Übungen zur Wahrscheinlichkeitstheorie I Serie 10

Abgabe: Dienstag, 21. Juni 2011, vor der Vorlesung

46. Seien X_n , $n \in \mathbb{N}$, $B_{n,p}$ -verteilte Zufallsvariablen mit $p \in (0,1)$. Definiere $Y_n = \log(X_n/n)$ für $X_n \geq 1$ und $Y_n = 1$ für $X_n = 0$. Zeigen Sie, dass

$$n^{1/2}(Y_n - \log p) \Rightarrow N_{0,\frac{1-p}{p}}.$$

- 47. Für ein gegebenes W-Maß μ auf \mathcal{B}^1 betrachte man auf \mathcal{B}^n das W-Maß $P = \mu \otimes \ldots \otimes \mu$ (mit n Faktoren). Es bezeichne \mathcal{G} das System aller Mengen $B \in \mathcal{B}^n$ mit der Eigenschaft, dass für jede Permutation i_1, \ldots, i_n von $1, \ldots, n$ mit jedem Punkt $x = (x_1, \ldots, x_n)$ aus B auch $(x_{i_1}, \ldots, x_{i_n})$ in B liegt. Man zeige:
 - a) \mathcal{G} ist eine Sub- σ -Algebra von \mathcal{B}^n .
- b) Für jede integrierbare Zufallsvariable X auf dem W-Raum $(\mathbb{R}^n, \mathcal{B}^n, P)$ stimmt $E(X|\mathcal{G})$ fast sicher mit der Funktion

$$x \mapsto \frac{1}{n!} \sum_{i_1,\dots,i_n} X(x_{i_1},\dots,x_{i_n})$$

überein. Die Summation erstreckt sich dabei über alle Permutationen von $1, \ldots, n$.

- 48. Sei $P|\mathcal{B}$ ein Wahrscheinlichkeitsmaß mit Lebesgue-Dichte f und X eine integrierbare Zufallsvariable auf $(\mathbb{R}, \mathcal{B})$. Ferner sei \mathcal{B}_0 die Sub- σ -Algebra, die von den um 0 symmetrischen Intervallen erzeugt wird. Berechnen Sie $E(X|\mathcal{B}_0)$.
- **49.** Gegeben sei der W-Raum (Ω, \mathcal{F}, P) . Für ein $A \in \mathcal{F}$ setzen wir $P(A|Y=y)=E(1_A|Y=y)$. Seien weiter X und Y Zufallsvariablen mit stetiger gemeinsamer Lebesgue-Dichte f, d.h. $P^{(X,Y)}$ besitze die Lebesgue-Dichte f. Zudem sei X P-integrierbar und es gelte

$$f_2(y) = \int f(x,y) \lambda(dx) > 0 \quad \forall y \in \mathbb{R}.$$

Beweisen Sie:

a)
$$E(X|Y=y) = \frac{1}{f_2(y)} \int x f(x,y) \lambda(dx)$$
 für P^Y -fast alle y ,

b)
$$P(X \le t | Y = y) = \frac{1}{f_2(y)} \int_{(-\infty,t]} f(x,y) \lambda(dx)$$
 für P^Y -fast alle y .

Bemerkung: Die Funktion

$$P(X \le t | Y = y) = \frac{1}{f_2(y)} \int_{(-\infty,t]} f(x,y) \,\lambda(dx), \ t \in \mathbb{R},$$

wird bedingte Verteilungsfunktion von X gegeben Y=y genannt. Die Funktion

$$f(x|y) = \frac{f(x,y)}{f_2(y)}, x \in \mathbb{R},$$

heißt bedingte Dichte von X gegeben Y=y.

 ${\bf 50.}$ Die Zufallsvariablen X_1 und X_2 besitzen die gemeinsame Dichte

$$f(x,y) = \frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2(1-\rho^2)}} e^{-\frac{1}{2\sigma_1^2\sigma_2^2(1-\rho^2)}(x-\mu_1,y-\mu_2)\begin{pmatrix} \sigma_2^2 & -\rho\sigma_1\sigma_2 \\ -\rho\sigma_1\sigma_2 & \sigma_1^2 \end{pmatrix}\begin{pmatrix} x-\mu_1 \\ y-\mu_2 \end{pmatrix}}.$$

Bestimmen Sie die bedingte Dichte von X_2 gegeben $X_1 = x$ und berechnen Sie damit den bedingten Erwartungswert $E(X_2|X_1)$.