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1 Introduction

To begin consider the case of independent and identically distributed observations,
with distribution P in some model P , a family of distributions. If no structural
assumptions are made on the distributions in P , the model is called nonparamet-
ric. If the distributions depend smoothly on some finite-dimensional parameter, say
P = {Pϑ : ϑ ∈ Θ}, the model is called parametric. We call a model semiparametric in
a wide sense if it is neither parametric nor nonparametric. This covers models with
infinite-dimensional parameters and models described by constraints on the distri-
butions. It also covers semiparametric models in the strict sense, with distributions
Pϑγ having a finite-dimensional parameter ϑ and an infinite-dimensional parameter
γ. The simple linear regression model Y = ϑX + ε illustrates these cases. If ε and
X are independent with densities f and g, respectively, then an observation (X, Y )
has density g(x)f(y−ϑx) with one-dimensional parameter ϑ and infinite-dimensional
parameter γ = (f, g). If ε and X are not assumed independent, then the model is
described by the conditional constraint E(Y |X) = ϑX which itself depends on an
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unknown parameter ϑ. For time series, autoregression Xt = ϑXt−1 +εt provides com-
pletely analogous examples. If the innovations εt are i.i.d. with density f , then the
time series is a Markov chain with transition density f(y−ϑx) and parameter (ϑ, f).
(Throughout the paper, by Markov chain we mean a discrete-time Markov process
with arbitrary state space. We note that in the literature the term Markov chain is
often reserved for a continuous-time Markov process with discrete state space.) If,
besides the Markov property, we assume only that E(εt|Xt−1) = 0, then the time
series is a Markov chain with conditional constraint E(Xt|Xt−1) = ϑXt−1. Another
analogy exists between multivariate i.i.d. models with constraints on the marginal
distributions and time series with constraints on the stationary distribution of a sin-
gle realization. This survey article emphasizes such analogies between models with
independent observations and time series models. The focus is on efficient estimation.
For results on optimal testing we refer to Choi, Hall and Schick (1996).

In Section 2 we briefly describe the development of an efficiency concept for differ-
entiable functionals on general parametric, nonparametric and semiparametric mod-
els. It is based on local asymptotic normality of likelihoods and on the convolution
theorem, and is due to Le Cam and Hájek.

In Section 3 we sketch the historical development of efficient estimation for some
semiparametric models with i.i.d. observations. We consider in particular models with
linear constraints and with constraints on the marginal distributions, the symmetric
location model, copula models, conditional constraints, in particular quasi-likelihood
models, and regression models with errors independent of the covariates.

In Section 4 we consider efficient estimation for Markov chain models with para-
metric marginals and with conditional constraints, ARMA models, general invertible
linear processes, and nonlinear autoregression. The emphasis is on estimators that
exploit the semiparametric structure of the model; we say little about nonparametric
estimators in semiparametric models, e.g. least squares estimators in linear regression,
or kernel estimators for linear processes.

We have restricted attention to simple semiparametric models. There is a large
literature on more involved models. For censored longitudinal data see van der Laan
and Robins (2003); for missing data see Tsiatis (2006); for measurement error in
nonlinear models see Carroll, Ruppert, Stefanski, and Crainiceanu (2006); for hidden
Markov models see Cappé, Moulines and Rydén (2005). An interesting collection of
articles on semiparametric inference is in Fan and Koul (2006). More on inference for
time series is found in Taniguchi and Kakizawa (2000), Fan and Yao (2003) and Gao
(2007).

We do not treat inference for continuous-time processes. Monographs on counting
processes are Jacobsen (1982), Fleming and Harrington (1991), Andersen, Borgan,
Gill and Keiding (1993), Kalbfleisch and Prentice (2002); on diffusion processes, Ku-
toyants (2004); on semimartingales, Prakasa Rao (1999).
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2 Asymptotic Variance Bounds

Consider a sequence Pnϑ of models having a k-dimensional parameter ϑ. Fix ϑ and set
ϑnu = ϑ+ n−1/2u, where u ∈ Rk. Le Cam (1960) calls the sequence of models locally
asymptotically normal at ϑ if there are random vectors ∆n and a positive definite
matrix J such that

log
dPnϑnu

dPnϑ

= u>∆n −
1

2
u>Ju+ oPnϑ

(1), u ∈ Rk, (2.1)

∆n ⇒ J1/2Nk under Pnϑ, (2.2)

where Nk denotes a k-dimensional standard normal random vector. As shown below,
models with i.i.d. observations are often locally asymptotically normal. This also
holds when the observations come from a homogeneous time series or continuous-
time process. Typically, ∆n equals n−1/2 times the derivative at ϑ of the log-likelihood
and forms a martingale so that (2.2) can be established via martingale central limit
theorems.

