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Abstract

For sufficiently nonregular distributions with bounded support, the extreme
observations converge to the boundary points at a faster rate than the square
root of the sample size. In a nonparametric regression model with such a
nonregular error distribution, this fact can be used to construct an estimator
for the regression function that converges at a faster rate than the Nadaraya–
Watson estimator. We explain this in the simplest case, review corresponding
results from boundary estimation that are applicable here, and discuss possible
improvements in parametric and semiparametric models.

1 Introduction

To begin let X1, . . . , Xn be i.i.d. random variables with finite variance. Then the sam-

ple mean estimates the mean E[X] with rate n−1/2. If the distribution is symmetric

with finite support, then the mean coincides with the mid-range, and an alternative

estimator is the empirical mid-range %̂ = (min Xi + max Xi)/2. It can have a better

rate than the sample mean if the distribution function is not smooth at the bound-

ary of the support. Specifically, let [−a, a] denote the support, and assume that the

distribution function F of X fulfills F (a− z) ∼ zα for z ↓ 0 with extreme value index

α > 0. Then min Xi + a = Op(n
−1/α) and max Xi − a = Op(n

−1/α). For these classi-

cal results on extrema of observations see e.g. Embrechts, Klüppelberg and Mikosch

(1997) or de Haan and Ferreira (2006). It follows that %̂ − E[X] = Op(n
−1/α). For

α < 2 this is faster than the rate n−1/2 of the sample mean. If F has a density f ,

then the corresponding behavior at the boundary is f(a− z) ∼ zα−1 for z ↓ 0, and a

power α− 1 < 1 leads to a faster rate for %̂.
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In Section 2 we apply this result to the nonparametric regression model Y =

r(X) + ε with independent X and ε. For a bandwidth b = bn with b → 0 and

nb →∞, we estimate r(x) by a local empirical mid-range of the responses,

r̂(x) =
1

2

(
min

|Xi−x|≤b
Yi + max

|Xi−x|≤b
Yi

)
.

We assume that the error ε has a non-regular distribution function as above, and that

the regression function r and the covariate density g are Hölder at x with exponent

β. We show in Theorem 2 that then

r̂(x)− r(x) = Op((nb)−1/α) + O(bβ).

The choice b ∼ n−1/(αβ+1) gives the best rate n−β/(αβ+1). — For the Nadaraya–Watson

estimator we have the best rate n−β/(2β+1); see Theorem 1. Hence the local empirical

mid-range r̂(x) is faster than the classical estimator if α < 2. This corresponds to

the above result for ϑ̂. — If the covariate X is d-dimensional, the best convergence

rate of the Nadaraya–Watson estimator is n−β/(2β+d), while the best convergence rate

of the local empirical mid-range is n−β/(αβ+d). Again, the local empirical mid-range

r̂(x) is faster than the classical estimator if α < 2.

In Section 3 we describe extensions of this result to a more general setting. Let

X denote a d-dimensional covariate and Y a one-dimensional response. Let (X,Y )

have a density. We write it g(x)h(x, y), where g is the density of the covariate X and

h(x, ·) is the conditional density of the response Y given X = x. Suppose that h(x, ·)
has support [`(x), u(x)]. Then the support of (X, Y ) is bounded above and below by

the surfaces ` and u, respectively. We assume that h(x, ·) is nonregular,

h(x, `(x) + z) ∼ zα(x)−1, z ↓ 0,

h(x, u(x)− z) ∼ zα(x)−1, z ↓ 0.

Suppose we observe i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ). The local empirical

mid-range at r̂(x) now estimates the mid-range of the density h(x, ·). If the density is

symmetric, the mid-range coincides with the regression function r(x) = E(Y |X = x).

We estimate `(x) and u(x) separately and will restrict attention to estimating u(x).

So far we have assumed that the density g(x)h(x, y) of (X, Y ) unknown. If we

know something about g or h, we can get better estimators, and sometimes even

better rates. We describe some such results in Section 4.
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2 The simplest case

Consider the nonparametric regression model

Y = r(X) + ε,

where X and ε are independent random variables and r is the (unknown) regression

function. Let ε have mean zero and finite variance. Suppose we observe i.i.d. copies

(X1, Y1), . . . , (Xn, Yn) of (X, Y ) and want to estimate the regression function r at a

fixed point x. Write F for the distribution function of the error ε. Assume that the

covariate X has a density g. To begin we recall briefly how one derives a convergence

rate for the Nadaraya–Watson estimator. This makes it easier to see to which extent

the arguments carry over to the local empirical mid-range, and where they differ.

