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Abstract

We construct root-n consistent plug-in estimators for conditional expectations of
the form E(h(Xn+1, . . . , Xn+m)|X1, . . . , Xn) in invertible linear processes. More specif-
ically, we prove a Bahadur type representation for such estimators, uniformly over cer-
tain classes of not necessarily bounded functions h. We obtain in particular a uniformly
root-n consistent estimator for the m-dimensional conditional distribution function.
The proof uses empirical process techniques.

Keywords. Von Mises statistic, kernel smoothed empirical process, residual-based
kernel density estimator, stochastic expansion, infinite-order moving average process,
infinite-order autoregressive process.

1 Introduction

Let X1, . . . , Xn be observations from a real-valued stationary time series. Let m be a
positive integer and h a measurable function on Rm such that E[h2(Xn+1, . . . , Xn+m)] is
finite. The best predictor for h(Xn+1, . . . , Xn+m) is the conditional expectation

q(h) = E(h(Xn+1, . . . , Xn+m)|X1, . . . , Xn).

Convergence rates for kernel estimators of E(h(Xn+1, . . . , Xn+m)|Xn−r+1 = x1, . . . , Xn =
xr) for fixed x1, . . . , xr and fixed r are e.g. in Roussas (1969, 1991), Robinson (1983, 1986),
Yakowitz (1985, 1987), Masry (1989), Roussas and Tran (1992), Tran (1992), and Truong
and Stone (1992).

If the time series is driven by independent innovations, one can construct estimators
for conditional expectations that converge at the “parametric” root-n rate. For nonlinear
autoregression see Müller et al. (2006). For the MA(1) model Xt = εt − ϑεt−1 with |ϑ| < 1
and innovations εt, t ∈ Z, that are i.i.d. with finite variance, Schick and Wefelmeyer (2006b)
construct root-n consistent estimators for the random variable q(h) when m = 1. We
generalize their result to arbitrary invertible linear processes and to arbitrary m.
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2 Result

Consider a real-valued stationary linear process with infinite-order moving average repre-
sentation

(2.1) Xt = εt +
∞∑

s=1

ϕsεt−s, t ∈ Z,

with i.i.d. innovations εt, t ∈ Z, that have mean zero, finite variance, and density f . Let
F denote the corresponding distribution function. Assume that the characteristic series
ϕ(z) = 1 +

∑∞
s=1 ϕsz

s is bounded and bounded away from zero on the complex unit disk
D. Then %(z) = 1/ϕ(z) = 1 +

∑∞
s=1 %sz

s is also bounded and bounded away from zero on
D. Hence the innovations have the infinite-order moving average representation

(2.2) εt = Xt +
∞∑

s=1

%sXt−s, t ∈ Z,

which is an infinite-order autoregressive representation for the process Xt, t ∈ Z.
First we derive a tractable approximation of the conditional expectation q(h) defined in

the Introduction. Set ϕ0 = %0 = 1. The backshift operator B is defined by BXt = Xt−1.
For k = 1, 2, . . . we decompose the representation (2.1) as

(2.3) Xn+k = ϕ(B)εn+k = ϕ<k(B)εn+k + ϕ≥k(B)εn+k

with

ϕ<k(z) =
k−1∑
s=0

ϕsz
s, ϕ≥k(z) =

∞∑
s=k

ϕsz
s.

Using the representation (2.2) we obtain

(2.4) ϕ≥k(B)εn+k = ϕ≥k(B)%(B)Xn+k =
∞∑

s=k

∞∑
t=0

ϕs%tXn+k−s−t =
∞∑

t=0

ctkXn−t

with

ctk =
t∑

s=0

ϕk+s%t−s.

Fix m ∈ N. Introduce the vectors

Xn+1 = (Xn+1, . . . , Xn+m)>, εn+1 = (εn+1, . . . , εn+m)>,

ct = (ct1, . . . , ctm)>, ϕ = (ϕ1, . . . , ϕm−1)>

and the m×m matrix of moving average coefficients

Mϕ =


1 0 0 · · · 0
ϕ1 1 0 · · · 0
...

...
ϕm−1 · · · · · · ϕ1 1

 .
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From (2.3) and (2.4) we obtain the decomposition

Xn+1 = Mϕ εn+1 + Zn

with

Zn =
∞∑

t=0

ctXn−t.