An estimator ϑ̂ is called regular at ϑ with limit L if L is a random vector such
that

n1/2(ϑ̂− ϑnu) ⇒ L under Pnϑnu , u ∈ Rk.

The convolution theorem says that for such an estimator,(
J−1∆n, n

1/2(ϑ̂− ϑ)− J−1∆n

)
⇒ (J−1/2Nk,M) under Pnϑ, (2.3)

with M independent of Nk. Different proofs are in Hájek (1970), Roussas (1972,
following an idea of Bickel), and Le Cam (1972). For forerunners see Le Cam (1953),
Kaufman (1966) and Inagaki (1970). Introductions to the theory are Fabian and
Hannan (1985) and Strasser (1985).

In particular, L is distributed as the convolution J−1/2Nk + M . This justifies
calling ϑ̂ efficient at ϑ if n1/2(ϑ̂ − ϑ) ⇒ J−1/2Nk under Pnϑ. By the convolution
theorem, an estimator ϑ̂ is regular and efficient at ϑ if and only if

n1/2(ϑ̂− ϑ) = J−1∆n + oPnϑ
(1).

The asymptotic covariance matrix of J−1∆n is J−1; we call it a (lower) variance
bound. A possibly efficient estimator for ϑ is the maximum likelihood estimator. As
noted by Le Cam (1960, 1974), it is often better not to use such a global maximizer
of the likelihood function but instead a one-step or Newton–Raphson improvement of
a n1/2-consistent estimator ϑ̄,

ϑ̂ = ϑ̄+ n−1/2J−1
ϑ̄

∆nϑ̄.

Here we have written ∆nϑ for ∆n and Jϑ for J . It is technically convenient to use a
discretized estimator ϑ̄, taking values on a grid with length of order n−1/2.
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These concepts and results carry over to infinite-dimensional parameter spaces,
and to differentiable functionals of the parameter. Consider a sequence Pnβ of mod-
els, with β running through some set B. As observed by Stein (1956), in order to
determine an asymptotic variance bound for real-valued functionals of β, it suffices
to consider one-dimensional submodels βnt with t in some closed linear space T which
are locally asymptotically normal

log
dPnβnt

dPnβ

= ∆n(At)− 1

2
‖At‖2 + oPnβ

(1), t ∈ T, (2.4)

∆n(h) ⇒ ‖h‖N under Pnβ, h ∈ H, (2.5)

with N a standard normal random variable and A a bounded linear operator from T
into a Hilbert space H. Call a functional ϕ : B → R differentiable at β with gradient
g if g belongs to the closure of AT = {At : t ∈ T} and

n1/2(ϕ(βnt)− ϕ(β)) → (g, At), t ∈ T.

An estimator ϕ̂ is called regular for ϕ at β with limit L if

n1/2(ϕ̂− ϕ(βnt)) ⇒ L under Pnβnt , t ∈ T.

It follows from the convolution theorem (2.3) that for such an estimator,

(∆n(g), n1/2(ϕ̂− ϕ(β))−∆n(g)) ⇒ (‖g‖N,M) under Pnβ, (2.6)

with M independent of N . In particular, L is distributed as the convolution ‖g‖N +
M . This justifies calling ϕ̂ efficient at β if n1/2(ϕ̂−ϕ(β)) ⇒ ‖g‖N under Pnβ. Again,
an estimator ϕ̂ is regular and efficient at β if and only if

n1/2(ϕ̂− ϕ(β)) = ∆n(g) + oPnβ
(1). (2.7)

The asymptotic variance of ∆n(g) is ‖g‖2; we call it a (lower) variance bound for
regular estimators of ϕ at β.

Generalizations of the convolution theorems (2.3) and (2.6) to multivariate func-
tionals ϕ are straightforward. One simply applies the above to the components of ϕ.
This results in a version of (2.7) in which ∆n(g) is replaced by a vector whose i-th
component is ∆n(gi) with gi the gradient of the i-th component of ϕ. Generalizations
to functionals with values in Banach spaces are in Beran (1977), Begun, Hall, Huang
and Wellner (1983), Millar (1985), Schick and Susarla (1990), van der Vaart (1991),
and van der Vaart and Wellner (1996). For the construction of efficient estimators of
functionals with values in Banach spaces we refer to Klaassen and Putter (2005).

