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Abstract

We consider nonlinear and heteroscedastic autoregressive models whose residuals are
martingale increments with conditional distributions that fulfill certain constraints. We
treat two classes of constraints: residuals depending on the past through some function
of the past observations only, and residuals that are invariant under some finite group
of transformations. We determine the efficient influence function for estimators of the
autoregressive parameter in such models, calculate variance bounds, discuss information
gains, and suggest how to construct efficient estimators. Without constraints, efficient
estimators can be given by weighted least squares estimators. With the constraints
considered here, efficient estimators are obtained differently, as one-step improvements
of some initial estimator, similarly as in autoregressive models with independent incre-
ments.
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1 Introduction

Let X1−p, . . . , Xn be observations of a Markov chain of order p with a parametric model for
the conditional mean,

(1.1) E(Xi|Xi−1) = rβ(Xi−1),

where Xi−1 = (Xi−p, . . . , Xi−1) and β is an unknown d-dimensional parameter. An efficient
estimator for β in this model is a randomly weighted least squares estimator that solves the
estimating equation

(1.2)
n∑
i=1

σ̃−2(Xi−1)ṙβ(Xi−1) (Xi − rβ(Xi−1)) = 0,
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where ṙβ is the vector of partial derivatives of rβ with respect to β, and σ̃2(Xi−1) estimates
the conditional variance σ2(Xi−1) = E((Xi − rβ(Xi−1))2|Xi−1). We refer to Wefelmeyer
(1996, 1997) and, more generally, to Müller and Wefelmeyer (2002).

The Markov chain model (1.1) can be described as having a transition distribution from
Xi−1 = x to Xi = y of the form

(1.3) A(x, dy) = T (x, dy − rβ(x))

with
∫
T (x, dy)y = 0 for (almost all) x = (x1, . . . , xp). It can also be written as a nonlinear

autoregressive model

(1.4) Xi = rβ(Xi−1) + εi,

where the residual εi depends on the past through Xi−1 only and has conditional distribution
T (Xi−1, dy) with

∫
T (x, dy)y = 0.

Suppose now that T is known to fulfill certain additional restrictions. Then it is not
useful to describe the model through the conditional constraint (1.1). We will instead use
description (1.3), which depends explicitly on the conditional distribution of the residuals.
This is also the approach in the well-studied degenerate case in which T (x, dy) = f(y) dy
does not depend on the past at all, so that the autoregressive process (1.4) is driven by
independent innovations εi with density f . Efficient estimators of β in the latter case
are constructed as one-step improvements of some initial estimator; see Kreiss (1987a,
1987b), Koul and Schick (1997) and Schick (2001). For regression models Yi = rβ(Xi) + εi,
corresponding results are in Schick (1993). We follow their approach in our model (1.3)
with restrictions on T . We consider in particular the following two types of constraints.

(1) The conditional distribution of the residuals εi is partially independent of the past,
i.e., T (x, dy) = T0(Bx, dy) for a known function B : Rp → Rq with 0 ≤ q ≤ p. For
example, the dependence is lagged by p− q time points, Bx = (x1, . . . , xq); or the residuals
have shorter memory, of length q only, Bx = (xp−q, . . . , xp). Also contained here is the
nonparametric case, with no restriction on T , described by q = p and Bx = x, and the case
with independent innovations, described by q = 0 and Bx = 0.

(2) The conditional distribution of the residuals εi is invariant under some finite group
of transformations Bj : Rp+1 → Rp+1, j = 1, . . . ,m, i.e. T has density t with t(z) = t(Bjz)
for z = (x, y) and j = 1, . . . ,m. For example, the residuals are symmetric about zero in
the sense that t(x, y) = t(−x,−y), or the conditional distribution of the residuals εi is
symmetric about the previous observation Xi−1, i.e., t(x, y) = t(x, 2xp − y).

Our approach also covers models having both types of restrictions. Examples are the
linear and nonlinear autoregressive models with independent and symmetric innovations,
treated in Kreiss (1987b) and Koul and Schick (1997).

In Section 2 we consider model (1.3) with one or both of the above two constraints on
T . We determine efficient influence functions for estimators of β, calculate variance bounds,
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and specify the information about β that is contained in the constraints. We also indicate
how to construct efficient estimators of β in these models.

In Section 3 we treat model (1.3) when, besides a parametric model for the conditional
mean of the Markov chain, one also has a parametric model for the conditional variance,

E(Xi|Xi−1) = rβ(Xi−1),

E((Xi − rβ(Xi−1))2|Xi−1) = s2
β(Xi−1).

This is a Markov chain with transition distribution of the form

(1.5) A(x, dy) =
1

sβ(x)
T
(
x,
dy − rβ(x)
sβ(x)

)
,

with T (Xi−1, dy) now having conditional mean zero and variance one. It can also be written
as a nonlinear autoregressive model

(1.6) Xi = rβ(Xi−1) + sβ(Xi−1)εi

with residual εi having conditional distribution T (Xi−1, dy) with
∫
T (x, dy)y = 0 and∫

T (x, dy)y2 = 1. When there are no constraints on T , an efficient estimator for β is
obtained as a least squares estimator that solves an estimating equation of the form

n∑
i=1

(
â(Xi−1)

(
(Xi − rβ(Xi−1)

)
+ b̂(Xi−1)

((
Xi − rβ(Xi−1)

)2 − s2
β(Xi−1)

))
= 0

with appropriate d-dimensional vectors â(Xi−1) and b̂(Xi−1) of random weights as described
in Wefelmeyer (1996) and Müller and Wefelmeyer (2002); see also (3.2) below. When the
model has independent innovations, T (x, dy) = f(y) dy for a density f having mean zero
and variance one, then the description via (1.5) works, and efficient estimators of β can be
constructed as one-step improvements of some initial estimator; see Drost, Klaassen and
Werker (1997). Ngatchou-Wandji (2008) studies weighted least squares estimators. For
regression models Yi = rβ(Xi) + sβ(Xi)εi, corresponding efficient estimators are in Schick
(1993). We determine efficient influence functions and variance bounds for estimators of β
in model (1.5) under the two types of constraints on T described above, again including the
two known cases of no constraints on T , and of independent innovations. A special case is
the homoscedastic autoregressive model with E(Xi|Xi−1) = rβ(Xi−1) and with conditional
variance E((Xi − rβ(Xi−1))2|Xi−1) = σ2

β independent of the past Xi−1. Since Section 3 is
parallel to Section 2, we will be brief.