The joint distribution of (X, Y ) is dF (y − r(z))g(z)dz. Set

µ(x) =

∫
y dF (y − r(x))g(x).

Since E[ε] = 0, the regression function has the representation

r(x) = E(Y |X = x) =
µ(x)

g(x)
.

Kernel estimators for g(x) and µ(x) are

ĝ(x) =
1

n

n∑
i=1

kb(x−Xi) and µ̂(x) =
1

n

n∑
i=1

Yikb(x−Xi),

where kb(z) = k(z/b)/b for a kernel k and a bandwidth b. The usual estimator for

r(x) is the Nadaraya–Watson estimator

(2.1) r̂NW (x) =
µ̂(x)

ĝ(x)
=

∑n
i=1 Yikb(x−Xi)∑n
i=1 kb(x−Xi)

.

In order to determine its convergence rate, we write

(2.2) r̂NW − r =
µ̂− µ

g
− µ̂

ĝg
(ĝ − g).

It remains to study the rates of ĝ(x) and µ̂(x) separately. We use the following

assumptions.

Assumption K The kernel k is bounded and has bounded support.

Assumption B The bandwidth b = bn fulfills b → 0 and nb →∞.
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Assumption Gβ The covariate density g is Hölder with exponent β at x,

|g(z)− g(x)| ≤ c|z − x|β

for z in a neighborhood of x and for a positive constant c and β ∈ (0, 1].

Assumption Rβ The regression function r is Hölder with exponent β at x,

|r(z)− r(x)| ≤ c|z − x|β

for z in a neighborhood of x and for a positive constant c and β ∈ (0, 1].

We decompose ĝ(x) into variance and bias terms,

ĝ(x)− g(x) = ĝ(x)− E[ĝ(x)] + E[ĝ(x)]− g(x).

Since g is continuous at x by Assumption Gβ, we have

(2.3) Var ĝ(x) ≤ 1

n
E[k2

b (x−X)] =
1

nb

∫
g(x− bu)k2(u) du = O

( 1

nb

)
.

Similarly, since r is continuous at x by Assumption Rβ, we have

(2.4) Var µ̂(x) = O(1/(nb)).

It remains to treat the bias terms E[ĝ(x)]−g(x) and E[µ̂(x)]−µ(x). From the Hölder

condition Gβ for g we obtain

(2.5) E[ĝ(x)]− g(x) = E[kb(x−X)]− g(x) =

∫
(g(x− bu)− g(x))k(u) du = O(bβ).

Use µ(x) = r(x)g(x) and E[ε] = 0 to write

(2.6) E[µ̂(x)]− µ(x) = r(x)(E[kb(x−X)]− g(x)) + E[(r(X)− r(x))kb(x−X)].

The first right-hand term is of order bβ by (2.5). The second right-hand term is

treated similarly, now using the Hölder condition Rβ for r,

E[(r(X)− r(x))kb(x−X)] =

∫
(r(x− bu)− r(x))k(u) du = O(bβ).

We arrive at

(2.7) E[µ̂(x)]− µ(x) = O(bβ).

Applying (2.3)–(2.7) to relation (2.2), we obtain the following convergence rate for

the Nadaraya–Watson estimator.
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Theorem 1 Under Assumptions K, B, Gβ and Rβ, the Nadaraya–Watson estimator

fulfills

r̂NW (x)− r(x) = Op((nb)−1/2) + O(bβ).

The choice b ∼ n−1/(2β+1) gives the best convergence rate n−β/(2β+1). — In order to

compare the Nadaraya–Watson estimator with the local empirical mid-range, we set

J(x) = {i ∈ {1, . . . , n} : Xi ∈ [x− b/2, x + b/2]} and write |J(x)| for the cardinality

of J(x). For the box kernel k(z) = 1(|z| ≤ 1/2) we have

ĝ(x) =
1

nb
|J(x)| and µ̂(x) =

1

nb

∑
i∈J(x)

Yi.