Le Cam (1966, 1969) gives sufficient conditions for local asymptotic normality of
models with i.i.d. observations. Let X1, . . . , Xn be i.i.d. with distribution Pϑ having a
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one-dimensional parameter ϑ. Assume that Pϑnu is Hellinger differentiable at ϑ with
derivative ` in the sense that E[`(X)] = 0 and∫ (

n1/2
(√

dPϑnu −
√
dPϑ

)
− 1

2
u`
√
Pϑ

)2

→ 0.

The latter is short for∫ (
n1/2

(√dPϑnu

dν
−
√
dPϑ

dν

)
− 1

2
u`

√
dPϑ

dν

)2

dν → 0

for some measure ν dominating Pϑ and the sequence Pϑnu . A Taylor expansion then
shows that the model is locally asymptotically normal in the sense of (2.1), (2.2),
with ∆n = n−1/2

∑n
j=1 `(Xj) and J = E[`2(X)] the Fisher information at ϑ. Le Cam

(1984) proves that the converse also holds.
Consider now independent observations from a semiparametric model Pϑγ in the

strict sense, with ϑ finite-dimensional and γ infinite-dimensional. Let ϑnu and γnv be
sequences such that∫ (

n1/2
(√

dPϑnuγnv −
√
dPϑγ

)
− 1

2
(u>λ+Dv)

√
dPϑγ

)2

→ 0

for some bounded linear operator D into L2(Pϑγ), and u and v running through closed
linear spaces U and V , respectively. Then local asymptotic normality in the sense of
(2.4), (2.5) holds with T = U × V , A(u, v) = u>λ+Dv, β = (ϑ, γ), βnt = (ϑnu, γnv),
and with

∆n(A(u, v)) = n−1/2

n∑
j=1

(u>λ(Xj) +Dv(Xj)),

‖A(u, v)‖2 = E[(u>λ(X) +Dv(X))2].

A gradient of a finite-dimensional differentiable functional ϕ of (ϑ, γ) is of the
form g = Mλ + w for some matrix M and some vector w with components in the
closure W of DV = {Dv : v ∈ V }. Let λW denote the vector whose i-th component
is the projection of the i-th component of λ onto W . Then λ∗ = λ − λW is called
the efficient score function for ϑ at (ϑ, γ), and J∗ = E[λ∗(X)λ>∗ (X)] the efficient
information matrix for ϑ. If this matrix is invertible, then the functional ϕ(ϑ, γ) = ϑ
is differentiable with gradient J−1

∗ λ∗, and an efficient estimator ϑ̂ of ϑ is characterized
by

ϑ̂ = ϑ+
1

n

n∑
j=1

J−1
∗ λ∗(Xj) + oP n

ϑγ
(n−1/2).

We call ϑ and γ adaptive if u>λ and Dv are orthogonal for all u and v. Then the
gradient for ϑ is I−1λ, where I = E[λ(X)λ>(X)] is the information for the model
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with γ known. This means that we should be able to estimate ϑ as well not knowing
γ as knowing γ. Analogously, we should be able to estimate differentiable functionals
of γ as well not knowing ϑ as knowing ϑ. In the literature, an efficient estimator in
an adaptive model is also called adaptive. If we find an estimator for ϑ that does not
depend on γ but attains the asymptotic variance bound in each model with γ known,
then the model must be adaptive and the estimator must be efficient. Then it suffices
to determine local asymptotic normality in each model with γ known.

Efficient estimators for ϑ can be constructed by an appropriate version of the
one-step or Newton–Raphson procedure. More generally, call ϑ̂ asymptotically linear
with influence function fϑγ if E[|fϑγ|2(X)] is finite and E[fϑγ(X)] = 0, and

n1/2(ϑ̂− ϑ) = n−1/2

n∑
j=1

fϑγ(Xj) + oP n
ϑγ

(1).