2 Parametric conditional mean

For parametric models and independent observations, a lower variance bound for unbiased
estimators is given by the Cramér–Rao inequality; Fréchet (1943), Darmois, (1945), Rao
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(1945, 1962, 1963) and Cramér (1946). If the model is locally asymptotically normal, and
we consider the larger class of regular estimators, then the Cramér–Rao bound is asymp-
totically attainable, at least locally. Furthermore, an asymptotically optimal estimator is
asymptotically more concentrated in every symmetric interval about the true parameter.
This follows from the convolution theorem of Kaufman (1966), Inagaki (1970), Hájek (1970)
and Le Cam (1972). We also refer to the monograph of Le Cam (1986) and the historical
article of Le Cam (2000). Following Stein (1956), the convolution theorem was extended to
regular estimators of differentiable real-valued functionals on semiparametric models; see
e.g. Pfanzagl and Wefelmeyer (1982). Then the asymptotic variance bound is that of the
least favorable one-dimensional submodel. Similar extensions of the Cramér–Rao inequality,
for estimators that are only asymptotically unbiased, are in Pfanzagl (2001) and Janssen
(2003).

In this section we consider model (1.3) with constraints on T . This means that the
observations X1−p, . . . , Xn come from a Markov chain of order p with transition distribution
A(x, dy) = T (x, y − rβ(x)) such that β is a d-dimensional parameter and

∫
T (x, dy)y = 0

for all x = (x1, . . . , xp), with an additional constraint on T . We calculate efficient influence
functions and variance bounds for estimators of β in this model. This requires the time
series to be locally asymptotically normal. We fix β and T and assume that the time series
is strictly stationary and positive Harris recurrent. Let G denote the stationary law of Xi−1.
Then G ⊗ T is the stationary law of (Xi−1, εi). We will briefly write (X, ε) for a random
vector with this law. We write e(y) = y for the identity function on R. In the following we
write conditional expectations as T (x, v) =

∫
T (x, dy)v(x, y) = E(v(X, ε)|X = x). We also

write T (x, ve) =
∫
T (x, dy)v(x, y)y etc. We make the following assumptions on rβ and T .

Assumption 1. There is a G-square-integrable function ṙ = ṙβ such that for each C > 0,

sup
‖∆‖≤Cn−1/2

n∑
i=1

(
rβ+∆(Xi−1)− rβ(Xi−1)−∆>ṙ(Xi−1)

)2
= oPn(1).

Assumption 2. For each x, the conditional distribution T (x, dy) has a positive and ab-
solutely continuous density t(x, y), and E[ε2] and E[`21(X, ε)] are finite, where `1(x, y) =
−t′(x, y)/t(x, y) with derivative taken with respect to y.

Since T has a density t, the distribution G of X also has a density, say g. Introduce
perturbations βnu = β + n−1/2u with u ∈ Rd and tnv(x, y) = t(x, y)(1 + n−1/2v(x, y))
with v a bounded and measurable function on Rp+1. We must have Tnv(x, 1) = 1 and
Tnv(x, e) = 0 and hence T (x, v) = 0 and T (x, ve) = 0. Let V denote the set of functions v
with T (x, v) = 0, and V1 the subset of functions v for which also T (x, ve) = 0. Write gnuv
for the density of X under (βnu, tnv). Write Pn and Pnuv for the joint law of the observations
Xd−1, . . . , Xn under (β, t) and (βnu, tnv), respectively. Their log-likelihood ratio is

log
dPnuv
dPn

= log
gnuv(X0)
g(X0)

+
n∑
i=1

log
tnv(Xi−1, εi(βnu))
t(Xi−1, εi(β))
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with εi(β) = Xi − rβ(Xi−1). We can prove local asymptotic normality similarly as in Koul
and Schick (1997) who treat independent innovations.

Theorem 1. Let (u, v) ∈ Rd × V1. Suppose Assumptions 1 and 2 hold and g depends
smoothly on the parameters in the sense that

∫
|gnuv(x)− g(x)| dx→ 0. Then

log dPnuv
dPn

= n−1/2
∑n

i=1 suv(Xi−1, εi)− 1
2‖(u, v)‖2 + oPn(1),(2.1)

n−1/2
∑n

i=1 suv(Xi−1, εi)⇒ ‖(u, v)‖N under Pn,(2.2)

where N is a standard normal random variable and

suv(x, y) = u>ṙ(x)`1(x, y) + v(x, y),

‖(u, v)‖2 = E[s2
uv(X, ε)].

The norm ‖(u, v)‖ determines how difficult it is, asymptotically, to distinguish between
(β, t) and (βnu, tnv) on the basis of the observations. It induces an inner product

((u′, v′), (u, v)) = E[su′v′(X, ε)suv(X, ε)].

Consider now a model for T , i.e. a family T of conditional distributions T with T (x, e) =
0. Assume that the fixed T belongs to T . Let W denote the set of all v in V1 such that Tnv
lies in T . Assume that W is a linear space, the local parameter space of T at T . Let W̄
and V̄1 denote the closures of W and V1 in L2(G ⊗ T ). We can then characterize efficient
estimators of real-valued functions of (β, t) as follows, using results of Hájek and LeCam,
for which we refer to Section 3.3 of Bickel, Klaassen, Ritov and Wellner (1998).

Definition 1. A real-valued functional ϕ of (β, t) is called differentiable at (β, t) with
gradient suϕvϕ if (uϕ, vϕ) ∈ Rd × V̄1 and

n1/2(ϕ(βnu, tnv)− ϕ(β, t))→ ((uϕ, vϕ), (u, v)), (u, v) ∈ Rd ×W.

If vϕ = wϕ is in W̄ , then suϕwϕ is called the canonical gradient of ϕ.

Definition 2. An estimator ϕ̂ of ϕ is called regular at (β, t) with limit L if L is a random
variable such that

n1/2(ϕ̂− ϕ(βnu, tnv))⇒ L under Pnuv, (u, v) ∈ Rd ×W.

The convolution theorem says that for such an estimator, L = ‖(uϕ, wϕ)‖N + M in
distribution, with M independent of N . This justifies the following definition.