The Nadaraya–Watson estimator (2.1) simplifies to

r̂NW (x) =
1

|J(x)|
∑

i∈J(x)

Yi.

Written this way, the Nadaraya–Watson estimator for the box kernel is seen to be the

empirical mean of the responses Yi for covariates close to x.

Suppose now that the distribution of ε is symmetric about zero and has bounded

support (but is otherwise unknown). Then ε has again mean zero. Set

ˆ̀(x) = min
i∈J(x)

Yi and û(x) = max
i∈J(x)

Yi.

We can estimate r(x) by

r̂(x) =
1

2
(ˆ̀(x) + û(x)).

This is the empirical mid-range of the responses Yi for covariates close to x. Let

[−a, a] denote the support of ε. The convergence rate of r̂(x) to r(x) is given by the

convergence rate of ˆ̀(x) to r(x)− a and of û(x) to r(x) + a. By symmetry, it suffices

to look at û(x). We decompose û(x) into variance and bias terms,

(2.8) û(x)− r(x)− a ≤ max
i∈J(x)

(Yi − r(Xi))− a + max
i∈J(x)

|r(Xi)− r(x)|.

From the Hölder condition Rβ for r we obtain the same rate for the bias term as in

the case of the Nadaraya–Watson estimator,

(2.9) max
i∈J(x)

|r(Xi)− r(x)| = O(bβ).

If B and Gβ hold, then

(2.10)
1

nb
|J(x)| = g(x) + op(1).
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This can also be seen from the treatment of ĝ(x) above. — Now write

L̂(x) = min
i∈J(x)

εi and Û(x) = max
i∈J(x)

εi.

The variance term of û(x) is then Û(x)− a.

Assumption Fα The distribution function F of the error fulfills

F (a− z) ∼ zα, z ↓ 0,

for a positive constant α.

If Gβ and Fα hold, then (2.10) together with the classical result on the convergence

rate of a maximum mentioned in Section 1 imply

(2.11) Û(x)− a = Op((nb)−1/α).

By the same argument,

(2.12) L̂(x) + a = Op((nb)−1/α).

Write

r̂(x)− r(x) =
1

2
(ˆ̀(x) + û(x))− r(x) =

1

2
(ˆ̀(x)− r(x) + a + û(x)− r(x)− a).

Applying (2.9)–(2.12) to relation (2.8), we obtain our main result.

Theorem 2 Under Assumptions K, B, Gβ and Rβ, the empirical mid-range fulfills

r̂(x)− r(x) = Op((nb)−1/α) + O(bβ).

The choice b ∼ n−1/(αβ+1) gives the best convergence rate n−β/(αβ+1). For α < 2

it is faster than the best rate n−β/(2β+1) of the Nadaraya–Watson estimator.

Higher-dimensional covariates. Suppose the covariate X is d-dimensional. Re-

place kb(z) = k(z/b)/b in the definitions of ĝ(x) and µ̂(x) by a multivariate version

kb(z) = k(z/b)/bd. Let B and Fα hold, and assume d-dimensional versions of K, Gβ

and Rβ. Then

Var ĝ(x) = O
( 1

nbd

)
and Var µ̂(x) = O

( 1

nbd

)
.

The rates of the bias terms of the Nadaraya–Watson estimator remain the same, and

we obtain the rate

r̂NW (x)− r(x) = Op((nbd)−1/2) + O(bβ).
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Hence the choice b ∼ n−1/(2β+d) gives the best convergence rate n−β/(2β+d).

The definition of the local empirical mid-range also remains essentially unchanged,

except that now x = (x1, . . . , xd)
> and

J(x) = {i ∈ {1, . . . , n} : Xi ∈ [x1 − b/2, x1 + b/2]× · · · × [xd − b/2, xd + b/2]}.

Similarly as in the one-dimensional case one proves that

1

nbd
|J(x)|(x) = g(x) + op(1).

We obtain a d-dimensional version of Theorem 2,

r̂(x)− r(x) = Op((nbd)−1/α) + O(bβ).

The choice b ∼ n−1/(αβ+d) gives the best convergence rate n−β/(αβ+d). For α < 2 it is

faster than the best rate n−β/(2β+d) of the Nadaraya–Watson estimator.