Since εn+1 is independent of X1, . . . , Xn, we can write

q(h) = E(qh(ϕ,Zn)|X1, . . . , Xn)

with
qh(ϕ, z) =

∫
h(Mϕ y + z) dFm(y)

and Fm(y) = F (y1) · · ·F (ym) the distribution function of εn+1. Decompose Zn = Znr +Rn

with

Znr =
r∑

t=0

ctXn−t, Rn =
∞∑

t=r+1

ctXn−t.

If qh is Lipschitz with constant L, we have

E[(q(h)− qh(ϕ,Znr))2] ≤ L2E[‖Rn‖2].

We will choose r = rn increasing so that the right-hand side is o(n−1). Then we arrive at
the desired approximation,

(2.5) q(h) = qh(ϕ,Znr) + op(n−1/2).

We can now construct an estimator for the conditional expectation q(h) via the approx-
imation (2.5) as follows. Let ϕ̂1, ϕ̂2, . . . be estimators for the moving average coefficients
ϕ1, ϕ2, . . . . Let %̂1, %̂2, . . . be estimators for the autoregression coefficients %1, %2, . . . . Set

ĉtk =
t∑

s=0

ϕ̂k+s%̂t−s, ĉt = (ĉt1, . . . , ĉtm)>,

Ẑnr =
r∑

t=0

ĉtXn−t, ϕ̂ = (ϕ̂1, . . . , ϕ̂m−1)>.

We choose p = pn with p/n → 0 and estimate the innovation εj by the residual

ε̂j = Xj +
p∑

s=1

%̂sXj−s, j = p + 1, . . . , n.

Introduce the residual-based and the innovation-based empirical distribution functions as

F̂(y) =
1

n− p

n∑
j=p+1

1[ε̂j ≤ y], F(y) =
1

n− p

n∑
j=p+1

1[εj ≤ y].
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Set F̂m(y) = F̂(y1) · · · F̂(ym). Then an estimator for q(h) is

q̂(h) =
∫

h(Mϕ̂ y + Ẑnr) dF̂m(y).

In order to prove root-n consistency of the estimator q̂(h), we derive a Bahadur type
representation for it. We do this first heuristically, for a fixed and smooth function h. An
expansion of the product F̂m(y) gives

(2.6) F̂m(y)− Fm(y) =
m∑

k=1

(F̂(yk)− F (yk))
∏
i6=k

F (yi) + op(n−1/2).

Since ε̂j − εj is approximated by
∑p

s=1(%̂s − %s)Xj−s with E[Xj−s] = 0, the residual-based
empirical distribution function F̂ is asymptotically equivalent to the distribution function
F based on the true innovations. Hence we obtain from (2.6) the expansion

q̂(h) =
1

n− p

n∑
j=p+1

h(εj , ϕ̂, Ẑnr) + op(n−1/2)

with

h(y,ϕ, z) =
m∑

k=1

Tkh(y,ϕ, z)

and
Tkh(y,ϕ, z) = E(h(Mϕ ε+ z)|εk = y),

where ε = (ε1, . . . , εm)>. Let h
(1)(y,ϕ, z) and h

(2)(y,ϕ, z) denote the gradients of h(y,ϕ, z)
as functions of ϕ and z, respectively. By Taylor expansion, we arrive at the Bahadur type
representation

q̂(h) =
1

n− p

n∑
j=p+1

h(εj ,ϕ,Znr) + (ϕ̂−ϕ)>
∫

h
(1)(y,ϕ,Znr) dF (y)

+ (Ẑnr − Znr)>
∫

h
(2)(y,ϕ,Znr) dF (y) + op(n−1/2).

This shows that q̂(h) is root-n consistent for appropriate choices of ϕ̂ and ĉt.
Let q

(1)
h (ϕ, z) and q

(2)
h (ϕ, z) denote the gradients of qh(ϕ, z) as a function of ϕ and z,

respectively. Taking derivatives under the integral, we have

q
(i)
h (ϕ, z) =

∫
h

(i)(y,ϕ, z) dF (y), i = 1, 2.

For non-smooth h, the derivatives h
(1) and h

(2) may no longer exist and we may have to
replace the integrals on the right-hand side in the stochastic expansion of q̂(h) by q

(1)
h (ϕ,Znr)

and q
(2)
h (ϕ,Znr), the existence of which can be guaranteed by smoothness on f .
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In order to cover estimation of t 7→ P (Xn ≤ t|X1, . . . , Xn), we prove root-n consistency
uniformly over large classes of not necessarily smooth functions h. Then it is convenient to
work instead with a smoothed version of q̂(h),

q̂s(h) =
∫

h(Mϕ̂ y + Ẑnr)f̂m(y) dy.