Definition 3. An estimator ϕ̂ of ϕ is called efficient at (β, t) if

n1/2(ϕ̂− ϕ(β, t))⇒ ‖(uϕ, wϕ)‖N.
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Definition 4. An estimator ϕ̂ of ϕ is called asymptotically linear at (β, t) with influence
function suϕvϕ if (uϕ, vϕ) ∈ Rd × V̄1 and

n1/2(ϕ̂− ϕ(β, t)) = n−1/2
n∑
i=1

suϕvϕ(Xi−1, εi) + oPn(1).

We have the following characterization. An estimator is regular and efficient if and only
if it is asymptotically linear with influence function equal to the canonical gradient.

We apply the theory to several models T and to estimating β, i.e., to the d-dimensional
functional ϕ(β, t) = β. Differentiability of multivariate functionals ϕ and asymptotic lin-
earity of multivariate estimators ϕ̂ are understood componentwise. Regularity and the
convolution theorem have obvious multivariate versions. The characterization of efficient
estimators is then also meant componentwise.

We have two parameters (β, t) and know that the canonical gradient of β must be
orthogonal to the tangent space for fixed β. Our approach will be to identify first the
direction of the efficient influence function for β through an orthogonal decomposition of
the full tangent space.

Residual distribution partially independent of the past. Let q ∈ {0, . . . , p}. Sup-
pose T consists of the conditional distributions T with

∫
T (x, dy)y = 0 and T (x, dy) =

T0(Bx, dy) for some known function B : Rp → Rq. Fix T0. Let t0 denote the den-
sity of T0. Then we can write `1(x, y) = `01(Bx, y) with `01 = −t′0/t0, with derivative
t′0(Bx, y) = ∂yt0(Bx, y). The local parameter space W of T consists of the functions v ∈ V1

of the form v(x, y) = v0(Bx, y). For u ∈ Rd and v ∈ W of the form v(x, y) = v0(Bx, y) we
have

suv(X, ε) = u>ṙ(X)`01(BX, ε) + v0(BX, ε).

The projection of `01(Bx, y) onto W̄ is

`∗01(Bx, y) = `01(Bx, y)− σ−2
0 (Bx)y

with σ2
0(BX) = E(ε2|BX). We set %(BX) = E(ṙ(X)|BX) and write

ṙ(X)`01(BX, ε) = (ṙ(X)− %(BX))`01(BX, ε) + %(BX)`01(BX, ε).

We obtain the orthogonal decomposition

(2.3) suv(X, ε) = u>τ(X, ε) + u>%(BX)`∗01(BX, ε) + v0(BX, ε)

with
τ(X, ε) = (ṙ(X)− %(BX))`01(BX, ε) + %(BX)σ−2

0 (BX)ε.

The random variable τ(X, ε) is called the score function for β at T0. By construction,
%(Bx)`∗01(Bx, y) is in W̄ , and the functions (ṙ(x)− %(Bx))`01(Bx, y) and %(Bx)σ−2

0 (Bx)y
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are orthogonal to W . It follows that the efficient influence function for β is γ(x, y) =
Λ−1τ(x, y), where

Λ = E[τ(X, ε)τ>(X, ε)]

= E[(R(BX)− %(BX)%>(BX))J01(BX)] + E[%(BX)%>(BX)σ−2
0 (BX)]

with R(BX) = E(ṙ(X)ṙ>(X)|BX) and with J01(BX) = E(`201(BX, ε)|BX)) the condi-
tional Fisher information for location of ε. By the characterization above, an estimator β̂
of β is regular and efficient at (β, t) if

n1/2(β̂ − β) = Λ−1n−1/2
n∑
i=1

τ(Xi−1, εi) + oPn(1).

Its asymptotic covariance matrix is Λ−1. The matrix Λ is called the information matrix for
β at T0. To construct an efficient estimator β̂ of β, choose a n1/2-consistent initial estimator
β̃ of β, for example the least squares estimator or a weighted version. Estimate the residual
εi by ε̃i = Xi − rβ̃(Xi−1). Under appropriate regularity conditions, an efficient estimator β̂
is obtained as a one-step improvement (or Newton–Raphson estimator)

(2.4) β̂ = β̃ + Λ̃−1 1
n

n∑
i=1

τ̃(Xi−1, ε̃i)

with some estimator τ̃ of the score function τ , and with

(2.5) Λ̃ =
1
n

n∑
i=1

τ̃(Xi−1, ε̃i)τ̃>(Xi−1, ε̃i).

An estimator τ̃ of τ requires estimators for ṙ, %, `01 and σ2
0 as follows. The gradient ṙβ

is estimated by ṙβ̃. We can estimate %(b) by a generalization of the Nadaraya–Watson
estimator,

%̃(b) =

∫
Bx=b ṙβ̃(x)g̃(x) dx∫

Bx=b g̃(x) dx
,

where g̃ is a density estimator of g based on Xi, i = 1, . . . , n. To estimate `01, we express this
function in terms of the stationary density of (BX, ε). Let g0 denote the stationary density
of BX. The stationary density of (BX, ε) at (Bx, y) is h0(Bx, y) = g0(Bx)t0(Bx, y). Set
h′0(Bx, y) = ∂yh0(Bx, y). Then `01 = −t′0/t0 = −h′0/h0. Estimate h0 by a density estimator
h̃0 based on (BXi−1, ε̃i), i = 1, . . . , n. An estimator of `01 is ˜̀

01 = −h̃′0/h̃0. An estimator
of σ2

0(b) is the Nadaraya–Watson estimator

σ̃2
0(b) =

∫
y2h̃0(b, y) dy∫
h̃0(b, y) dy

.

Our estimator for the score function τ(Xi−1, εi) is then τ̃(Xi−1, ε̃i) with

τ̃(x, y) = (ṙβ̃(x)− %̃(Bx))˜̀
01(Bx, y) + %̃(Bx)σ̃−2

0 (Bx)y.
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Special case: Nonparametric model. Suppose we have no structural information on the con-
ditional distribution T . Then T consists of all conditional distributions T with T (x, e) = 0.
Setting q = p and Bx = x, this can be expressed as T (x, dy) = T (Bx, y). The autore-
gressive model is then determined by the conditional constraint (1.1) alone and was treated
before, in particular in Wefelmeyer (1997). We give an alternative characterization and con-
struction of an efficient estimator of β via the Markov chain description (1.3) of the model.
Fix T with density t. We have t0 = t, `01 = `1 = −t′/t and W = V1. The projection of
`1(x, y) onto V̄1 is `∗1(x, y) = `1(x, y)−σ−2(x)y with σ2(X) = E(ε2|X). Now %(Bx) = ṙ(x),
and the orthogonal decomposition (2.3) simplifies to

suv(X, ε) = u>τ(X, ε) + u>ṙ(X)`∗1(X, ε) + v(X, ε)

with
τ(X, ε) = ṙ(X)σ−2(X)ε.

