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In their thought-provoking essay, Bickel and Kwon (briefly, BK) touch on many
important questions of semiparametric inference. We comment on only a few. Our
Sections 1 to 4 concern BK’s information calculus as applied to Markov chain models.
In the first, we recall what BK call the traditional approach. The next two sections
try to extract what we see as two essential points of the new information calculus in
Markov chain models. The second of these points shows how to calculate efficient in-
fluence functions for Markov chains from corresponding bivariate i.i.d. models; this is
particularly useful when the model and the parameter of interest are described in terms
of the stationary law rather than the transition distribution. Section 4 is an aside on
the converse: applying Markov chain results to bivariate i.i.d. models. Sections 5 to 7
discuss models more suited to the traditional approach: autoregression, conditional con-
straints, MCMC. Section 8 is on plugging kernel estimators into smooth functionals and
into empirical estimators. Sections 9 and 10 briefly mention extensions of the traditional
approach to continuous-time processes and to random fields.

1. The traditional approach. In order to illustrate the power of BK’s approach,
we compare it with the traditional approach, which we recall first. For a review see
Wefelmeyer (1999). Let X(n) = (X1, . . . , Xn) be observations from a stationary Markov
chain with values in some state space E. (Here the state space may be arbitrary.) The
natural parameter is the transition distribution, call it q(x, dy). Let π(dx), b(dx, dy),
and P (n) denote the laws of X1, (X1, X2), and X(n), respectively. We have b(dx, dy) =
π(dx)q(x, dy). Consider (Hellinger differentiable) perturbations qnh(x, dy)

.
= q(x, dy)(1+

n−1/2h(x, y)) of q. For qnh to be a transition distribution, we must restrict h to H0 =
{h ∈ L2(b) : qxh = 0}, where qxh =

∫
h(x, y)q(x, dy) denotes conditional expectation.

The space H0 is the tangent space of the full nonparametric model. It is well known
that we have local asymptotic normality at q,

log
dP

(n)
nh

dP (n)
= n−1/2

n−1∑
i=1

h(Xi, Xi+1)−
1

2

∫
h2 db+ op(1). (1)

(We do not need the stronger form of local asymptotic normality used in BK, with
perturbations involving factors tn converging to some t.)

Consider now a submodel. It is given by a subset of transition distributions. Its
tangent space at q is a subset of H0, say Hs

0, which we take to be linear. Consider a
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real-valued functional ϑ(q) on the submodel. Assume it is differentiable at q with respect
to the inner product induced by local asymptotic normality, with gradient g ∈ H0,

n1/2(ϑ(qnh)− ϑ(q)) →
∫
hg db for all h ∈ Hs

0. (2)

The canonical gradient is the projection gs of g onto (the closure of) Hs
0.

An estimator ϑ̂ of ϑ(q) is regular at q with limit L if L is a random variable such
that

n1/2(ϑ̂− ϑ(qnh)) ⇒ L under P
(n)
nh for all h ∈ Hs

0. (3)

The convolution theorem says that L =
(∫

g2
s db

)1/2 · N + M in distribution, with N
standard Gaussian and M independent of N . This justifies calling a regular estimator
ϑ̂ efficient for ϑ(q) if

n1/2(ϑ̂− ϑ(q)) ⇒
(∫

g2
s db

)1/2

·N under P (n).

An estimator ϑ̂ is asymptotically linear at q with influence function f if f ∈ H0 and

n1/2(ϑ̂− ϑ(q)) = n−1/2

n−1∑
i=1

f(Xi, Xi+1) + op(1). (4)

It is well known that an asymptotically linear estimator is regular if and only if its
influence function is a gradient, and that a (regular) estimator is efficient if and only if
it is asymptotically linear with influence function equal to the canonical gradient.

Example 1. Let us illustrate the traditional approach with a simple example, es-
timating a linear functional ϑ(q) =

∫
k db, with k ∈ L2(b), in the full nonparametric

model, with tangent space H0. For h ∈ H0 let bnh(dx, dy) = πnh(dx)qnh(x, dy). By a
perturbation expansion (see e.g. Kartashov (1985), (1996)) we have

n1/2

(∫
w dbnh −

∫
w db

)
→

∫
h · Tw db for all w ∈ L2(b), (5)

where the operator T : L2(b) → H0 is Tw(x, y) = w(x, y)− qxw +
∑∞

j=1(q
j
yw − qj+1

x w).