Simulations. We expect that the improvement of the empirical mid-range (MR)

over the Nadaraya–Watson estimator (NW) is particularly drastic for small α. In

the following table we consider the regression function r(x) = |x|1/2, with “bowl

shaped” error density f(z) = (1 − |z|)−1/2 on (−1, 1). The covariate density is the

uniform distribution on [−1, 1]. The entries in the table are the simulated average

mean squared errors for several bandwidths b and sample sizes n = 50, 100 and 200.

The minimal mean squared errors are in bold print.

Table 1: Simulated average mean squared errors

n b=0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
NW 50 0.1109 0.0762 0.0599 0.0500 0.0444 0.0405 0.0392 0.0386

100 0.0560 0.0387 0.0309 0.0264 0.0241 0.0232 0.0235 0.0243
200 0.0282 0.0198 0.0163 0.0145 0.0141 0.0145 0.0155 0.0174

MR 50 0.0610 0.0277 0.0171 0.0133 0.0126 0.0133 0.0148 0.0169
100 0.0123 0.0060 0.0053 0.0059 0.0071 0.0087 0.0107 0.0134
200 0.0024 0.0023 0.0030 0.0041 0.0054 0.0072 0.0093 0.0120

General boundary behavior of the error distribution. For simplicity we have

assumed F (a − z) ∼ zα for z ↓ 0. A version of Theorem 2 continues to hold if the

density f fulfills f(a − z) ∼ zα−1L(z) for z ↓ 0, where L(z) varies slowly as z ↓ 0,
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or, more generally, if the observations are in the domain of attraction of a Weibull

distribution. Such versions can be based on convergence results for extreme order

statistics that go back to Gnedenko (1943) and Smirnov (1952).

Adapting to the extreme value index. In applications we may not know the

extreme value index α of F . Then we do not know whether the local empirical mid-

range r̂ or the Nadaraya–Watson estimator r̂NW is better. In this situation one should

first estimate α by some estimator α̂ and choose the estimator for r̂(x) according to

whether α̂ > 2 or α̂ ≤ 2. For estimators of α we refer to the monographs of Embrechts,

Klüppelberg and Mikosch (1997) and Beirlant, Goegebeur, Segers and Teugels (2004).

Known error range. If the support [−a, a] of ε is known, we can use û(x) − a

and ˆ̀(x) + a separately as estimators for r(x). The best combination of these two

estimators is again the local empirical mid-range r̂(x) = (ˆ̀(x) + û(x))/2.

3 Extensions

Let (X, Y ) have a density g(x)h(x, y), where g is the density of the covariate X and

h(x, ·) is the conditional density of the response Y given X = x. Suppose that h(x, ·)
has support [`(x), u(x)], and that h(x, ·) is nonregular,

h(x, `(x) + z) ∼ zα(x)−1, z ↓ 0,

h(x, u(x)− z) ∼ zα(x)−1, z ↓ 0.

Suppose we observe i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ) and want to estimate

u(x). We can still use the local constant estimator û(x) = maxi∈J(x) Yi. For α = 2 its

asymptotic limit distribution is obtained in Hall and Park (2004).

Instead of using just one extreme observation, we can use more. Set N = |J(x)|
and let Z1 ≤ · · · ≤ ZN denote the ordered observations Yi for i ∈ J(x). Choose

m = mn with m/n → 0. Dekkers and de Haan (1989) and Gijbels and Peng (2000)

study the estimator

û(x) =
ZN−m − ZN−2m

2−α̂(x) − 1
+ ZN−m

based on the Pickands estimator

α̂(x) = log
ZN−m − ZN−2m

ZN−2m − ZN−4m

.

Another possibility is to use a local polynomial estimator rather than a local

constant estimator. In particular, the local linear estimator is obtained from the

8



lowest polynomial above the observations (Xi, Yi) with |Xi − x| ≤ b/2,

u(x) = min{z : Yi ≤ q>(Xi − x) + z for some q ∈ Rd and for all i ∈ J(x)}.

For local polynomial estimators we refer to Korostelev and Tsybakov (1993), Härdle,

Park and Tsybakov (1995), Hall, Park and Stern (1998) and Hall and Park (2004).

