Hinweis: Abgeschlossene Teilmengen von \mathbb{R}^n sind in \mathcal{B}^n .

30. (3 Punkte) Ist X integrierbar und $PA_n \to 0$, so gilt $E1_{A_n}X \to 0$.