It follows that the efficient influence function for β is γ(x, y) = Λ−1τ(x, y) with

Λ = E[τ(X, ε)τ>(X, ε)] = E[ṙ(X)ṙ>(X)σ−2(X)].

Wefelmeyer (1997) and, more generally, Müller and Wefelmeyer (2002) show that an efficient
estimator of β is obtained as a solution of the estimating equation (1.2). An alternative
efficient estimator β̂ of β can be obtained as one-step improvement of a n1/2-consistent
initial estimator β̃,

β̂ = β̃ + Λ̃−1 1
n

n∑
i=1

ṙβ̃(Xi−1)σ̃−2(Xi−1)(Xi − rβ̃(Xi−1))

with

Λ̃ =
1
n

n∑
i=1

ṙβ̃(Xi−1)ṙ>
β̃

(Xi−1)σ̃−2(Xi−1).

Remark 1. The information gain of partial independence over the nonparametric model
is calculated as follows. Fix a conditional distribution T in the smaller model. It is of the
form T (x, dy) = T0(Bx, dy). The nonparametric score function for β is then

τ(X, ε) = ṙ(X)σ−2
0 (BX)ε.

The corresponding information matrix is

E[τ(X, ε)τ>(X, ε)] = E[R(BX)σ−2
0 (BX)].

The information gain is obtained by subtracting from this the information matrix in the
smaller model, resulting in

E[(R(BX)− %(BX)%>(BX))(J01(BX)− σ−2
0 (BX)].
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Here
R(BX)− %(BX)%>(BX) = E

(
(ṙ(X)− %(BX))(ṙ(X)− %(BX))>

∣∣BX
)

is a conditional covariance matrix and positive semidefinite. By the Cauchy–Schwarz in-
equality,

1 = E(`01(BX, ε)ε|BX) ≤ E(`201(BX, ε)|BX)1/2E(ε2|BX)1/2 = J
1/2
01 (BX)σ0(BX).

Hence J01(BX) − σ−2
0 (BX) ≥ 0. There is no information gain if BX = X or if the

conditional distribution of ε given BX is normal, in which case J01 = σ−2
0 .

Special case: Lagged residuals. Suppose the conditional distribution T is lagged by p − q
time points, i.e. T (x, dy) = T0(x0, dy) for x0 = (x1, . . . , xq). Setting Bx = x0, this can be
expressed as T (x, dy) = T0(Bx, dy). The efficient influence function for β is calculated as
in the general model with residual distribution partially independent of the past. Setting
x = (x0,x1), we now have

%(x0) = E(ṙ(X)|X0 = x0) =
∫
ṙ(x0,x1)g(x0,x1) dx1∫

g(x0,x1) dx1
.

This can be estimated by a Nadaraya–Watson estimator. Let g0 denote the stationary
density of X0, and t0 the density of T0. The stationary density of (X0, ε) is h0(x0, y) =
g0(x0)t0(x0, y), and we can write

σ2
0(x0) = E(ε2|X0 = x0) =

∫
y2h0(x0, y) dy∫
h0(x0, y) dy

.

This can also be estimated by a Nadaraya–Watson estimator.

Special case: Residuals with shorter memory. Suppose the conditional distribution T is of
order q only, i.e. T (x, dy) = T0(x1, dy) for x1 = (xq+1, . . . , xp). Setting Bx = x1, this can
be expressed as T (x, dy) = T0(Bx, dy). The efficient influence function for β is calculated
as in the previous case, now with

%(x1) = E(ṙ(X)|X1 = x1) =
∫
ṙ(x0,x1)g(x0,x1) dx0∫

g(x0,x1) dx0
.

This can be estimated by a Nadaraya–Watson estimator. Let g0 denote the stationary
density of X1, and t0 the density of T0. The stationary density of (X1, ε) is h0(x1, y) =
g0(x1)t0(x1, y), and we can write

σ2
0(x1) = E(ε2|X1 = x1) =

∫
y2h0(x1, y) dy∫
h0(x1, y) dy

.

This can also be estimated by a Nadaraya–Watson estimator.
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Special case: Independent innovations. Suppose the autoregressive model (1.3) has in-
dependent innovations. Then T consists of all conditional distributions T of the form
T (x, dy) = f(y) dy with

∫
yf(y) dy = 0. Setting q = 0 and Bx = 0, this can be expressed

as T (x, dy) = T (Bx, dy) = T (0, dy). Fix f . Then t(x, y) = f(y) and `1(y) = −f ′(y)/f(y).
The local parameter space W of T consists of the bounded measurable functions v on R
with E[v(ε)] = 0 and E[v(ε)ε] = 0.

Assumption 2 then says that ε has a positive and absolutely continuous density f(y),
and E[ε2] and J1 = E[`21(ε)] are finite, where `1(y) = −f ′(y)/f(y). Efficient estimation
in this model is treated extensively, but it is instructive to compare this model with the
nonparametric model above. From Assumption 2 we obtain E[`1(ε)] = 0 and E[`1(ε)ε] = 1.
The projection of `1(y) onto W̄ is `∗1(y) = `1(y) − σ−2y with σ2 = E[ε2]. Now %(Bx) =
E[ṙ(X)] = %, say, and the orthogonal decomposition (2.3) becomes

suv(X, ε) = u>τ(X, ε) + u>%`∗1(ε) + v(ε)

with
τ(X, ε) = (ṙ(X)− %)`1(ε) + %σ−2ε.

It follows that the efficient influence function for β is γ(x, y) = Λ−1τ(x, y), where

Λ = J1(R− %%>) + σ−2%%>

with R = E[ṙ(X)ṙ>(X)]. Koul and Schick (1997) construct an efficient estimator β̂ as a
one-step improvement of some n1/2-consistent estimator β̃ of β.