If ϑ̄ is n1/2-consistent (and discretized) and γ̂ is an appropriate estimator of γ, we
expect the one-step improved estimator

ϑ̂ = ϑ̄+
1

n

n∑
j=1

fϑ̄γ̂(Xj)

to have influence function fϑγ. For adaptive models, Bickel (1982) proves this, split-
ting the sample in a large part for estimating ϑ and a small part for estimating γ.
Schick (1986) and Klaassen (1987) give necessary and sufficient conditions in the gen-
eral case, using a symmetrized sample splitting technique that works with parts of
equal sizes. Schick (1987) gives necessary conditions for a construction that avoids
sample splitting. See also Forrester, Hooper, Peng and Schick (2003) for an overview
and simplifications. Achievability of the asymptotic variance bound in semiparamet-
ric models is discussed in Bickel and Ritov (1990).

Nonparametric models with i.i.d. observations are treated by parametrizing them
with the underlying distribution P itself, and by introducing sequences Pnw which
are Hellinger differentiable in the sense that∫ (√

n
(√

dPnw −
√
dP
)
− 1

2
w
√
P
)2

→ 0.

Then local asymptotic normality in the sense of (2.4), (2.5) holds with ∆n(w) =
n−1/2

∑n
j=1w(Xj) and ‖w‖2 = E[w2(X)]. Constraints on P then translate into con-

straints on w.
Conditions for local asymptotic normality of time series have been given in many

different cases. For Markov chains, a version of Hellinger differentiability of the tran-
sition distribution suffices. Parametric models are treated in Roussas (1965, 1970).
For nonparametric models see Penev (1991). Markov step processes are considered in
Höpfner, Jacod and Ladelli (1990), and Höpfner (1993). General sufficient conditions
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for local asymptotic normality for models with dependent data are in Jeganathan
(1982) and Fabian and Hannan (1987). For Markov chains, one-step improvement of
n1/2-consistent estimators is studied in Schick (2001).

Markov chain models described by constraints on the transition distribution are
best parametrized by the latter. On the other hand, for Markov chain models de-
fined through constraints on the stationary distribution, it is more convenient to
parametrize by the stationary distribution (of several observations), as shown by
Bickel (1993) and Bickel and Kwon (2001). This leads, for example, to a simpler
proof of the result of Greenwood and Wefelmeyer (1999) that the symmetrized em-
pirical estimator (2n)−1

∑n
j=1(f(Xj−1, Xj)+f(Xj−1, Xj)) is efficient for E[f(X0, X1)].

General introductions to efficient estimation in semiparametric and nonparametric
models are Ibragimov and Has’minskii (1981), Pfanzagl and Wefelmeyer (1982), Le
Cam (1986), Le Cam and Yang (1990), Pfanzagl (1990), Bickel, Klaassen, Ritov and
Wellner (1998), and van der Vaart (1998, 2002).

3 Models With i.i.d. Observations

Linear constraints. Let X1, . . . , Xn be independent with distribution fulfilling the
linear constraint E[a(X)] = 0 for some vector-valued function a. Then the empirical
estimator for the expectation E[f(X)] of a function f can be modified as

1

n

n∑
j=1

f(Xj)− c>
1

n

n∑
j=1

a(Xj).

By the Cauchy–Schwarz inequality, the asymptotic variance E[(f(X)− c>a(X))2] is
minimized by c = cf = (E[a(X)a>(X)])−1E[a(X)f(X)]. Estimating cf empirically,
we arrive at the estimator

1

n

n∑
j=1

f(Xj)−
n∑

j=1

f(Xj)a
>(Xj)

( n∑
j=1

a(Xj)a
>(Xj)

)−1 1

n

n∑
j=1

a(Xj). (3.1)

It is efficient; see Koshevnik and Levit (1976).
An efficient estimator of E[f(X)] is also obtained by weighting the empirical esti-

mator, following the empirical likelihood approach of Owen (1988, 2001). This leads
to the estimator (1/n)

∑n
j=1wjf(Xj) with positive weights wj = 1/(1 + λ>a(Xj)),

where the vector λ is chosen such that
∑n

j=1wja(Xj) = 0. A computational dis-
advantage of empirical likelihood is that the weights wj must be determined by the
method of Lagrange multipliers, while the estimator (3.1) is given explicitly. On the
other hand, for the weighted empirical distribution Pn = (1/n)

∑n
j=1wjδXj

, the linear

constraint
∫
a dPn = (1/n)

∑n
j=1wja(Xj) = 0 holds exactly. This may be advanta-

geous for small sample size. Empirical likelihood with infinitely many constraints is
studied in Hjort, McKeague and Van Keilegom (2008).
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These results extend to constraints E[aϑ(X)] = 0 involving an unknown parameter
ϑ. By the parametric plug-in principle, efficiency continues to hold if we use an
efficient estimator for ϑ; see Müller and Wefelmeyer (2002a). As shown in Qin and
Lawless (1994), the method of maximum empirical likelihood estimation provides
efficient estimators for ϑ.

