Übungen zur Asymptotischen Statistik Serie 3

Abgabe: Dienstag, 24. April 2012, vor der Vorlesung

- 9. Sei X der (m-dimensionale) Zufallsvektor aus Aufgabe 8 und P seine Verteilung. Sei f eine k-dimensionale Funktion mit positiv definiter Kovarianzmatrix. Die Komponenten f_i von f seien aus $L_2(P)$. Bestimmen Sie einen möglichst guten Schätzer für Ef(X), und berechnen Sie seine asymptotische Verteilung.
- 10. Betrachten Sie das lineare Modell $Y_i = X_i \vartheta + \varepsilon_i$, $i = 1, \ldots, n$. Die Fehler ε_i seien unabhängig und identisch verteilt mit Erwartungswert 0 und Varianz σ^2 . Die Größen $X_i = (X_i^{(1)}, X_i^{(2)})$ seien deterministisch und wie der unbekannte Parameter $\vartheta = (\vartheta_1, \vartheta_2)^{\top}$ zweidimensionale Vektoren. Durch Zusammenfassen der Vektoren X_i zu einer $n \times 2$ -dimensionalen Matrix können wir das Modell auch als $Y = X\vartheta + \varepsilon$ mit n-dimensionalen Vektoren Y und ε schreiben. Die Spalten der Matrix X bezeichnen wir mit Z_1 und Z_2 . Wir nehmen an, dass $(Z_1^{\top}Z_1)^{-1}$ und $(Z_2^{\top}Z_2 Z_2^{\top}Z_1(Z_1^{\top}Z_1)^{-1}Z_1^{\top}Z_2)^{-1}$ existieren.
 - a) Leiten Sie den Kleinste-Quadrate-Schätzer für ϑ in Abhängigkeit von Z_1, Z_2 und Y her.
 - b) Sei $\hat{\vartheta} = (\hat{\vartheta}_1, \hat{\vartheta}_2)^{\top}$ der in a) bestimmte Kleinste-Quadrate-Schätzer. Berechnen Sie die Kovarianz von $\hat{\vartheta}_1$ und $\hat{\vartheta}_2$.
 - c) Angenommen, wir wissen, dass $\vartheta_2=0$. Sei ϑ_1 der Kleinste-Quadrate-Schätzer im reduzierten Modell $Y=\vartheta_1 Z_1+\varepsilon$. Zeigen Sie, dass der Schätzer $\tilde{\vartheta}_1$ besser ist als der Schätzer $\hat{\vartheta}_1$, indem Sie deren Varianzen vergleichen.
- 11. Sei (X,Y) ein zweidimensionaler Zufallsvektor mit $E(Y|X) = \vartheta X$ für ein (unbekanntes) $\vartheta \in \mathbb{R}$. Seien (X_i,Y_i) , $i=1,\ldots,n$, unabhängige Beobachtungen aus diesem Modell. Bestimmen Sie einen Schätzer für die Varianz von $\varepsilon = Y \vartheta X$. Geben Sie Bedingungen an, unter denen er asymptotisch normal ist, und bestimmen Sie seine asymptotische Varianz.

12. Sei (X,Y) ein zweidimensionaler Zufallsvektor. Es gelte $Y=r(X)+\eta$ mit $E\eta=0$. X und η seien unabhängig. Was schätzt der Kleinste-Quadrate-Schätzer

$$\hat{\vartheta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$$

in diesem Fall? Welche Entwicklung besitzt $\hat{\vartheta}$?

Sei nun h eine stetig differenzierbare Funktion mit Lipschitz-stetiger erster Ableitung. Was schätzt dann

$$T = \frac{1}{n} \sum_{i=1}^{n} h(Y_i - \hat{\vartheta}X_i)?$$

Welche Entwicklung besitzt T?