Here f̂m(y) = f̂(y1) · · · f̂(ym), and f̂ is the residual-based kernel estimator for the innovation
density f given by

f̂(y) =
1

n− p

n∑
j=p+1

Kb(y − ε̂j),

where Kb(y) = K(y/b)/b with K a kernel and b a bandwidth.
In order to cover estimation of conditional moments and absolute moments, we must

consider unbounded functions h. We therefore use a weighted version of the L1 norm as
follows. Let V denote the function defined by

V (y) = (1 + |y|)γ , y ∈ R,

for some non-negative γ and set

W (y) = V (‖y‖) = (1 + ‖y‖)γ , y ∈ Rm.

The V -norm of a measurable function g on R is ‖g‖V =
∫

V (x)|g(x)| dx.
The stochastic expansion of q̂(h) will be shown to be uniform over h in a class H of

measurable functions on Rm with the following properties.

(H) The class H has envelope cW for some positive c. There is a positive α such that, for

all k = 1, . . . ,m and all (large) C, the class

Hk,C = {Tkh(·,ψ, z) : h ∈ H , ‖ψ −ϕ‖ ≤ α, ‖z‖ ≤ C}

is F -Donsker. Finally,

(2.7) lim
s→0,t→0

sup
h∈H

sup
‖z‖≤C

∫
|Tkh(y,ϕ+ s, z + t)− Tkh(y,ϕ, z)|2f(y) dy = 0.

We impose the following assumptions on the density f . Recall that γ is the exponent
in the definition of V .

(F) The density f has mean zero and a finite moment of order β with β ≥ max{4, 2+2γ) and

is absolutely continuous with an (almost everywhere) derivative f ′ that satisfies ‖f ′||V < ∞
and is V -Lipschitz, which means that there is a constant L such that

(2.8)
∫

V (x)|f ′(x + t)− f ′(x)| dx ≤ LV (t)|t|, t ∈ R.
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These assumptions on f have the following implications. If follows from (2.8) that

(2.9) ‖f ∗Kb − f‖V = O(b2)

for any symmetric density K with
∫

u2V (u)K(u) du finite. This is stated as Lemma 1(3) in
Schick and Wefelmeyer (2006c) and follows from Lemma 6 in Schick and Wefelmeyer (2007).
Since the transformation y 7→ Mψ y + z has Jacobian 1, the random vector Mψ ε + z has
density fψ,z given by

fψ,z(y) = fm(M−1
ψ (y − z)), y ∈ Rm.

One can now show by a standard argument that for every finite constant C,

sup
‖ψ‖+‖z‖≤C

∫
W (y)

∣∣fψ+s,z+t(y)− fψ,z(y)− s>χ
(1)
ψ,z(y)− t>χ

(2)
ψ,z(y)

∣∣ dy = o(‖s‖+ ‖t‖),

where χ
(1)
ψ,z(y) and χ

(2)
ψ,z(y) are the gradients of χψ,z as functions of ψ and z, respectively

(which exist for almost all y). Since qh(ψ, z) equals
∫

h(y)fψ,z(y) dy and H has envelope
cW , we immediately see that the map qh is uniformly differentiable in the following sense:

(2.10) sup
h∈H ,‖z‖≤C

∣∣∣qh(ϕ+ s, z + t)− qh(ϕ, z)− s>q
(1)
h (ϕ, z) + t>q

(2)
h (ϕ, z)

∣∣∣ = o(‖s‖+ ‖t‖)

for every finite C, with q
(i)
h (ϕ, z) =

∫
h(y)χ(i)

ψ,z(y) dy.
Finally, we use the following conditions which were used in part by Schick and We-

felmeyer (2006a).

(Q) The autoregression coefficients fulfill
∑

s>p |ρs| = O(n−1/2−ζ) for some ζ > 0.

(R) The estimators %̂i of the autoregression coefficients %i fulfill

p∑
i=1

(%̂i − %i)2 = Op(qn−1)

for some q = qn with 1 ≤ q ≤ p.

(K) The kernel K is a three times differentiable symmetric density with compact support.