Constraints on marginals. Suppose we observe i.i.d. copies (X1, Y1), . . . , (Xn, Yn)
of a random vector (X,Y ). A natural estimator of an expectation E[ψ(X, Y )] is the
empirical estimator (1/n)

∑n
j=1 ψ(Xj, Yj). It is efficient if no structural information

on the distribution of (X, Y ) is available.
The empirical estimator can be improved if the marginal distributions are known.

This is equivalent to saying that E[a(X)] and E[b(Y )] are known for all functions
a and b. Hence the model is described by infinitely many linear constraints. If
E[a(X)] = E[b(Y )] = 0, a new estimator for E[ψ(X, Y )] is

1

n

n∑
j=1

(ψ(Xj, Yj)− a(Xj)− b(Yj)).

Bickel, Ritov and Wellner (1991) show that an efficient estimator is equivalent to the
best estimator in the above class, which corresponds to the choices of a = a∗ and
b = b∗ that minimize the variance. For contingency tables, Deming and Stephan
(1940) use a modified chi-square method to improve the empirical estimator. To
construct an efficient estimator Bickel, Ritov and Wellner (1991) adapt the method
to general X and Y . Their construction relies on an appropriate partition of the state
space of (X, Y ). Peng and Schick (2002) use orthonormal bases and a least squares
approach to estimate a∗ and b∗ directly.

Peng and Schick (2004a) assume parametric models for the marginals. Peng and
Schick (2004b, 2005) construct efficient estimators for linear functionals in bivariate
models with equal, but unknown marginals.

Symmetric location model. Let X1, . . . , Xn be independent and real-valued with
density f(· − ϑ), where f is symmetric about zero. The parameters f and ϑ are
adaptive. Assume that f is absolutely continuous with finite Fisher information for
location I =

∫
`2(x)f(x) dx, where ` = −f ′/f . The efficient influence function for ϑ

is I−1`(x− ϑ). Efficient estimators for ϑ are constructed in particular by van Eeden
(1970), Fabian (1974), Beran (1974, 1978), Sacks (1975), Stone (1975), Bickel (1982),
Schick (1987), Faraway (1992) and Jin (1992).

Copula models. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of a random vector (X, Y )
with joint distribution functionH and marginal distribution functions F and G. Sklar
(1959) proves that there exists a copula C such that H(x, y) = C(F (x), G(y)). If H
has a density h, then C is uniquely determined, and the density h of H is of the form

h(x, y) = ϕ(F (x), G(y))f(x)g(y),
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where f and g are the densities of F and G, respectively, and ϕ(u, v) = ∂u∂vC(u, v).
For an introduction see Nelsen (2006).

A copula model is given by a parametric family Cϑ of copulas. This is a constraint
on the joint distribution of (X,Y ) that involves an unknown parameter ϑ. Estimators
of ϑ are considered in Genest, Ghoudi and Rivest (1995) and Tsukahara (2005).
Efficiency questions are studied by Klaassen and Wellner (1997) and Genest and
Werker (2002). Semiparametric density estimators for copula models are introduced
in Biau and Wegkamp (2005) and Liebscher (2005).

Conditional constraints. Suppose we observe independent copies of a vector
(X, Y ) satisfying the conditional constraint E(aϑ(X, Y )|X) = 0, where aϑ is a vec-
tor of functions depending on an unknown parameter vector ϑ. This covers quasi-
likelihood models, with real-valued Y and constraints for the conditional means and
variances,

E(Y |X) = rϑ(X), E((Y − rϑ(X))2|X) = s2
ϑ(X).

A quasi-likelihood model can be written as a nonlinear and heteroscedastic regression
model Y = rϑ(X)+sϑ(X)ε with E(ε|X) = 0 and E(ε2|X) = 1. Most of the literature,
in particular in econometrics, refers to the autoregressive versions of these models,
which we discuss in Section 3, in the subsection on Markov chains with conditional
constraints. Versions of these results for regression are in Chamberlain (1987, 1992).

