Prof. Dr. W. Wefelmeyer Dr. M. Schulz

Sommersemester 2011

Übungen zur Wahrscheinlichkeitstheorie I Serie 3

Abgabe: Dienstag, 26. April 2011, vor der Vorlesung

- 11. Seien μ eine additive und nichtnegative Mengenfunktion auf einer Algebra \mathcal{A} über Ω und μ^* das zugehörige äußere Maß. Dann gibt es für alle $B \subset \Omega$ eine Menge $A \in \sigma(\mathcal{A})$ mit $B \subset A$ und $\mu^*(B) = \mu^*(A)$.
- 12. Seien $\Omega = \mathbb{R}$ und \mathcal{A} das System der Mengen $A \subset \mathbb{R}$, für welche A oder A^c höchstens abzählbar ist. Auf dieser σ -Algebra betrachte man das Maß μ , das gegeben ist durch

$$\mu(A) = \begin{cases} 0 & \text{, falls A h\"{o}chstens abz\"{a}hlbar} \\ 1 & \text{, falls A^c h\"{o}chstens abz\"{a}hlbar}. \end{cases}$$

Beweisen Sie:

- a) Das zu μ gehörige äußere Maß
 μ^* ordnet jeder Menge $A\in\mathcal{P}(\Omega)$ den Wert
- 0 bzw. 1 zu, je nachdem ob A höchstens abzählbar oder überabzählbar ist.
- b) Auf $\mathcal{P}(\Omega)$ ist μ^* kein Maß.
- c) Es gilt $\mathcal{A} = \mathcal{A}^*$.
- 13. Sei F eine Verteilungsfunktion und μ das zugehörige Lebesgue-Stieltjes-Maß. Schreibe $y \to x-$, wenn $y \to x$ mit y < x.
 - a) Die Funktion F besitzt in jedem Punkt x einen linken Limes

$$F(x-) = \lim_{y \to x-} F(y).$$

- b) Es gilt $\mu\{x\} = F(x) F(x-)$.
- c) Die Funktion F ist stetig genau dann, wenn $\mu\{x\} = 0$.
- d) Es gilt

$$\begin{array}{rcl} \mu[a,b] & = & F(b) - F(a-), \\ \mu(a,b) & = & F(b-) - F(a), \\ \mu[a,b) & = & F(b-) - F(a-). \end{array}$$

14. a) Zeigen Sie, dass eine Verteilungsfunktion höchstens abzählbar viele Unstetigkeitsstellen hat.

- b) Gibt es Verteilungsfunktionen, deren Unstetigkeitsstellen dicht in $\mathbb R$ liegen?
- **15.** Für jede Abbildung $f:\Omega\to\Omega'$ einer Menge Ω in eine Menge Ω' und jedes Mengensystem $\mathcal{E}'\subset\mathcal{P}(\Omega')$ zeige man:

$$f^{-1}(\sigma(\mathcal{E}')) = \sigma(f^{-1}(\mathcal{E}')).$$