Übungen zur Mathematischen Statistik Serie 8

Abgabe: Dienstag, 10. Dezember 2013, vor der Vorlesung

- ${f 36.}$ Sei X ein Zufallsvektor mit positiv definiter Kovarianzmatrix, dessen Komponenten alle den gleichen Erwartungswert haben. Finden Sie einen möglichst guten Schätzer für diesen Erwartungswert, und bestimmen Sie seine asymptotische Verteilung.
- 37. Sei X der (m-dimensionale) Zufallsvektor aus Aufgabe 36 und P seine Verteilung. Sei f eine k-dimensionale Funktion mit positiv definiter Kovarianzmatrix. Die Komponenten f_i von f seien aus $L_2(P)$. Bestimmen Sie einen möglichst guten Schätzer für Ef(X), und berechnen Sie seine asymptotische Verteilung.
- **38.** Für einen Kern K sei $\mu_j(K) := \int u^j K(u) du$ und $\mu_{2p}(K) < \infty$. N_p sei die $(p+1) \times (p+1)$ -Matrix mit Einträgen $(N_p)_{i,j=1,\dots,p+1} = \mu_{i+j-2}(K)$. Die $(p+1) \times (p+1)$ -Matrix $M_p(u)$ entstehe aus N_p , indem man die erste Spalte durch $(1, u, \dots, u^p)^{\top}$ ersetzt. Dann gilt: Wenn p ungerade ist, so ist

$$K_{(p)}(u) = \frac{\det(M_p(u))}{\det(N_p)} K(u)$$

ein Kern mit $\int u^k K_{(p)}(u) du = 0$ für $k = 1, \dots, p$.

- **39.** Untersuchen Sie folgende Funktionen auf Zugehörigkeit zu $\operatorname{Lip}_{r,1}(L)$ bzw. $\mathcal{L}_{r,1}$:
 - a) $f(x) = \frac{1}{2} \mathbf{1}_{[-1,1]}(x)$,
 - b) $g(x) = \exp(-\frac{1}{1-x^2})1_{(-1,1)}(x),$
 - c) $h(x) = (1+x)1_{[-1,0]}(x) + (1-x)1_{(0,1]}(x)$.

40. Sei (X,Y) ein zweidimensionaler Zufallsvektor mit gemeinsamer Dichte f. Sei f_1 die Dichte von X und r(x)=E(Y|X=x) die Regressionsfunktion von Y auf X. Definiere den Nadaraya-Watson-Schätzer

$$\hat{r}(x) = \frac{\sum_{i=1}^{n} Y_i K_b(x - X_i)}{\sum_{i=1}^{n} K_b(x - X_i)}.$$

Berechnen Sie unter geeigneten Bedingungen die Konvergenzrate von $\hat{r}(x)$.