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Abstract

Suppose we have linear constraints on the stationary distribution of the embedded
Markov renewal process of a semi-Markov process on an arbitrary state space. Then we
can improve an empirical estimator by empirical likelihood weights. Since the observa-
tions are dependent, an optimal choice of weights is determined by weighting averages
over disjoint blocks of observations with slowly increasing length. The improved empiri-
cal estimator is efficient. We also introduce two additively corrected empirical estimators
that are asymptotically equivalent to the weighted empirical estimator.
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1 Introduction

Let (X0, T0), . . . , (Xn, Tn) be observations of a Markov renewal process in an arbitrary
state space E with σ-algebra E . Write Vj = Tj − Tj−1 for the inter-arrival times. Let
Q(x, dy) denote the transition distribution of the embedded Markov chain X0, X1, . . . ,
and let R(x, y, dv) denote the conditional distribution of the inter-arrival time Vj given
(Xj−1, Xj) = (x, y). Then the observations (X1, V1), . . . , (Xn, Vn) follow a Markov chain
with transition distribution from (Xj−1, Vj−1) = (x, u) to (Xj , Vj) = (y, v) that factors as
S(x, dy, dv) = Q(x, dy)R(x, y, dv) and does not depend on u.

Suppose that the embedded Markov chain is ergodic with stationary distribution π.
Then (Xj−1, Xj , Vj) also has a stationary distribution. It can be written as P (dx, dy, dv) =
π(dx)Q(x, dy)R(x, y, dv). The transition distribution S(x, dy, dv), and hence the joint law of
the Markov chain (X1, V1), (X2, V2), . . . is determined by P (dx, dy, dv). In order to estimate
the joint law, it therefore suffices to estimate expectations Pf = E[f(Xj−1, Xj , Vj)] for a
sufficiently large class of functions f on E2 × [0,∞). The natural estimator of Pf is the
empirical estimator

Pf =
1
n

n∑
j=1

f(Xj−1, Xj , Vj).

Now assume that the stationary distribution P fulfills a linear constraint Ph = 0 for
some vector-valued function h on E2 × [0,∞). We will show in Section 3 that we can
use this constraint in three different ways to improve the empirical estimator Pf . One is
the blockwise empirical likelihood, which was introduced by Kitamura (1997) to construct
confidence intervals for weakly dependent (discrete-time) processes. It leads to the blockwise
weighted empirical estimator defined in (3.2). A simpler estimator is the blockwise additively
corrected empirical estimator defined in (3.4). A version without blocks is the additively
corrected empirical estimator (3.1). It was first introduced for Markov chains in Müller,
Schick and Wefelmeyer (2001).

All three estimators are asymptotically equivalent and asymptotically efficient in the
sense of a nonparametric version of the convolution theorem of Hájek and Le Cam. In
our setting, the theorem is proved in Section 2. It leads to a characterization of efficient
estimators, and also suggests a construction of such an estimator, namely the additively
corrected empirical estimator (3.1).

Consider the semi-Markov process Zt, t ≥ 0 corresponding to the above Markov renewal
process. Suppose we observe a path Zt, 0 ≤ t ≤ n. Set N = max{j : Tj ≤ n}. The results
of Sections 2 and 3 carry over to the semi-Markov process by replacing the sample size n

by the random sample size N . For an appropriate version of local asymptotic normality we
refer to Greenwood and Wefelmeyer (1996).
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2 A characterization of efficient estimators

We can “parametrize” the Markov renewal process in different ways: by the transition
distribution S, by the conditional distributions Q and R, and by the stationary distribution
P . What is convenient depends on the structure of the model, and also on the functional
we want to estimate. Greenwood, Müller and Wefelmeyer (2004) and Müller, Schick and
Wefelmeyer (2008) consider functionals of Q and R and parametrize by Q and R. For
Markov chains, Greenwood and Wefelmeyer (1996) consider a nonparametric semi-Markov
model and linear functionals Pf and parametrize by S. Bickel (1993) and Bickel and Kwon
(2001) suggest parametrization by P . This would be convenient for the functional Pf and
the constraint Ph = 0 considered here. However, a Markov renewal process is characterized
by a property of the transition distribution S(x, y, dv) of the Markov chain (Xj , Vj): namely
that it does not depend on the previous value Vj−1 of the inter-arrival time. This is why
it is more convenient to “parametrize” with S. We will see that the property also implies
that ergodicity of the Markov renewal process can be described in terms of ergodicity of
the embedded Markov chain. We will use L2-ergodicity; the results also hold under the
more flexible V -ergodicity, for which we refer to Meyn and Tweedie (1993) and Schick and
Wefelmeyer (2002).