Residual distribution invariant under transformations. Let B1, . . . , Bm be a group
of transformations on Rp+1. Suppose T consists of all conditional distributions T with∫
T (x, dy)y = 0 and density t that is invariant under these transformations, i.e., t(z) =

t(Bjz) for z = (x, y) and j = 1, . . . ,m. Fix t. The local parameter space W of T consists
of the functions v in V1 with v(z) = v(Bjz) for j = 1, . . . ,m. Let t′(x, y) = ∂yt(x, y). Note
that t′ and hence `1 = −t′/t are in general not invariant under the transformations. The
projection of `1(x, y) onto V̄1 is `1(x, y)− σ−2(x)y with σ2(x) = E(ε2|X = x). In order to
decompose suv(x, y) = u>ṙ(x)`1(x, y) + v(x, y), we set

λ(x, y) = ṙ(x)`1(x, y), µ(x, y) = ṙ(x)σ−2(x)y.

The components of λ(x, y)− µ(x, y) = ṙ(x)(`1(x, y)− σ−2(x)y) are in V̄1. The component-
wise projection onto W̄ is λ0(x, y)− µ0(x, y) with

λ0(z) =
1
m

m∑
j=1

λ(Bjz), µ0(z) =
1
m

m∑
j=1

µ(Bjz).
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We arrive at the decomposition suv = u>τ + u>(λ0 − µ0) + v with τ = λ − λ0 + µ0.
It follows that the efficient influence function for β is γ(x, y) = Λ−1τ(x, y) with Λ =
E[τ(X, ε)τ>(X, ε)]. Since λ− λ0 and µ− µ0 are componentwise orthogonal to W , we have

Λ = E[(λ(X, ε)− λ0(X, ε))(λ(X, ε)− λ0(X, ε))>] + E[µ0(X, ε)µ>0 (X, ε)]

= E[λ(X, ε)(λ(X, ε)− λ0(X, ε))>] + E[µ(X, ε)µ>0 (X, ε)].

With β̃ a n1/2-consistent initial estimator of β, an efficient estimator β̂ of β can be obtained
as a one-step improvement of the form (2.4) and (2.5), where τ̃ can be constructed as
follows. Estimate ṙβ by ṙβ̃. Estimate the residual εi by ε̃i = Xi − rβ̃(Xi−1). Estimate the
stationary density h(x, y) = g(x)t(x, y) of (X, ε) by a density estimator based on (Xi−1, ε̃i),
i = 1, . . . , n. Then `1 = −t′/t = −h′/h is estimated by ˜̀

1 = −h̃′/h̃. An estimator of σ2 is
given by

σ̃2(x) =
∫
y2h̃(x, y) dy∫
h̃(x, y) dy

.

Set λ̃(x, y) = rβ̃(x)˜̀
1(x, y) and µ̃ = rβ̃(x)σ̃−2(x)y. Their symmetrizations are

λ̃0(z) =
1
m

m∑
j=1

λ̃(Bjz), µ̃0(z) =
1
m

m∑
j=1

µ̃(Bjz).

Our estimator for the score function τ(Xi−1, εi) is then τ̃(Xi−1, ε̃i) with τ̃ = λ̃− λ̃0 + µ̃0.

Special case: Nonparametric model. Suppose we have no structural information on the
conditional distribution T . This case is known and was also considered above as a de-
generate case of partial information. It is also a degenerate case of invariance of T under
transformations if the group of transformations consists only of the identity. Then

λ0(x, y) = λ(x, y) = ṙ(x)`1(x, y),

µ0(x, y) = µ(x, y) = ṙ(x)σ−2(x)y.

Hence λ− λ0 = 0 and τ(x, y) = µ(x, y) = ṙ(x)σ−2(x)y, as already seen.

Remark 2. The information gain of group invariance over the nonparametric model is
calculated as follows. Fix a conditional density t in the smaller model. It fulfills t(Bjz) =
t(Bjz) for j = 1, . . . ,m. The nonparametric score function for β is

τ(X, ε) = ṙ(X)σ−2(X)ε = µ(X, ε).

The corresponding information matrix is

E[τ(X, ε)τ>(X, ε)] = E[µ(X, ε)µ>(X, ε)] = E[ṙ(X)ṙ>(X)σ−2(X)].
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The information gain is obtained by subtracting from this the information matrix in the
smaller model, resulting in

E[(λ(X, ε)−λ0(X, ε))(λ(X, ε)−λ0(X, ε))>]−E[(µ(X, ε)−µ0(X, ε))(µ(X, ε)−µ0(X, ε))>].

There is no information gain if λ is group invariant or if the conditional density t(x, ·) is
normal, in which case `1(x, y) = σ−2(x)y.

Special case: Symmetric residuals. Suppose T consists of all conditional distributions T with
T (x, e) = 0 that are symmetric about zero, i.e., with density t fulfilling t(x, y) = t(−x,−y).
This can be expressed as t(z) = t(Bz) for Bz = −z. The group of transformations consists
of B and the identity. Fix t. The local parameter space W consists of the functions v ∈ V1

with v(z) = v(−z). We have t′(x, y) = −t′(−x,−y) and hence `1(x, y) = −`1(−x,−y). We
obtain

λ0(x, y) =
1
2
(
ṙ(x)`1(x, y) + ṙ(−x)`1(−x,−y)

)
=

1
2

(ṙ(x)− ṙ(−x))`1(x, y).

We have σ2(x) =
∫
y2t(x, y) dy = σ2(−x) and obtain

µ0(x, y) =
1
2

(ṙ(x)− ṙ(−x))σ−2(x)y.

In particular,

λ(x, y)− λ0(x, y) =
1
2

(ṙ(x) + ṙ(−x))`1(x, y),

µ(x, y)− µ0(x, y) =
1
2

(ṙ(x) + ṙ(−x))σ−2(x)y.

and
Λ =

1
4
E[(ṙ(X) + ṙ(−X))(ṙ(X) + ṙ(−X))>(J1(X) + σ−2(X))]

with J1(X) = E(`21(X, ε)|X). The information gain over the nonparametric model is

1
4
E[(ṙ(X) + ṙ(−X))(ṙ(X) + ṙ(−X))>(J1(X)− σ−2(X))].

This is zero if the autoregression function is antisymmetric about zero, r(x) = −r(−x), or
if the conditional density t(x, ·) is normal.

