Prof. Dr. W. Wefelmeyer M. Sc. Christoph Heuser

Übungen zur Mathematischen Statistik Serie 2

Abgabe: Dienstag, 29. Oktober 2013, vor der Vorlesung

- **6.** Zeigen Sie: Ist T eine suffiziente Statistik und gilt $T = \psi(S)$ mit einer messbaren Funktion ψ und einer anderen Statistik S, dann ist auch S suffizient.
- 7. Seien T und S zwei Statistiken, so dass für eine messbare Funktion ψ gilt $S = \psi(T)$. Beweisen Sie:
 - a) Wenn T vollständig ist, dann ist auch S vollständig.
 - b) Wenn T vollständig und suffizient, ψ bijektiv und ψ^{-1} messbar ist, dann ist S vollständig und suffizient.
 - c) Die Ergebnisse aus a) und b) bleiben gültig, wenn man die Vollständigkeit durch die beschränkte Vollständigkeit ersetzt.
- **8.** Seien X_1, \ldots, X_n unabhängig und nach $P_{\vartheta} \in \{P_{\vartheta} : \vartheta \in \Theta\}$ verteilt. Bestimmen Sie in den folgenden Fällen eine zweidimensionale suffiziente Statistik für ϑ . Überlegen Sie jeweils, ob diese vollständig ist.
 - a) P_{ϑ} ist die Gamma-Verteilung $\Gamma_{a,b}$ mit $\vartheta = (a,b)^{\top}$.
 - b) P_{ϑ} ist die $N_{\vartheta,\vartheta^2}$ -Verteilung.
- **9.** Seien X_1, \ldots, X_n unabhängig und $E(a, \vartheta)$ -verteilt (vgl. Aufgabe 3) mit $\vartheta > 0$ fest. Geben Sie eine möglichst niedrigdimensionale suffiziente Statistik für a an. Ist sie vollständig oder minimal?
- **10.** Seien X_1, \ldots, X_n unabhängige und N_{μ, σ^2} -verteilte Zufallsvariablen. Dann sind $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ und $\sum_{i=1}^n (X_i \bar{X})^2$ unabhängig.