We assume that the embedded chain is stationary with stationary distribution π. We
want to estimate expectations Pf of unbounded functions f . The constraint Ph = 0
also typically involves an unbounded h, for example when we assume that the embedded
Markov chain has mean zero. This is why we assume L2(π)-ergodicity rather than uniform
ergodicity. Let ‖g‖ = π(g2)1/2 denote the norm of a function g ∈ L2(π), and let ‖K‖ =
sup{‖Kg‖ : ‖g‖ = 1} denote the corresponding operator norm of a kernel K on E×E . Let
Π(x, dy) = π(dy) denote the stationary projection of Q. Exponential L2(π)-ergodicity of the
embedded Markov chain is implied by the condition ‖Q−Π‖ < 1. If the embedded Markov
chain Xj is stationary with stationary distribution π, then the Markov chain (Xj , Yj) is
stationary with stationary distribution κ =

∫
π(dx)S(x, ·, ·), and ‖Q − Π‖ < 1 implies

‖S−Πκ‖κ < 1, where ‖·‖κ denotes the L2(κ)-norm and Πκ denotes the stationary projection
of S.

In order to characterize efficient estimators, we show that the distribution of the obser-
vations X0, (X1, V1), . . . , (Xn, Vn) is locally asymptotically normal in the following nonpara-
metric sense. Let

U = {u ∈ L2(P ) : Su = 0}.

For each u ∈ U we can construct a perturbation Snu of S that is Hellinger differentiable
with derivative u,

P
(dSnu

dS
− 1− 1

2
n−1/2u

)2
= o(n−1).

Write P (n) and P
(n)
nu for the joint law of the observations under S and Snu, respectively. Let
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N denote a standard normal random variable. The following theorem shows nonparametric
local asymptotic normality. For Markov chains, different proofs are in Penev (1991), Bickel
(1993), and Greenwood and Wefelmeyer (1995). For Markov step processes see Höpfner,
Jacod and Ladelli (1990) and Höpfner (1993).

Theorem 1. Assume that ‖Q−Π‖ < 1. Let u ∈ U . Then

log
dP

(n)
nu

dP (n)
= n−1/2

n∑
j=1

u(Xj−1, Xj , Vj)−
1
2
Pu2 + oP (n−1/2)

and

n−1/2
n∑

j=1

u(Xj−1, Xj , Vj) ⇒ (Pu2)1/2N.

From Kartashov (1985a, 1985b, 1996) we obtain the following perturbation expansion
for g ∈ L2(P ):

(2.1) n1/2(Pnug − Pg) → P (uAg) for u ∈ U

with

Ag(x, y, v) = g(x, y, v)− Sxg +
∞∑

t=0

(Qt
ySg −Qt+1

x Sg).

It is a feature of Markov renewal processes that powers of S do not appear in the operator
A. The reason is that the transition distribution S does not depend on the previous value
of the inter-arrival time.

For g ∈ L2(P ), the martingale approximation of Gordin (1969) and Gordin and Lif̌sic
(1978) is

(2.2) n−1/2
n∑

j=1

(g(Xj−1, Xj , Vj)− Pg) = n−1/2
n∑

j=1

Ag(Xj−1, Xj , Vj) + oP (1),

By a central limit theorem for martingales, the right side is asymptotically normal with
variance P [(Ag)2].

Now suppose that the stationary distribution P fulfills the constraint Ph = 0 for some
d-dimensional vector of functions h ∈ Ld

2(P ). The constraint also holds for the perturbed
stationary distribution Pnu, and we obtain from (2.1), applied to the components of h, that
P (uAh) = 0. The perturbations u are therefore constrained to

Uh = {u ∈ U : P (uAh) = 0}.

the stochastic expansion in Theorem 1 involves a norm (Pu2)1/2 on U . By the perturbation
expansion (2.1), applied to f , we see that the functional Pf is differentiable at P with
gradient Af ∈ U in the sense that

n1/2(Pnuf − Pf) → P (uAf) for u ∈ U.
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The canonical gradient under the constraint Ph = 0 is the projection of Af onto Uh. By
definition of Uh, the space U has the orthogonal decomposition U = Uh ⊕ [Ah], where [Ah]
is the linear span of the components of Ah. Hence the canonical gradient of Pf can be
written uh = Af − u⊥h , where u⊥h is the projection of uh onto [Ah] = U⊥h . This projection
is of the form u⊥h = c⊥h Ah with

c⊥h = P (Ah ·Ah>)−1P (Ah ·Af).

We obtain the canonical gradient

uh = Af − P (Af ·Ah>)P (Ah ·Ah>)−1Ah.

An estimator ϑ̂ is called asymptotically linear for Pf at P with influence function v if
v ∈ U and

n1/2(ϑ̂− Pf) = n−1/2
n∑

j=1

v(Xj−1, Xj , Vj) + oP (1).

Given the constraint Ph = 0, an estimator ϑ̂ is called regular for Pf at P with limit L

if L is a random variable such that

n1/2(ϑ̂− Pnuf) ⇒ L for u ∈ Uh.

The convolution theorem of Hájek (1970) then says that L = P (u2
h)1/2N + M with M

independent of N . This justifies calling ϑ̂ efficient if L = P (u2
h)1/2N . The convolution

theorem also implies the following characterization of efficient estimators. We refer to
Bickel, Klaassen, Ritov and Wellner (1998).