Special case: Conditionally symmetric residuals. Suppose T consists of all conditional
distributions T with density t fulfilling t(x, 2xp−y) = t(x, y). Setting B(x, y) = (x, 2xp−y),
this can be expressed as t(z) = t(Bz). The group of transformations consists of B and the
identity. The local parameter space W of T consists of all v ∈ V1 with v(x, 2xp−y) = v(x, y).
Since t is symmetric, t′ is antisymmetric, t′(x, 2xp−y) = −t′(x, y). Hence `1 = −t′/t is also
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antisymmetric and therefore orthogonal to W . Hence suv(X, ε) = u>ṙ(X)`1(X, ε) +v(X, ε)
is an orthogonal decomposition. The covariance matrix of ṙ(X)`1(X, ε) is

Λ = E[ṙ(X)ṙ>(X)J1(X)]

with J1(X) = E(`21(X, ε)|X). Hence the efficient influence function for β is given by
γ(x, y) = Λ−1ṙ(x)`1(x, y).

Remark 3. Our approach applies also to models with both types of restriction on T .
An example is the nonlinear autoregressive model Xi = rβ(Xi−1) + εi with independent
and symmetric innovations εi. If the innovations have density f , then T consists of all
(conditional) distributions T with density t(x, y) = f(y) and f(y) = f(−y). The local
parameter space W consists of the even bounded measurable functions v on R. Now `1 =
−f ′/f is odd and therefore orthogonal to W̄ . It follows that the score function for β is
τ(X, ε) = (ṙ(X)− %)`1(ε) with % = E[ṙ(X)]. Hence the efficient influence function for β is
Λ−1τ(x, y) with Λ = J1(R − %%>), where J1 = E[`21(ε)] and R = E[ṙ(X)ṙ>(X)]. Efficient
estimators for β are constructed in Kreiss (1987b) and Koul and Schick (1997) for linear
and nonlinear autoregression, respectively.

3 Parametric conditional mean and variance

In this section we consider model (1.5) with constraints T . This means that X1−p, . . . , Xn

are observations of a Markov chain of order p with transition distribution A(x, dy) =
T (x, (y − rβ(x))/sβ(x)) such that β is a d-dimensional parameter and T (x, e) = 0 and
T (x, e2) = 1 for almost all x = (x1, . . . , xp), with an additional constraint on T of the type
described in the Introduction. In order to characterize efficient estimators in this model,
we prove it to be locally asymptotically normal. This is parallel to Section 2. We fix β and
T and assume that the time series is strictly stationary and positive Harris recurrent. Let
G again denote the stationary law of Xi−1. We make the following assumptions on rβ and
sβ and on T .

Assumption 3. The functions rβ and sβ are differentiable in the sense of Assumption 1,
with gradients ṙ = ṙβ and ṡ = ṡβ, respectively. Furthermore, the function sβ is bounded
away from zero locally uniformly in β.

Assumption 4. For each x, the conditional distribution T (x, dy) has a positive and abso-
lutely continuous density t(x, y), and E[ε4] and E[`21(X, ε)(1 + ε2)] are finite.

Assumption 4 implies that E[`21(X, ε)] and E[`22(X, ε)] are finite, where `2(x, y) =
`1(x, y)y−1. As in Section 2, we introduce perturbations βnu = β+n−1/2u with u ∈ Rd and
tnv(x, y) = t(x, y)(1 + n−1/2v(x, y)) with v a bounded and measurable function on Rp+1.
Now we must have Tnv(x, 1) = 1, Tnv(x, e) = 0, Tnv(x, e2) = 1 and hence T (x, v) = 0,
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T (x, ve) = 0, T (x, ve2) = 0. Let V2 denote the set of functions v with these three proper-
ties. For u ∈ Rp and v ∈ V2 the log-likelihood ratio is

log
dPnuv
dPn

= log
gnuv(X0)
g(X0)

+
n∑
i=1

log
tnv(Xi−1, εi(βnu))
t(Xi−1, εi(β))

with εi(β) = (Xi − rβ(Xi−1))/sβ(Xi−1). Similarly as in Theorem 1 we obtain local asymp-
totic normality. We introduce the two-dimensional vector ` = (`1, `2)> and the d×2 matrix

M(x) = Mβ(x) =
1

sβ(x)
(ṙ(x), ṡ(x)).

Theorem 2. Let (u, v) ∈ Rd × V2. Suppose Assumptions 3 and 4 hold and g depends
smoothly on the parameters in the sense that

∫
|gnuv(x)− g(x)| dx→ 0. Then local asymp-

totic normality (2.1), (2.2) holds with

suv(x, y) = u>M(x)`(x, y) + v(x, y).

Consider now a model for T , i.e. a family T of conditional distributions T with T (x, e) =
0 and T (x, e2) = 1. Assume that the fixed T is in T . Let W denote the set of all v ∈ V2

such that Tnv lies in T . Assume that W is a linear space. Let W̄ and V̄2 denote the closures
of W and V2 in L2(G ⊗ T ). The definitions of regular and efficient estimators are the
same as in Section 2. In the definitions of asymptotically linear estimator and differentiable
functional, replace V̄1 by V̄2. Again, an estimator is regular and efficient if and only if it is
asymptotically linear with influence function equal to the canonical gradient.

Residual distribution partially independent of the past. Let q ∈ {0, . . . , p}. Suppose
T consists of the conditional distributions T with T (x, dy) = T0(Bx, dy) and T0(Bx, e) = 0,
T0(Bx, e2) = 1 for some known function B : Rp → Rq. Fix T0. Let t0 denote the density
of T0. Set `01 = −t′0/t0 and `02(Bx, y) = y`01(Bx, y)− 1. Write `0 = (`01, `02)>. The local
parameter space W of T consists of the functions v ∈ V2 of the form v(x, y) = v0(Bx, y).
For u ∈ Rd and v ∈W of the form v(x, y) = v0(Bx, y) we have

suv(X, ε) = u>M(X)`0(BX, ε) + v0(BX, ε).