For d = 1, Bouchard, Girard, Iouditski and Nazin (2004) suggest an estimator of

the form û(x) =
∑n

i=1 λikb(x−Xi) with λ1, . . . , λn chosen such that û lies above the

observations and minimizes the area below û.

Girard and Jacob (2008) estimate u by a Nadaraya–Watson estimator based on

power-transformed data,

û(x) =

(
(p + 1)

∑n
i=1 Y p

i kb(x−Xi)∑n
i=1 kb(x−Xi)

)1/p

,

where kb(z) = k(z/b)/bd for a d-dimensional kernel k and a bandwidth b.

4 Semiparametric and parametric models

If we have a parametric or semiparametric model for the density g(x)h(x, y) of (X, Y ),

we can get better estimators for the boundaries and the regression function, and

sometimes even better rates.

Consider first the case of i.i.d. observations X1, . . . , Xn, now from a location model

with density f(x − ϑ), where f is known and the location parameter ϑ is unknown.

Then we can estimate ϑ by the maximum likelihood estimator. Let f have support

[0,∞) with f(z) ∼ zα−1 for z ↓ 0. For α > 2 the maximum likelihood estimator has

rate n−1/2. For α = 2 and 1 < α < 2 its rate is (n log n)−1/2 and n−1/α, respectively;

see Woodroofe (1972) and (1974) and Akahira (1975a); for location models with

additional parameters see Smith (1985). These results carry over to densities with

bounded support. In particular, for α = 2 the rate of the maximum likelihood

estimator is slightly better than that of the sample mean and the sample extrema, and

hence also better than that of the empirical mid-range. Weiss and Wolfowitz (1973)

show that the maximum likelihood estimator is efficient. For α ≥ 2 the rate of the

maximum likelihood estimator is sharp, and for 0 < α < 2 the rate of the the empirical

mid-range is sharp; see Akahira (1975b) and also Akahira and Takeuchi (1981) and

(1991), who also obtain lower bounds on the asymptotic distributions. For more

general parametric models, lower bounds for variances are given in Polfeldt (1970a)–

(1970c), Akahira, Puri and Takeuchi (1986) and Akahira and Takeuchi (1995); and
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lower bounds for distributions are given in Akahira (1982) and Akahira and Takeuchi

(1987).

Consider now a regression model Y = rϑ(X) + ε, where ε and X are one-

dimensional and independent with densities f and g. Then the conditional density

of Y at y given X = x is h(x, y) = f(y − rϑ(x)). If f is known and has bounded

support [−a, a], say, we can use local versions of the above estimators to estimate a.

If f depends on unknown parameters, local versions of Smith (1985) can be used.

If we observe i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of a two-dimensional random vari-

able (X, Y ) and the upper boundary u of the support is known to be convex or

monotone or both, then it suggests itself to use an estimator for u that has the same

properties. This is often the case in frontier estimation. We refer to Korostelev, Simar

and Tsybakov (1995) and Gijbels, Mammen, Park and Simar (1999).

If there is a parametric model u = uϑ for the upper boundary, we can estimate ϑ

by the minimizer ϑ = ϑ̂ of

n∑
i=1

w(uϑ(Xi)− Yi) subject to uϑ(Xi) ≥ Yi, i = 1, . . . , n,

a linear program. Examples for w are w(z) = z and w(z) = z2. This approach goes

back to Aigner and Chu (1968) and Koenker and Bassett (1978). For results of this

type see Smith (1994), Portnoy and Jurec̆ková (1999) and Knight (2001, 2006).

Related problems are treated in Donald and Paarsch (2002), Hirano and Porter

(2003), Chernozhukov and Hong (2004), Chernozhukov (2005), Florens and Simar

(2005) and Kumbhakar, Park, Simar and Tsionas (2007).
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[25] Härdle, W., Park, B. U. and Tsybakov, A. B. (1995). Estimation of non-sharp

support boundaries. J. Multivariate Anal. 55:205–218.

[26] Hirano, K. and Porter, J. R. (2003). Asymptotic efficiency in parametric struc-

tural models with parameter-dependent support. Econometrica 71:1307–1338.

[27] Knight, K. (2001). Limiting distributions of linear programming estimators. Ex-

tremes 4:87–103.

[28] Knight, K. (2006). Asymptotic theory for M -estimators of boundaries. In: Sper-
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