This operator is a projection, T = T 2. It can also be written, as in BK, Tw(x, y) =
w(x, y) −

∑∞
j=1 q

j
xw +

∑∞
j=1 q

j
yw, where w(x, y) = w(x, y) −

∫
w db denotes centering.

Relation (5), applied to w = k, says that the functional
∫
k db has canonical gradient

Tk in the sense of (2).
By a martingale approximation we have, for w ∈ L2(b),

n−1/2

n−1∑
i=1

(w(Xi, Xi+1)− Tw(Xi, Xi+1)) = op(1). (6)
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(Relation (6) is called martingale approximation because Tw(Xi, Xi+1) are martin-
gale increments. This approximation has been found independently by many authors,
e.g. Gordin (1969), Maigret (1978), Dürr and Goldstein (1986) and Greenwood and We-
felmeyer (1995). See also Bradley (1988a,b) and Meyn and Tweedie ((1993), Section
17.4). BK refer to Bickel (1993) and Künsch (1984).)

By the martingale approximation (6), applied to w = k, the empirical estimator
ϑ̂ =

∫
k db̂ = 1

n−1

∑n−1
i=1 k(Xi, Xi+1) satisfies

n1/2

(∫
k db̂−

∫
k db

)
= n−1/2

n−1∑
i=1

Tk(Xi, Xi+1) + op(1).

Hence the influence function, in the sense of (4), of the empirical estimator is Tk, the
canonical gradient, and the estimator is regular and efficient by the two characterizations
above.

2. An equivalence relation. The first point of BK on information calculus for
Markov chains can be phrased as follows. Call w, z ∈ L2(b) equivalent if Tw = Tz. Then
by the martingale approximation (6), n−1/2

∑n−1
i=1 (w(Xi, Xi+1) − z(Xi, Xi+1)) = op(1).

Now parametrize locally with equivalence classes in L2(b) rather than their representa-
tives in H0. Then for h = Tw, local asymptotic normality (1) can be written

log
dP

(n)
nh

dP (n)
= n−1/2

n−1∑
i=1

w(Xi, Xi+1)−
1

2

∫
(Tw)2 db+ op(1).

This is local asymptotic normality in the sense of Definition 1 of BK. Extend differen-
tiability (2) of ϑ(q) correspondingly, calling m gradient of ϑ(q) if m ∈ L2(b) and

n1/2(ϑ(qnh)− ϑ(q)) →
∫
h · Tmdb for all h ∈ Hs

0. (7)

Any gradient m with Tm in (the closure of) Hs
0 may then be called canonical. Extend

asymptotic linearity (4) of ϑ̂, calling m influence function of ϑ̂ if m ∈ L2(b) and

n1/2(ϑ̂− ϑ(q)) = n−1/2

n−1∑
i=1

m(Xi, Xi+1) + op(1). (8)

Then appropriate versions of the characterizations of regular and efficient estimators
continue to hold.

Example 2. BK apply their approach in particular to the simple example above,
estimating ϑ(q) =

∫
k db in the full nonparametric model, with tangent space H0. Write

n1/2

(∫
k db̂−

∫
k db

)
= n−1/2

n−1∑
i=1

k(Xi, Xi+1) + op(1).
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We have Tk ∈ H0. Hence k is a canonical gradient in the extended sense (7), and
efficiency of the empirical estimator follows.

This proof is much shorter than the traditional one. Note, however, that the mar-
tingale approximation is also used here, namely for extending influence functions to
equivalence classes. Efficiency of the empirical estimator was shown first by Penev
(1990, 1991); he uses the perturbation expansion but circumvents the martingale ap-
proximation. Greenwood and Wefelmeyer (1995) show that the perturbation expansion
follows from the martingale approximation.

3. From bivariate models to Markov chains. The second point of BK in
their information calculus applied to Markov chains is that canonical gradients can be
obtained as in bivariate models, with i.i.d. observations (Xi, Yi). This is extremely useful,
especially for models and functionals which are more easily described in terms of the
joint law b than of the transition distribution q.