Set ψ(y) = (y, y2 − 1)>. The conditions T0(Bx, e) = 0 and T0(Bx, e2) = 1 can be written
E(ψ(ε)|BX) = 0. Hence the componentwise projection of `0(Bx, y) onto W̄ is

`∗0(Bx, y) = `0(Bx, y)− U>0 (Bx)ψ(y),

where U0(BX) = Ψ−1
0 (BX)L0(BX) with Ψ0(BX) = E(ψ(ε)ψ>(ε)|BX) and L0(BX) =

E(ψ(ε)`>0 (BX, ε)|BX). We have

Ψ0(BX) =

(
1 E(ε3|BX)

E(ε3|BX) E(ε4|BX)− 1

)
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and hence

Ψ−1
0 (BX) = c(BX)

(
E(ε4|BX)− 1 −E(ε3|BX)
−E(ε3|BX) 1

)
with

1/c(BX) = det Ψ0(BX) = E(ε4|BX)− 1− E(ε3|BX)2.

From T0(Bx, 1) = 1 and Assumption 4 we obtain

E(ε`01(BX, ε)|BX) = 1, E(ε2`01(BX, ε)|BX) = 0, E(ε3`01(BX, ε)|BX) = 3,

and hence

L0(BX) = L =

(
1 0
0 2

)
.

We arrive at

U0(BX) = c(BX)

(
E(ε4|BX)− 1 −2E(ε3|BX)
−2E(ε3|BX) 2

)
.

Set
M0(BX) = E(M(X)|BX) = (Eṙ(X)/sβ(X)|BX), Eṡ(X)/sβ(X)|BX)).

We obtain the orthogonal decomposition

(3.1) suv(X, ε) = u>τ(X, ε) + u>M0(BX)`∗0(BX, ε) + v(BX, ε),

where
τ(X, ε) = (M(X)−M0(BX))`0(BX, ε) +M0(BX)U>0 (BX)ψ(ε)

is the score function for β at T0. It follows that the efficient influence function for β is
Λ−1τ(x, y) with information matrix

Λ = E[τ(X, ε)τ>(X, ε)]

= E[(M(X)−M0(BX))J0(BX)(M(X)−M0(BX))>]

+ E[M0(BX)L>Ψ−1
0 (BX)LM>0 (BX)],

where J0(BX) = E(`0(BX, ε)`>0 (BX, ε)|BX) is the conditional Fisher information matrix
for location and scale of ε. An efficient estimator of β is now obtained as a one-step
improvement of a n1/2-consistent initial estimator, similarly as in Section 2.

Special case: Nonparametric model. Suppose T consists of all conditional distributions T
with T (x, e) = 0 and T (x, e2) = 1. Then Bx = x, so that t0 = t, `01 = `1 = −t′/t,
`02(x, y) = `2(x, y) = y`1(x, y) − 1, and `0 = ` = (`1, `2)>. The local parameter space
of T is W = V2. Now M0 = M , U0 = U = Ψ−1L with Ψ(X) = E(ψ(ε)ψ>(ε)|X). The
componentwise projection of ` onto V̄2 is

`∗(x, y) = `(x, y)− U>(x)ψ(y).
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The orthogonal decomposition (3.1) now simplifies to

suv(X, ε) = u>τ(X, ε) + u>M(X)`∗(X, ε) + v(X, ε)

with
τ(X, ε) = M(X)U>(X)ψ(ε).

It follows that the efficient influence function for β is Λ−1τ(x, y) with

Λ = E[τ(X, ε)τ>(X, ε)] = E[M(X)L>Ψ−1(X)LM>(X)].

For a different derivation see Wefelmeyer (1996) and, more generally, Müller and Wefelmeyer
(2002). They also show that an efficient estimator β̂ of β is obtained as a solution of the
martingale estimating equations

(3.2)
n∑
i=1

Mβ(Xi−1)Û>(Xi−1)ψ
(Xi − rβ(Xi−1)

sβ(Xi−1)

)
= 0,

where the estimator Û(x) of U(x) is obtained by replacing the conditional third and fourth
moments T (x, e3) and T (x, e4) by Nadaraya–Watson estimators based on estimated resid-
uals ε̃i = (Xi − rβ̃(Xi−1))/sβ̃(Xi−1). Here β̃ is some n1/2-consistent estimator of β.

Remark 4. The information gain of partial independence over the nonparametric model
is calculated as follows. Fix a conditional distribution T in the smaller model. It is of the
form T (x, dy) = T0(Bx, dy). The nonparametric score function for β is then

τ(X, ε) = M(X)U>0 (BX)ψ(ε).

Let τ0 denote the efficient score function in the smaller model. Then

τ(X, ε)− τ0(X, ε) = (M(X)−M0(BX))(`0(BX, ε)− U>0 (BX)ψ(ε).

The information gain is the variance of τ(X, ε)− τ0(X, ε),

E[(M(X)−M0(BX))(J0(BX)− L>0 (BX)Ψ0(BX)L0(BX))(M(X)−M0(BX))>].

Special case: Lagged residuals or shorter memory. Suppose the conditional distribution T

is lagged by p − q time points, i.e. T (x, dy) = T0(x0, dy) for x0 = (x1, . . . , xq). Setting
Bx = x0, this can be expressed as T (x, dy) = T0(Bx, dy). Setting x = (x0,x1), we now
have

E(ṙ(X)/s(x)|X0 = x0) =
∫

(ṙ(x0,x1)/s(x0,x1))g(x0,x1) dx1∫
g(x0,x1) dx1

;

similarly for E(ṡ(X)/s(x)|X0 = x0). These conditional expectations can be estimated by
Nadaraya–Watson estimators. The case of shorter memory is treated analogously.
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Special case: Independent innovations. Suppose the autoregressive model (1.5) has in-
dependent innovations. Then T consists of all conditional distributions T of the form
T (x, dy) = f(y) dy with

∫
yf(y) dy = 0 and

∫
y2f(y) dy = 1. Setting q = 0 and Bx = 0,

this can be expressed as T (x, dy) = T (Bx, dy) = T (0, dy). Fix f . Then t(x, y) = f(y),
`1(y) = −f ′(y)/f(y), `2(y) = y`1(y)− 1. The local parameter space W of T consists of the
bounded measurable functions v on R with E[v(ε)] = 0, E[v(ε)ε] = 0 and E[v(ε)ε2] = 0.
The projection of `1(y) onto W̄ is `∗(y) = `(y)− U>0 y with U0 = Ψ−1

0 L and

Ψ0 = E[ψ(ε)ψ>(ε)] =

(
1 E[ε3]

E[ε3] E[ε4]− 1

)
.

With 1/c = det Ψ0 = E[ε4]− 1− E[ε3]2 we obtain

U0 = Ψ−1
0 L = c

(
E[ε4]− 1 −2E[ε3]
−2E[ε3] 2

)
.