(B) The bandwidth b = bn satisfies bn ∼ (n log n)−1/4.

We can now state our result.

Theorem 1. Suppose (F), (H), (Q), (R), (K) and (B) hold and p6q6n−1 log3 n → 0. Let
n1/2(ϕ̂−ϕ) = Op(1) and n1/2(Ẑnr − Znr) = Op(1). Then

sup
h∈H

∣∣∣q̂s(h)− 1
n− p

n∑
j=p+1

h(εj ,ϕ,Znr)− (ϕ̂−ϕ)>q
(1)
h (ϕ,Znr)

− (Ẑnr − Znr)>q
(2)
h (ϕ,Znr)

∣∣∣ = op(n−1/2).
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Let us consider applications and special cases. The simplest case is m = 1. Then
the conditional expectation to be estimated is q(h) = E(h(Xn+1)|X1, . . . , Xn). We have
Xn+1 = εn+1 + Zn with

Zn =
∞∑

t=0

ctXn−t, ct =
t∑

s=0

ϕ1+s%t−s,

and qh(z) =
∫

h(y + z) dF (y). Our estimator for q(h) is

q̂s(h) =
∫

h(y + Ẑnr)f̂(y) dy

with

Ẑnr =
r∑

t=0

ĉtXn−t, ĉt =
t∑

s=0

ϕ̂1+s%̂t−s.

Here h(y,ϕ, z) = h(y + z), and we obtain the stochastic expansion

q̂s(h) =
1

n− p

n∑
j=p+1

h(εj + Znr) + (Ẑnr − Znr)q′h(Znr) + op(n−1/2),

with q′h the derivative of qh.
In particular, for ht(y) = 1[y ≤ t], the conditional expectation q(ht) is the conditional

distribution function q(t) = P (Xn+1 ≤ t|X1, . . . , Xn). Let G denote the distribution func-
tion of the kernel K. Then

F̂s(t) =
∫ t

−∞
f̂(y) dy =

1
n− p

n∑
j=p+1

G
( t− ε̂j

b

)
defines the distribution function of f̂ . Note that F̂s is a smoothed version of F̂. Our
estimator for q(t) is q̂s(t) = F̂s(t− Ẑnr), and its stochastic expansion is

q̂s(t) =
1

n− p

n∑
j=p+1

1[εj ≤ t− Znr]− (Ẑnr − Znr)f(t− Znr) + op(n−1/2)

uniformly for t ∈ R.
For u ∈ (0, 1), an estimator for the conditional u-quantile of Xn+1 given X1, . . . , Xn is

the u-quantile F̂−1
s (u) + Ẑnr of t 7→ F̂s(t − Ẑnr). By Gill (1989) the quantile function is

compactly differentiable, and we obtain the stochastic expansion

F̂−1
s (u) = F−1(u)− 1

f(F−1(u))
1

n− p

n∑
j=p+1

(1[εj ≤ F−1(u)]− u) + op(n−1/2)

uniformly for 0 < a ≤ u ≤ b < 1.
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For m = 2 we have

qh(ϕ1, z) =
∫∫

h(y1 + z1, ϕ1y1 + y2 + z2) dF (y1)dF (y2),

and our estimator is the smoothed von Mises statistic

q̂s(h) =
∫∫

h(y1 + Ẑnr1, ϕ̂1y1 + y2 + Ẑnr2)f̂(y1)f̂(y2) dy1 dy2.

The stochastic expansion of q̂s(h) holds with

T1h(y, ϕ1, z) = E[h(y + z1, ϕ1y + ε + z2)],

T2h(y, ϕ1, z) = E[h(ε + z1, ϕ1ε + y + z2)].

For arbitrary m and ht(y) = 1[y ≤ t] the conditional expectation is the m-dimensional
conditional distribution function q(t) = P (Xn ≤ t|X1, . . . , Xn), and our estimator is

q̂s(t) = F̂sm(M−1
ϕ̂ (t− Ẑnr))

with F̂sm(y) = F̂s(y1) · · · F̂s(ym). The stochastic expansion of q̂s(t) holds with

Tkht(y,ϕ, z) = 1[y ≤ mk(t,ϕ, z)]
∏
i6=k

F (mi(t,ϕ, z)),

where mi(t,ϕ, z) is the i-th component of M−1
ϕ (t− z).