Parametrize the Markov chain by the law b of (X1, X2) rather than by q. Then b must
have equal marginals π:

∫
v(x) b(dx, dy) =

∫
v(y) b(dx, dy) for all v ∈ L2(π). Consider

(Hellinger differentiable) perturbations bnw(dx, dy)
.
= b(dx, dy)(1 + n−1/2w(x, y)). For

bnw to be a probability measure, we must have
∫
w db = 0. Since bnw must also have

equal marginals, we get∫
v(x)w(x, y) b(dx, dy) =

∫
v(y)w(x, y) b(dx, dy) for all v ∈ L2(π).

Hence the tangent space at b, say H, is defined by having the following orthogonal
complement in L2(b): H⊥ = {v(x)− v(y) : v ∈ L2(π)}.

Locally, the parameters b and q are related as follows. To go from b to q, factor bnw

as bnw(dx, dy) = πnw(dx)qnw(x, dy). Then πnw is perturbed as

πnw(dx) = bnw(dx,E)
.
= π(dx)(1 + n−1/2qxw). (9)

Hence qnw(x, dy)
.
= q(x, dy)(1 + n−1/2w0(x, y)), where w0(x, y) = w(x, y)− qxw denotes

conditional centering. In particular, H0 = {w0 : w ∈ H}. To go from q to b, start from
a perturbation qnh(x, dy)

.
= q(x, dy)(1 + n−1/2h(x, y)) with h ∈ H0. Write bnh(dx, dy) =

πnh(dx)qnh(x, dy). For w ∈ L2(b) and h ∈ H0 write∫
h · Tw db =

∫
Sh · w db, (10)

with an operator S : H0 → H which we may call the adjoint of T . We do not need
the explicit form of S; see Greenwood and Wefelmeyer (1999) for it. From (10) and the
perturbation expansion (5) we obtain the perturbation

bnh(dx, dy)
.
= b(dx, dy)(1 + n−1/2Sh(x, y)). (11)

In particular, H = {Sh : h ∈ H0}. An analogous local parameter change, between
densities and hazard functions, is described in Ritov and Wellner (1988).
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Now consider a submodel described by some set of joint laws of (X1, X2). Its tangent
space at b is a subset of H, say Hs, which we take to be linear. Consider a real-valued
functional ϑ(b) on the submodel. Call it differentiable with gradient m if m ∈ L2(b) and

n1/2(ϑ(bnw)− ϑ(b)) →
∫
wmdb for all w ∈ Hs. (12)

The canonical gradient is the projection ms of m onto (the closure of) Hs. Writing
w = Sh and using (10), we can characterize ms as the function in (the closure of) Hs

which fulfills

0 =

∫
Sh · (m−ms) db =

∫
h · (Tm− Tms) db for all h ∈ H0.

This means that Tms is the canonical gradient, in the traditional sense (2), in the
Markov chain model. This is essentially Theorem 1 in Greenwood and Wefelmeyer
(1999a). BK’s second point is the following interpretation of this result. Suppose we
have i.i.d. observations (Xi, Yi). Consider a bivariate model of distributions b(dx, dy),
with equal marginals, and a real-valued differentiable functional ϑ(b) on this model.
Calculate its canonical gradient ms in the sense of (12). The canonical gradient of the
corresponding Markov chain model is then Tms. Hence, using BK’s first point, any
function z ∈ L2(b) with Tz = Tms, in particular ms itself, is a canonical gradient and
efficient influence function in their extended sense.

Example 3. BK illustrate their second point with their Example 3b, a Markov chain
model with known marginal distribution π. Then we must have πnw(dx) = π(dx)
and hence qxw = 0 by (9), and similarly π(dy) = πnw(dy)

.
= π(dy)(1 + n−1/2q−y w).

Here q− is the transition distribution of the reversed chain, defined by π(dx)q(x, dy) =
π(dy)q−(y, dx), and q−y w =

∫
q−(y, dx)w(x, y) is the conditional expectation under q−,

acting on the first argument of w. Hence the tangent space is Hs = {w ∈ L0
2(b) :

qw = q−w = 0}. Following BK, for w ∈ L0
2(b) we can write qw = q−w = 0 as∫

(u(x) + v(y))w(x, y) b(dx, dy) = 0 for all u, v ∈ L2(π). In words: w is orthogonal to
functions of the form u(x)+ v(y). Now let ϑ(b) be differentiable, in the sense (12) of the
bivariate model, with gradient m ∈ L2(b), say. As BK note, the canonical gradient in
this sense can be obtained from Bickel, Klaassen, Ritov and Wellner ((1998), p. 440) as
ms = m − ACE(m), where ACE(m) is the projection of m onto the space of functions
u(x) + v(y). For w ∈ Hs we have qw = 0, i.e. w(x, y) = w(x, y)− qxw = w0(x, y). The
model is therefore degenerate: Hs = Hs