Set
M0 = E[M(X)] = (E[ṙ(X)/sβ(X)], E[ṡ(X)/sβ(X)]).

It follows that the efficient influence function for β is Λ−1τ(x, y) with score function

τ(X, ε) = (M(X)−M0)`(ε) +M0U
>
0 ψ(ε)

and information matrix

Λ = E[τ(X, ε)τ>(X, ε)] = E[(M(X)−M0)J(M(X)−M0)>] +M0L
>Ψ−1

0 LM>0 ,

where J = E[`(ε)`>(ε)] is the Fisher information matrix for location and scale of ε. Drost,
Klaassen and Werker (1997) construct an efficient estimator β̂ of β as a one-step improve-
ment of some n1/2-consistent estimator.

Residual distribution invariant under transformations. Let B1, . . . , Bm be a group
of transformations on Rp+1. Suppose T consists of all conditional distributions T with
T (x, e) = 0, T (x, e2) = 1 and density t fulfilling t(z) = t(Bjz) for j = 1, . . . ,m. Fix t. The
local parameter space consists of the functions v in V2 with v(z) = v(Bjz) for j = 1, . . . ,m.
Write t′(x, y) = ∂yt(x, y) and set `1 = −t′/t, `2(x, y) = y`1(x, y) − 1, ` = (`1, `2)>. The
compoentwise projection of ` onto V̄2 is `(x, y) − U>(x)ψ(y) with U(x) = Ψ−1(x)L and
Ψ(X) = E(ψ(ε)ψ>(ε)|X). In order to decompose suv(x, y) = u>M(x)`(x, y) + v(x, y), we
set

λ(x, y) = M(x)`(x, y), µ(x, y) = M(x)U>(x)ψ(y).

The componentwise projection of λ(x, y)−µ(x, y) = M(x)(`(x, y)−U>(x)ψ(y)) onto W̄ is
λ0(x, y)− µ0(x, y) with

λ0(x, y) =
1
m

m∑
j=1

λ(Bjz), µ0(x, y) =
1
m

m∑
j=1

µ(Bjz).
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Hence τ = λ− λ0 + µ0, and the efficient influence function for β is Λ−1τ(x, y) with

Λ = E[τ(X, ε)τ>(X, ε)]

= E[(λ(X, ε)− λ0(X, ε))(λ(X, ε)− λ0(X, ε))>] + E[µ0(X, ε)µ0(X, ε)>].

The information gain of group invariance over the nonparametric model is analogous to
Section 2.

Special case: Symmetric residuals. Suppose T consists of all conditional distributions T
with T (x, e) = 0, T (x, e2) = 1 and density t fulfilling t(x, y) = t(x,−y). Fix t. The local
parameter space W consists of the functions v in V2 with v(z) = v(−z). We have t′(x, y) =
−t′(−x,−y) and hence `1(x, y) = −`1(−x,−y) and `2(x, y) = y`1(x, y) − 1 = `2(−x,−y),
i.e, `1 is antisymmetric and `2 is symmetric. We obtain

λ0(x, y) =
1
2

(M(x)`(x, y) +M(−x)`(−x,−y))

=
1
2

( ṙ(x)
s(x)

− ṙ(−x)
s(−x)

)
`1(x, y) +

1
2

( ṡ(x)
s(x)

+
ṡ(−x)
s(−x)

)
`2(x, y).

We have Ψjk(−x) = (−1)j+kΨjk(x), i.e., Ψ(−x) is obtained from Ψ(x) by changing the
off-diagonal signs. Then Ψ−1 and U have the same property. Hence the first component of
U>(−x)ψ(−y) changes sign, while the second does not. We obtain

µ0(x, y) =
1
2

( ṙ(x)
s(x)

− ṙ(−x)
s(−x)

)(
(E(ε4|X)− 1)y − 2E(ε3|X)(y2 − 1)

)
+

1
2

( ṡ(x)
s(x)

+
ṡ(−x)
s(−x)

)(
− 2E(ε3|X)y + 2(y2 − 1)

)
.

The score function for β is τ = λ− λ0 + µ0.

Special case: Conditionally symmetric residuals. Suppose T consists of all conditional
distributions T with T (x, e) = 0, T (x, e2) = 1 and density t fulfilling t(x, 2xp− y) = t(x, y).
Fix t. The local parameter space W consists of the functions v in V2 with v(x, 2xp − y) =
v(x, y), and `1 = −t′/t is conditionally antisymmetric and therefore orthogonal to W . For
`2(x, y) = y`1(x, y)− 1 we have the orthogonal decomposition

`2(x, y) = xp`1(x, y) + (y − xp)`1(x, y)− 1.

Hence the score function for β is M(x)δ(x, y) with δ(x, y) = (`1(x, y), xp`1(x, y))>, and the
information matrix for β is

Λ = E[M(X)D(X)M>(X)]

with

D(x) = E(δ(X, ε)δ>(X, ε)|X = x) =

(
1 xp

xp x2
p

)
T (x, `21).
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Special case: Homoscedastic autoregression. A homoscedastic autoregressive model of order
p is a Markov chain with transition distribution (1.5) such that the conditional variance
s2
β(x) = σ2

β does not depend on x. Usually the variance σ2
β is assumed to vary independently

of β. This can be achieved by replacing the parameter β by a pair ν = (β, σ2) such that
rν = rβ depends only on β, and s2

β = σ2. We will however treat the more general case
s2
β(x) = σ2

β as it fits better into the nonparametric model. Then the efficient influence
function has the same form γ(x, y) = Λ−1M(x)U>(x)ψ(y) as in the nonparametric model,
but now with

M(x) = Mβ(x) =
1
σβ

(ṙ(x), σ̇).

References

[1] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and
Adaptive Estimation for Semiparametric Models. Springer, New York.

[2] Cramér, H. (1946). A contribution to the theory of statistical estimation. Skand. Ak-
tuarietidskr. 29, 85-94.

[3] Darmois, G. (1945). Sur les lois limites de la dispersion de certaines estimations. Rev.
Int. Statist. Inst. 13, 9–15.

[4] Drost, F. C., Klaassen, C. A. J. and Werker, B. J. M. (1997). Adaptive estimation in
time-series models. Ann. Statist. 25, 786–817.
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