Theorem 2. Assume that ‖Q − Π‖ < 1. Let f ∈ L2(P ) and h ∈ L2(P ) with Ph = 0.
Under the constraint Ph = 0, an estimator ϑ̂ for Pf is efficient at P if and only if ϑ̂ is
asymptotically linear for Pf at P with influence function equal to the canonical gradient
uh,

(2.3) n1/2(ϑ̂− Pf) = n−1/2
n∑

j=1

uh(Xj−1, Xj , Vj) + oP (1).

The asymptotic variance of such an estimator ϑ̂ is

P (u2
h) = P ((Af)2)− P (Af ·Ah>)P (Ah ·Ah>)−1P (Ah ·Af).

This should be compared with the asymptotic variance of the empirical estimator Pf =
(1/n)

∑n
j=1 f(Xj−1, Xj , Vj), which is P ((Af)2). In the next section we construct three

efficient estimators for Pf under the constraint Ph = 0.
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3 Three efficient estimators

The characterization of efficient estimators for Pf under the constraint Ph = 0, given in
Theorem 2, immediately suggests a construction that replaces the unknown expectations
in the canonical gradient by empirical estimators. Define the additively corrected empirical
estimator of Pf as

(3.1) Paf = Pf − γ̂>Σ̂−1 1
n

n∑
j=1

h(Xj−1, Xj , Vj),

where γ̂ is an empirical estimator for P (Ah ·Af),

γ̂ =
1
n

n∑
j=1

h(Xj−1, Xj , Vj)f(Xj−1, Xj , Vj)

+
m∑

k=1

1
n− k

n−k∑
j=1

(
h(Xj−1, Xj , Vj)f(Xj+k−1, Xj+k, Vj+k)

+ h(Xj+k−1, Xj+k, Vj+k)f(Xj−1, Xj , Vj)
)
,

and Σ̂ is an empirical estimator for P (Ah ·A>h),

Σ̂ =
1
n

n∑
j=1

h(Xj−1, Xj , Vj)h>(Xj−1, Xj , Vj)

+ 2
m∑

k=1

1
n− k

n−k∑
j=1

h(Xj−1, Xj , Vj)h(Xj+k−1, Xj+k, Vj+k).

Theorem 3. Assume that ‖Q − Π‖ < 1. Let f ∈ L2(P ) and h ∈ Ld
2(P ) with Ph = 0.

Under the constraint Ph = 0, the estimator Paf is asymptotically linear in the sense of
(2.3) for Pf at P with influence function uh, and therefore regular and efficient.

The proof is similar to that of the corresponding result for Markov chains in Müller,
Schick and Wefelmeyer (2001), and we omit it.

A different improvement of the empirical estimator Pf consists in weighting it appro-
priately. The empirical likelihood of Owen (1988, 2001) works only for independent obser-
vations. For (weakly) dependent observations we can use the blockwise empirical likelihood
introduced by Kitamura (1997). Decompose (the initial section of) the time points 1, . . . , n

into ν = [n/m] disjoint blocks of length m, where m tends slowly to infinity with the sample
size n. Set

Fi =
1
m

m∑
k=1

f(X(i−1)m+k−1, X(i−1)m+k, V(i−1)m+k),

Hi =
1
m

m∑
k=1

h(X(i−1)m+k−1, X(i−1)m+k, V(i−1)m+k).
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Then, for n a multiple of m, the empirical estimator for Pf can be written

Pf =
1
ν

ν∑
i=1

Fi;

otherwise this holds only up to oP (n−1/2). The blockwise weighted empirical estimator for
Pf is

(3.2) Pwf =
1
ν

ν∑
i=1

Fi

1 + λ>Hi

with random vector λ chosen such that 1 + λ>Hi > 0 and

ν∑
i=1

Hi

1 + λ>Hi
= 0.

Theorem 4. Assume that ‖Q − Π‖ < 1. Let f ∈ L2(P ) and h ∈ Ld
2(P ) with Ph = 0.

Under the constraint Ph = 0, the estimator Pwf admits the stochastic expansion

(3.3) Pwf = Pf − 1
ν

ν∑
i=1

FiH
>
i

(1
ν

ν∑
i=1

HiH
>
i

)−1 1
ν

ν∑
i=1

Hi + oP (n−1/2)

and is asymptotically linear in the sense of (2.3) for Pf at P with influence function uh.
In particular, Pwf is regular and efficient.

Proof. Similarly as in Owen (1988, 2001) we show that

λ =
1
ν

ν∑
i=1

(1
ν

ν∑
i=1

HiH
>
i

)−1 1
ν

ν∑
i=1

Hi + oP (n−1/2).

An expansion of Pwf then leads to (3.3).

An immediate consequence of (3.3) and Theorem 4 is that the blockwise additively cor-
rected empirical estimator

(3.4) Pbf = Pf − 1
ν

ν∑
i=1

FiH
>
i

(1
ν

ν∑
i=1

HiH
>
i

)−1 1
ν

ν∑
i=1

Hi

of Pf is regular and efficient under the constraint Ph = 0.
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