Regression with independent error and covariate. Suppose we observe in-
dependent copies (X1, Y1), . . . , (Xn, Yn) of a vector (X, Y ), where the real-valued re-
sponse Y depends on the covariate X through

Y = rϑγ(X) + ε,

where ε and X are independent and ε has mean zero, finite variance, and density f .
Here ϑ is finite-dimensional and γ is arbitrary. The simplest such model is the linear
regression model Y = µ+ ϑ>X + ε; the classical estimators for µ and ϑ are the least
squares estimators. Efficient estimators of ϑ have been constructed in Bickel (1982)
and of (µ, ϑ) by Schick (1987). For symmetric errors, efficient estimators of (µ, ϑ)
are obtained by Bickel (1982), Koul and Susarla (1983), and Schick (1987). In the
nonlinear regression model Y = rϑ(X) + ε, the parameter ϑ can again be estimated
by a least squares estimator. Empirical processes of residuals ε̂j = Yj − rϑ̂(Xj) are
studied by Koul (1970) and Loynes (1980), among others; see also Koul (2002).

The partly linear regression model is Y = ϑ>U + r(V ) + ε with covariate X =
(U, V ). Estimators of ϑ are studied by Engle, Granger, Rice and Weiss (1986), Chen
(1988), Robinson (1988) and Cuzick (1992a), among others. Cuzick (1992b), Schick
(1993, 1996), and Forrester, Hooper, Peng and Schick (2003) construct efficient esti-
mators of ϑ; Bhattacharya and Zhao (1997) do so for symmetric errors. The empirical
distribution function based on residuals ε̂j = Yj− ϑ̂>Uj− r̂(Vj) is shown to be efficient
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in Müller, Schick and Wefelmeyer (2007) if ϑ̂ is an efficient estimator of ϑ and r̂ is an
appropriately chosen linear smoother.

The nonparametric regression model Y = r(X) + ε with unknown smooth re-
gression function r is semiparametric in our sense because ε and X are assumed
independent. The regression function can be estimated only nonparametrically, for
example by a Nadaraya–Watson estimator r̂. Empirical estimators based on residuals
ε̂j = Yj − r̂(Xj) are studied by Akritas and Van Keilegom (2001) for heteroscedas-
tic nonparametric regression and by Müller, Schick and Wefelmeyer (2007) for ho-
moscedastic nonparametric regression.

General procedures for constructing efficient estimators in semiparametric regres-
sion models are described by Schick (1993, 1994) and by Forrester, Hooper, Peng
and Schick (2003). We refer to Müller, Schick and Wefelmeyer (2004) for a compari-
son with regression models defined by conditional constraints, i.e. with ε and X not
necessarily independent, that were considered in the previous subsection.

4 Time Series

Markov chains with parametric marginals. Let X0, . . . , Xn be observations
from a geometrically ergodic first-order Markov chain with unknown transition dis-
tribution Q(x, dy). Suppose we have a parametric model πϑ(dx) for the stationary
distribution. Kessler, Schick and Wefelmeyer (2001) give efficient estimators for ϑ.
Penev, Peng, Schick and Wefelmeyer (2004) construct efficient estimators for linear
functionals E[ψ(X0, X1)] of the joint stationary distribution. They are obtained sim-
ilarly as in the i.i.d. case, Peng and Schick (2004a).

Markov chains with conditional constraints. Let X1−p, . . . , Xn be observations
of a Markov chain of order p satisfying the linear constraint E(aϑ(Xt−1, Xt)|Xt−1) = 0,
where aϑ is a m-dimensional vector of known functions depending on an unknown
k-dimensional parameter ϑ. This is analogous to the i.i.d. models with conditional
constraints considered in Section 3 and covers quasi-likelihood models with real-valued
state space and constraints for the conditional means and variances,

E(Xt|Xt−1) = rϑ(Xt−1), E((Xt − rϑ(Xt−1))
2|Xt−1) = s2

ϑ(Xt−1).

A quasi-likelihood model can be written as a nonlinear and heteroscedastic autore-
gression model Xt = rϑ(Xt−1) + sϑ(Xt−1)ε with E(εt|Xt−1) = 0 and E(ε2

t |Xt−1) = 1.
Hansen (1982, 1985) suggests estimating ϑ by the generalized method of moments,

a minimizer ϑ̂ of

n∑
j=1

a>ϑ (Xj−1, Xj)Wϑ(Xj−1)Mn

n∑
j=1

W>
ϑ (Xj−1)aϑ(Xj−1, Xj),
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where Mn is a random symmetric k × k matrix converging to a fixed deterministic
matrix and Wϑ is a m × k matrix of weight functions. The optimal weights W ∗

