Übungen zur Stochastik I Serie 10

Abgabe: Dienstag, 24. Juni 2008, vor der Vorlesung

46. Es sei $(X_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger, P_{λ} -verteilter Zufallsvariablen. Der Parameter λ sei unbekannt, und $P(X_i = 0) = e^{-\lambda}$ soll mittels X_1, \ldots, X_n geschätzt werden. Die beiden Schätzer

$$\hat{T}_1 = \frac{1}{n} \sum_{i=1}^n 1_{\{X_i = 0\}}$$
 und

$$\hat{T}_2 = \exp\left(-\frac{1}{n}\sum_{i=1}^n X_i\right)$$

werden dafür ins Auge gefasst. Bestimmen Sie die Grenzverteilungen von

$$\sqrt{n}(\hat{T}_j - e^{-\lambda}), \qquad j = 1, 2,$$

für $n \to \infty$.

Hinweis: Für eine P_{λ} -verteilte Zufallsvariable X gilt $EX = \lambda = Var(X)$.

- 47. Für ein gegebenes W-Maß μ auf \mathcal{B}^1 betrachte man auf \mathcal{B}^n das W-Maß $P = \mu \otimes \ldots \otimes \mu$ (mit n Faktoren). Es bezeichne \mathcal{G} das System aller Mengen $B \in \mathcal{B}^n$ mit der Eigenschaft, dass für jede Permutation i_1, \ldots, i_n von $1, \ldots, n$ mit jedem Punkt $x = (x_1, \ldots, x_n)$ aus B auch $(x_{i_1}, \ldots, x_{i_n})$ in B liegt. Man zeige:
 - a) \mathcal{G} ist eine Sub- σ -Algebra von \mathcal{B}^n .
- b) Für jede integrierbare Zufallsvariable X auf dem W-Raum $(\mathbb{R}^n, \mathcal{B}^n, P)$ stimmt $E(X|\mathcal{G})$ fast sicher mit der Funktion

$$x \mapsto \frac{1}{n!} \sum_{i_1,\dots,i_n} X(x_{i_1},\dots,x_{i_n})$$

überein. Die Summation erstreckt sich dabei über alle Permutationen von $1, \ldots, n$.

48. Sei $P|\mathcal{B}$ ein Wahrscheinlichkeitsmaß mit Lebesgue-Dichte f und X eine integrierbare Zufallsvariable auf $(\mathbb{R}, \mathcal{B})$. Ferner sei \mathcal{B}_0 die Sub- σ -Algebra,

die von den um 0 symmetrischen Intervallen erzeugt wird. Berechnen Sie $E(X|\mathcal{B}_0)$.

49. Gegeben sei der W-Raum (Ω, \mathcal{F}, P) . Für ein $A \in \mathcal{F}$ setzen wir $P(A|Y=y) = E(1_A|Y=y)$. Seien weiter X und Y Zufallsvariablen mit stetiger gemeinsamer Lebesgue-Dichte f, d.h. $P^{(X,Y)}$ besitze die Lebesgue-Dichte f. Zudem sei X P-integrierbar und es gelte

$$f_2(y) = \int f(x,y)\lambda^1(dx) > 0 \quad \forall y \in \mathbb{R}.$$

Beweisen Sie:

a)
$$E(X|Y=y) = \frac{1}{f_2(y)} \int x f(x,y) \lambda^1(dx)$$
 für P^Y -fast alle y ,

b)
$$P(X \le t | Y = y) = \frac{1}{f_2(y)} \int_{(-\infty,t]} f(x,y) \lambda^1(dx)$$
 für P^Y -fast alle y .

Bemerkung: Die Funktion

$$P(X \le t | Y = y) = \frac{1}{f_2(y)} \int_{(-\infty, t]} f(x, y) \lambda^1(dx), \ t \in \mathbb{R},$$

wird bedingte Verteilungsfunktion von X gegeben Y=y genannt. Die Funktion

$$f(x|y) = \frac{f(x,y)}{f_2(y)}, x \in \mathbb{R},$$

heißt bedingte Dichte von X gegeben Y = y.

50. a) Sei X eine diskrete Zufallsvariable. Gegeben X=x besitze Y die bedingte Dichte $h(\cdot|x)$. Zeigen Sie

$$P(X=x|Y=y) = \frac{P(X=x)h(y|x)}{\sum_{x'}P(X=x')h(y|x')}.$$

b) Sei X eine Zufallsvariable mit Dichte f. Gegeben X=x sei Y diskret verteilt mit P(Y=y|X=x)=p(y|x). Zeigen Sie, dass dann

$$h(x|y) = \frac{f(x)p(y|x)}{p(y)}$$

mit $p(y) = P(Y = y) = \int f(x)p(y|x)\lambda^1(dx)$ eine bedingte Dichte von X gegeben Y ist.

Mitteilung: Die Klausur zur Stochastik I findet am Montag, 14. Juli, zwischen 13.45 Uhr und 15.45 Uhr im Hörsaal des Mathematischen Institut statt. Die Vorlesung fällt dadurch an diesem Tag aus.