Suppose h(Xn+1, . . . , Xn+m) depends only on Xn+m, so the conditional expectation
to be estimated is q(h) = E(h(Xn+m)|X1, . . . , Xn). Examples are conditional moments
and absolute moments E(Xα

n+m|X1, . . . , Xn) and E(|Xn+m|α|X1, . . . , Xn), and the one-
dimensional conditional distribution function P (Xn+m ≤ t|X1, . . . , Xn). Then our estimator
is

q̂s(h) =
∫

h(ym + ϕ̂1ym−1 + · · ·+ ϕ̂m−1y1 + Ẑnmr)f̂m(y) dy

with

Ẑnmr =
r∑

t=0

ĉtmXn−t,

and we have

Tkh(y,ϕ, z) = E(h(εm + ϕ1εm−1 + · · ·+ ϕm−1ε1 + z)|εk = y).

3 Proof

Note that Znr = Op(1). In view of this, the uniform differentiability (2.10), and the prop-
erties of ϕ̂ and Ẑnr, it suffices to show the following two statements,

(3.1) sup
h∈H

∣∣∣q̂s(h)− 1
n− p

n∑
j=p+1

hϕ̂,Ẑnr
(εj)

∣∣∣ = op(n−1/2)
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and

(3.2) sup
h∈H

∣∣∣ 1
n− p

n∑
j=p+1

(h(εj , ϕ̂, Ẑnr)−h(εj ,ϕ,Znr))−qh(ϕ̂, Ẑnr)+qh(ϕ,Znr)
∣∣∣ = op(n−1/2).

Let f̃ denote the kernel density estimator based on the true innovations,

f̃(y) =
1

n− p

n∑
j=p+1

Kb(y − εj), y ∈ R.

We begin by recalling results about f̂ and f̃ . It follows from (2.9) and the proof of Theorem
10.1 in Schick and Wefelmeyer (2006a) that ‖f̃−f‖V = O(b2)+Op(n−1/2b−1/2) = op(n−1/4).
Since the observations have a finite fourth moment by (F), we can improve on the bound
on ‖f̂ − f̃‖V given in their proof. Indeed, proceeding as in their Lemma 9.2 with an = Kb,
but using a second-order Taylor expansion instead of the first-order Taylor expansion used
there, and utilizing the result of their Lemma 9.3, one can bound ‖f̂ − f̃‖V by

1
2
‖∆̂>Bn2∆̂‖V + Op(p1/2q1/2n−1b−3/2) + Op(n−1/2−ζb−1) + Op(b−3‖∆̂‖3E[‖X0‖3]),

where ∆̂ = (%̂1 − %1, . . . , %̂p − %p)> and Xj−1 = (Xj−1, . . . , Xj−p)>, and where

Bn2(x) =
1

n− p

n∑
j=p+1

Xj−1X>
j−1a

′′
n(x− εj), x ∈ R.

Note that E[‖X0‖3] = O(p3/2). Because of the identity
∫

K ′(u) du = 0 we derive that

a′′n ∗ f(x) = a′n ∗ f ′(x) = b−1

∫
(f ′(x− bu)− f ′(x))K ′(u) du, x ∈ R,

and obtain ‖a′′n ∗ f‖V = O(1) in view of the V -Lipschitz property of f ′. Using this we can
show that ‖∆̂>Bn2∆̂‖V = Op(pqn−1), where

Bn2(x) =
1

n− p

n∑
j=p+1

Xj−1X>
j−1a

′′
n ∗ f(x), x ∈ R.

Since Xj−1X>
j−1(a

′′
n(x− εj)− a′′n ∗ f(x)) are uncorrelated for j = p + 1, . . . , n, we find that

(n− p)E[‖Bn2(x)− Bn2(x)‖2] ≤ p2E[X4
0 ](a′′n)2 ∗ f(x)

and thus obtain as in the proof of Lemma 9.3 of Schick and Wefelmeyer (2006a) that

‖∆̂>(Bn2 − Bn2)∆̂‖V = Op(pqn−3/2b−5/2).

Consequently, we have

(3.3) ‖f̂ − f̃‖V = op(n−1/2)
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and thus also

(3.4) ‖f̂ − f‖V = op(n−1/4).

The following result about smoothed empirical processes based on f̃ is Proposition 2.1
of Müller et al. (2006).

Lemma 1. Let G denote a class of measurable functions on R with envelope G. Suppose
that the following conditions are met.

