Prof. Dr. W. Wefelmeyer Dr. M. Schulz

Sommersemester 2011

Übungen zur Wahrscheinlichkeitstheorie I Serie 8

Abgabe: Dienstag, 31. Mai 2011, vor der Vorlesung

36. Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger Zufallsvariablen mit $P(X_n \leq t) = (1 - e^{-t})1_{(0,\infty)}(t)$. Zeigen Sie:

$$\limsup_{n \to \infty} \frac{X_n}{\log n} = 1 \quad \text{f.s.}$$

Hinweis: Verwenden Sie die Borel-Cantelli-Lemmas für $A_n := \{X_n \ge \log n\}$ und $B_n := \{X_n \ge (1 + \delta) \log n\}$.

- **37.** a) Seien $(X_n)_{n\in\mathbb{N}}$ und $(Y_n)_{n\in\mathbb{N}}$ zwei Folgen unabhängiger Zufallsvariablen mit $\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty$. Wenn $n^{-1} \sum_{i=1}^{n} (X_i EX_i) \to 0$ f.s., dann konvergiert auch $n^{-1} \sum_{i=1}^{n} (Y_i EY_i)$ f.s. gegen Null.
 - b) Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger Zufallsvariablen mit

$$P(X_n = 1) = P(X_n = -1) = \frac{1}{2}(1 - 2^{-n})$$

und

$$P(X_n = 2^n) = P(X_n = -2^n) = 2^{-(n+1)}.$$

Zeigen Sie, dass $\frac{1}{n} \sum_{i=1}^{n} X_i$ f.s. gegen Null konvergiert, die Reihe $\sum_{n=1}^{\infty} \frac{\text{Var}(X_n)}{n^2}$ jedoch divergiert.

- **38.** a) Wenn $X_n \Rightarrow X$ und $Y_n X_n \to 0$ in Wahrscheinlichkeit, dann gilt $Y_n \Rightarrow X$.
- b) Wenn $X_n \to c$ in Wahrscheinlichkeit und $Y_n \Rightarrow Y$, dann gilt $X_n Y_n \Rightarrow c Y$.
 - **39.** (3 Punkte) a) Wenn $X_n \Rightarrow c$, dann $X_n \to c$ in Wahrscheinlichkeit.
 - b) Wenn $X_n \to X$ in Wahrscheinlichkeit, dann $X_n \Rightarrow X$.
- **40.** (5 Punkte) Seien $g: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion und X_1, X_2, \ldots eine Folge von Zufallsvariablen.
 - a) Gilt $X_n \to X$ fast sicher, dann auch $g \circ X_n \to g \circ X$ fast sicher.

- b) Gilt $X_n \to X$ in Wahrscheinlichkeit, dann auch $g \circ X_n \to g \circ X$ in Wahrscheinlichkeit.
- c) Gilt $X_n \Rightarrow X$, dann auch $g \circ X_n \Rightarrow g \circ X$. d) Sei f stetig differenzierbar in 0 und a_1, a_2, \ldots eine Folge reeller Zahlen mit $a_n \to \infty$. Wenn $a_n X_n \Rightarrow Y$, dann gilt

$$a_n(f(X_n) - f(0)) \Rightarrow f'(0)Y.$$