ϑ are

determined by minimizing the asymptotic covariance matrix of ϑ̂ and of the form

W ∗
ϑ(Xj−1) = E

(
aϑ(Xj−1, Xj)a

>
ϑ (Xj−1, Xj)|Xt−1

)−1
E
(
ȧϑ(Xj−1, Xj)|Xt−1

)
,

where ȧϑ(x, y) is the m × k matrix of partial derivatives of aϑ(x, y) with respect to
ϑ. Another estimator of ϑ is obtained as a solution of the estimating equation

n∑
j=1

W>
ϑ (Xj−1)aϑ(Xj−1, Xj) = 0.

The optimal weights are again W ∗
ϑ . The weights depend on the unknown transition

distribution of the Markov chain and must be estimated, say by Nadaraya–Watson
estimators and some initial estimator for ϑ. The resulting estimators are efficient;
see Müller and Wefelmeyer (2002b). Efficient estimation for quasi-likelihood models
is treated in Wefelmeyer (1996). Reviews of the generalized method of moments are
Newey and McFadden (1994). Estimating equations for general models are studied
in Heyde (1997).

ARMA models. Let X1−p, . . . , Xn be observations of an ergodic ARMA(p,q) pro-
cess satisfying

Xt − %1Xt−1 + · · ·+ %pXt−p = εt + ϕ1εt−1 + · · ·+ ϕqεt−q,

where εt are i.i.d. innovations with mean zero, finite variance, and density f . For
q = 0 this is an AR(p) process, a Markov chain of order p. For p = 0 we have an
MA(q) process, which is not Markov. Least squares estimators for the autoregressive
parameters % = (%1, . . . , %p) and for the moving average parameters ϕ = (ϕ1, . . . , ϕq)
are not efficient, in general. For symmetric f , the ARMA(p,q) model is adaptive for
(%,ϕ). Kreiss (1987a) proves local asymptotic normality for fixed f and constructs
efficient one-step estimators for (%,ϕ). More general results on local asymptotic
normality and generalizations are in Jeganathan (1995).

For mean zero innovations, the AR(p) model is adaptive for %. Akritas and
Johnson (1982) and Kreiss (1987b) prove local asymptotic normality for fixed f and
for unknown f , respectively; Kreiss (1987b) constructs efficient one-step estimators
for %.

Nonparametric (kernel) estimators for the stationary density of time series are
well-studied. The semiparametric structure of autoregressive time series with inde-
pendent innovations can be exploited to obtain better estimators. For the MA(1)
process Xt = εt + %εt−1, the stationary density g has the convolution representation
g(x) =

∫
f(x−%y)f(y) dy. Saavedra and Cao (1999) estimate f by a kernel estimator

based on residuals ε̂j and show that the plug-in estimator ĝ(x) =
∫
f̂(x− %̂y)f̂(y) dy



A. Schick and W. Wefelmeyer Page 12

has rate n−1/2. Schick and Wefelmeyer (2004a) prove this for the closely related
residual-based local U-statistic

ĝ(x) =
1

n(n− 1)

n∑
i,j=1
i6=j

kb(x− ε̂i − %̂ε̂j),

where k is a kernel, kb(x) = k(x/b)/b, and b is a bandwidth. The estimator is
motivated by density estimators for functions of at least two independent innovations,
introduced by Frees (1994); for a general recent result see Giné and Mason (2007).
Functional central limit theorems for residual-based local U-statistics estimating the
stationary density in MA(p) models are in Schick and Wefelmeyer (2004a).

Linear processes. Consider a linear process described by an infinite-order moving
average representation

Xt = εt +
∞∑

s=1

ϕsεt−s

with summable coefficients ϕs and i.i.d. innovations εt with mean zero, finite vari-
ance, and density f . Suppose the linear process is invertible. This means that the
observations have an infinite-order autoregressive representation,

εt = Xt −
∞∑

s=1

%sXt−s.

For the case that the coefficients ϕ = ϕ(ϑ) depend on an infinite-dimensional param-
eter ϑ, Kreiss (1990) proves local asymptotic normality for fixed f . Schick and We-
felmeyer (2002b) construct efficient estimators for a finite-dimensional parameter ϑ.
Boldin (1982) and Kreiss (1991) estimate linear functionals of the innovation distribu-
tion by empirical estimators based on residuals ε̂j obtained from the autoregressive
representation; Schick and Wefelmeyer (2002b) describe efficient versions that use
the linear constraint E[ε] = 0 on the innovation distribution. Schick and Wefelmeyer
(2004b) estimate linear functionals of the stationary distribution by residual-based
U-statistics. Robinson (1987) studies residual-based estimators for the innovation
density.