(G1) The envelope G belongs to L2(F ) and is translation-continuous in L2(F ):

lim
t→0

∫
|G(x + t)−G(x)|2 dF (x) = 0.

(G2) The enlarged class Gη = {g(· − t) : g ∈ G , |t| ≤ η} is F -Donsker for some η > 0.

(G3) The bias is uniformly negligible:

(3.5) sup
g∈G

∣∣∣ ∫
g(y)(f ∗Kb(y)− f(y)) dy

∣∣∣ = op(n−1/2).

Then

(3.6) sup
g∈G

∣∣∣ ∫
g(y)f̃(y) dy − 1

n− p

n∑
j=p+1

g(εj)
∣∣∣ = op(n−1/2).

For ∆ = (s>, t>)> ∈ Rm−1 × Rm, we write g∆ for the affine transformation

g∆(y) = Mϕ+s y + t, y ∈ Rm.

Fix a positive constant C and a δ in (0, α/2) with α as in (H). Set

Uδ = {∆ ∈ R2m−1 : ‖∆‖ ≤ δ}, HC = {h(·+ z) : ‖z‖ ≤ C}

and
W = {wh,∆ = h ◦ g∆ : h ∈ HC ,∆ ∈ Uδ}.

Let W̄ = {w : w ∈ W } and W̄k = {wk : w ∈ W }, where w = w1 + · · · + wm and
wk(y) = Tkw(y) = E(w(ε)|εk = y).

It is easy to check that there is a constant B such that

‖g∆(y)‖ ≤ B(1 + ‖y‖), y ∈ Rm,∆ ∈ Uδ.

Thus W (g∆(y) + z) ≤ V (B + C)W (y) for all y if ‖∆‖ ≤ δ and ‖z‖ ≤ C. This shows that
W has envelope aW for some positive constant a. It is easy to check that

(3.7) W (y) ≤ V (y1) · · ·V (ym), y = (y1, . . . , ym) ∈ Rm.
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This shows that the sets W̄1, . . . , W̄m have envelope aV and W̄ has envelope maV . Using
the latter and (3.4) we obtain as in the proof of Theorem 2.1 of Müller et al. (2006) that

(3.8) sup
w∈W

∣∣∣∣∣
∫

w(y)f̂m(y) dy −
∫

w(y)f̂(y) dy

∣∣∣∣∣ = op(n−1/2).

Next, we derive from (3.3) and the fact that W̄ has envelope maV that

(3.9) sup
w∈W̄

∣∣∣ ∫
w(y)(f̂(y)− f̃(y)) dy

∣∣∣ = op(n−1/2).

By the moment assumption on f , the function V is translation-continuous in L2(F ). Fix
k ∈ {1, . . . ,m}. Note that the enlarged class W̄k,η = {wk(· − t) : wk ∈ W̄k, |t| ≤ η}, is a
subset of Hk,2C for small enough η > 0 and hence F -Donsker by (H). It follows from (2.9)
that

sup
wk∈W̄k

∣∣∣ ∫
wk(y)(f ∗Kb(y)− f(y)) dy

∣∣∣ = op(n−1/2).

Thus Lemma 1, applied with G = W̄k, yields the expansion

(3.10) sup
wk∈W̄k

∣∣∣ ∫
wk(y)f̃(y) dy − 1

n− p

n∑
j=p+1

wk(εj)
∣∣∣ = op(n−1/2).

Since k was arbitrary, we now have from (3.8), (3.9) and (3.10) that

sup
w∈W

∫
w(y)f̂m(y) dy − 1

n− p

n∑
j=p+1

w(εj)
∣∣∣ = op(n−1/2).

This holds for all finite C, and thus implies (3.1).
Now fix again k ∈ {1, . . . ,m} and set

Snk(h,∆) =
1

n− p

n∑
j=p+1

(Tkwh,∆(εj)− E[Tkwh,∆(ε)]), h ∈ HC ,∆ ∈ Uδ.

It follows from (2.7) that

lim
δ→0

lim
n→∞

P
(

sup
h∈HC

sup
∆∈Uδ

n1/2|Snk(h,∆)− Snk(h, 0)| > ε
)

= 0

for every ε > 0. Since this is valid for all k and finite C, we derive by the properties of Znr,
Ẑnr and ϕ̂ that (3.2) holds. This completes the proof of Theorem 1.
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