Sommersemester 2008

Übungen zur Stochastik I Serie 12

Abgabe: Dienstag, 8. Juli 2008, vor der Vorlesung

- **56.** (3 Punkte) Ist $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ ein Submartingal und c eine Konstante, so ist $(\max\{X_n, c\}, \mathcal{F}_n)_{n \in \mathbb{N}}$ ebenfalls ein Submartingal.
- **57.** Seien X_1, X_2, \ldots und Y_1, Y_2, \ldots Zufallsvariablen, und habe (X_1, \ldots, X_n) eine positive Dichte f_n und (Y_1, \ldots, Y_n) eine Dichte g_n für $n \in \mathbb{N}$. Dann ist $(g_n(X_1, \ldots, X_n)/f_n(X_1, \ldots, X_n), \mathcal{F}(X_1, \ldots, X_n))_{n \in \mathbb{N}}$ ein Martingal.
 - **58.** (**5** Punkte) (Eigenschaften von Stoppzeiten)
 - a) Sind S und T Stoppzeiten, dann auch $S \vee T$, $S \wedge T$ und S + T.
 - b) Eine Stoppzeit T ist \mathcal{F}_T -messbar.
- c) Ist T eine Stoppzeit und $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, so ist X_T \mathcal{F}_T -messbar.
- d) Sind S und T Stoppzeiten mit $S \leq T$, dann gilt $\mathcal{F}_S \subset \mathcal{F}_T$. Hinweis: $x \vee y := \max\{x, y\}, x \wedge y := \min\{x, y\}$.
- **59.** Ursprünglich bedeutet "Martingal" folgende Strategie (auch Petersburger Strategie genannt): Sie verdoppeln bei jedem Spiel den Einsatz und hören auf, wenn Sie das erste Mal gewinnen. Für ein faires Spiel gilt:
- a) Am Schluss haben Sie Ihren Einsatz verdoppelt. (Der Satz über optional sampling gilt also *nicht*.)
 - b) Ihr Vermögen ist ein Martingal.
 - c) Die Stoppzeit ist geometrisch verteilt.
- d) Der Erwartungswert Ihres Einsatzes bis zum letzten Spiel ist *unendlich*. (Sie benötigen also ein hohes Startkapital.)
- **60.** (Optional switching) Seien $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ und $(Y_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ Martingale und T eine Stoppzeit, und es gelte $X_T = Y_T$, wenn $T < \infty$. Definiere

$$Z_n = \begin{cases} X_n &, n < T \\ Y_n &, n \ge T. \end{cases}$$

(*Interpretation:* Zum Zeitpunkt T setzen Sie sich mit Ihren bisher gewonnenen Chips an einen anderen Spieltisch.) Dann ist $(Z_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ ein Martingal.