Kernel density estimators for the stationary density of linear processes are well-
studied. Similarly as for first-order moving average processes, one can obtain n1/2-
consistent estimators for the stationary density h of Xt through the convolution rep-
resentation Xt = εt +Yt with Yt =

∑∞
s=1 ϕsεt−s. Estimators ε̂j for the innovations can

again be constructed using the autoregressive representation of the process; the inno-
vation density f can be estimated by a kernel estimator based on these residuals. The
density g of Yt can be estimated by a kernel estimator based on Ŷj = Xj − ε̂j. Schick

and Wefelmeyer (2007b) prove that the convolution estimator ĥ(x) =
∫
f̂(x−y)ĝ(y) dy

is uniformly n1/2-consistent and that n1/2(ĥ−h) converges weakly in C0 to a centered
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Gaussian process; Schick and Wefelmeyer (2008b) show analogous results in weighted
L1 spaces.

Nonlinear autoregression. A nonlinear autoregressive process of order p is given
by

Xt = rϑ(Xt−1) + εt,

where ϑ is a finite-dimensional parameter, Xt−1 = (Xt−p, . . . , Xt−1), and εt are i.i.d.
innovations with mean zero, finite variance, and density f . The parameter ϑ can be
estimated by least squares estimators; efficient estimators are obtained by one-step
improvement, similarly as in nonlinear regression; see Koul and Schick (1997).

The innovations can be estimated by residuals ϑ̂ = Xt−rϑ̂(Xt−1). Liebscher (1999)
studies residual-based kernel estimators of the innovation density; weighted versions
are treated in Müller, Schick and Wefelmeyer (2005). Efficient weighted residual-
based empirical estimators for linear functionals of the innovation distribution are in
Schick and Wefelmeyer (2002a).

Conditional expectations E(q(Xn+1)|Xn = x), with x = (x1, . . . , xp), are usually
estimated by kernel estimators. In a nonlinear autoregressive model, such a condi-
tional expectation can be written as an unconditional expectation E[q(ε−rϑ(x))] and
can be estimated by the residual-based empirical estimator

1

n

n∑
j=1

q(ε̂j − rϑ̂(x)).

Conditional expectations with higher-order lags can be estimated by residual-based
von Mises statistics. For example, a conditional expectation with lag two can be
written

E(q(Xn+2) | Xn = x) = E[q(ε2 + rϑ(ε1 + rϑ(x)))]

and can be estimated by the residual-based von Mises statistic

1

n2

n∑
i=1

n∑
j=1

q(ε̂j − rϑ̂(ε̂i − rϑ̂(x))).

Müller, Schick and Wefelmeyer (2006) construct smoothed and weighted versions of
such estimators that are efficient. Analogous results for moving average processes and
invertible linear processes are in Schick and Wefelmeyer (2008a) and (2007a).

Other autoregressive models. Every regression model has an autoregressive
counterpart, with analogous results, but the proofs are more involved for the au-
toregressive versions since now the observations are dependent. Efficient estimators
for ϑ in a partly linear autoregressive process Xt = ϑXt−1+r(Xt−2)+εt are constructed
in Schick (1999).
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The nonparametric autoregressive process Xt = r(Xt−1) + εt was introduced by
Jones (1978). Grama and Neumann (2006) show that the nonparametric autore-
gressive model Xt = r(Xt−1) + εt is (locally) asymptotically equivalent, in the sense
of Le Cam’s deficiency distance, to certain nonparametric regression models. For
Nadaraya–Watson estimators of the autoregression function r we refer to Robinson
(1983), Tjøstheim (1994) and Masry (2005); for local polynomial smoothers see Masry
(1996) and Kreiss and Neumann (1998). Functionals of the innovation distribution
can be estimated by empirical estimators based on residuals ε̂j = Xj − r̂(Xj−1).
Cheng and Tong (1993) estimate the innovation variance; Müller, Schick and We-
felmeyer (2008) estimate the innovation distribution function.
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Höpfner, R. (1993). On statistics of Markov step processes: representation of log-
likelihood ratio processes in filtered local models. Probab. Theory Related Fields, 94,
375–398.
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