0. Hence ms is also the traditional canonical
gradient and efficient influence function in the sense (2).

Example 4. We agree that the Markov chain model with known marginals is possibly
unrealistic. It is, however, not, as BK suggest, the model considered by Kessler, Schick
and Wefelmeyer (2001). The latter assume not that the marginal is fixed but that it
belongs to some parametric family πϑ, with ϑ one-dimensional, and they construct an
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efficient estimator for ϑ. The justification for such models comes from financial time
series in which the marginal can be modeled more convincingly than the dynamics,
especially when one has discrete observations from a continuous-time process. The
efficient estimator is a complicated one-step improvement. We will consider elsewhere
the possibility of finding a conceptually simpler estimator using BK’s approach.

Example 5. Here is another application of BK’s approach. Greenwood and We-
felmeyer (1999a) consider the model of all reversible Markov chains. This means that
b is symmetric, b(dx, dy) = b(dy, dx), or equivalently, q = q−. They prove that the
symmetrized empirical estimator

ϑ̂s =
1

2(n− 1)

n−1∑
i=1

(k(Xi, Xi+1) + k(Xi+1, Xi))

is efficient for
∫
k db. The proof is also based on their Theorem 1 used above. For a

more elegant version of this proof we follow BK and parametrize with b. The tangent
space of the bivariate model is Hs = {w ∈ L0

2(b) : w(x, y) = w(y, x)}. Consider
a real-valued functional ϑ(b) which is differentiable, in the sense (12), with gradient
m ∈ L0

2(b). The canonical gradient in the bivariate model is the symmetrized ms(x, y) =
1
2
(m(x, y) +m(y, x)). Hence the canonical gradient in the Markov chain model is Tms.

Hence, by BK’s first point, ms is also an efficient influence function in the Markov chain
model. This proves that if ϑ̂ is asymptotically linear with influence function m in the
Markov chain model, then its symmetrization ϑ̂s = 1

2
(ϑ̂(X1, . . . , Xn) + ϑ̂(Xn, . . . , X1))

is regular and efficient in the model of all reversible Markov chains. In particular, the
symmetrized empirical estimator is efficient.

Example 6. Müller, Schick and Wefelmeyer (2001b) consider the nonparametric
Markov chain model with linear constraint

∫
z db = 0 for some d-dimensional vector

z ∈ L2(b)
d. They construct efficient estimators for linear functionals

∫
k db, following

the traditional approach and Levit (1975), who considers the i.i.d. case. The canonical

gradient is Tk− c>∗ Tz with c∗ =
(∫

Tz · Tz> db
)−1 ∫

Tz ·Tk db. Let us derive this result

using BK’s approach. Parametrize by b. We have n1/2
(∫

z dbnw −
∫
z db

)
→

∫
zw db.

Because of the constraints
∫
z db =

∫
z dbnw = 0 we must have

∫
zw db = 0. Hence the

tangent space of the corresponding bivariate model is Hs = {w ∈ H :
∫
zw db = 0}.

By Example 2, k is a gradient of
∫
k db in the extended sense (7). Write wH for the

projection of a function w ∈ L2(b) onto H. In the bivariate model, because of the
constraint

∫
z db = 0, all functions k − a>z with a ∈ R are gradients, and hence all

functions kH− a>zH are gradients in H. The canonical gradient is the projection of any
of these gradients onto Hs. It must minimize

∫
(kH − a>zH)2 db in a. The minimizing

value of a is a∗ =
(∫

zHz
>
H db

)−1 ∫
zHkH db. By BK’s second point, kH − a>∗ zH is also a

canonical gradient in the constrained Markov chain model, in their extended sense (7).
Of course, kH − a>∗ zH must be equivalent to the traditional canonical gradient Tk−

c>∗ Tz in the bivariate model. This follows from two observations.
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1. If w ∈ L2(b) and wH is its projection onto H, then w − wH is in H⊥, i.e., of the
form v(x)− v(y). Such functions are annihilated by T . Hence w and wH are equivalent:
Tw = TwH. In particular, kH − a>∗ zH is equivalent to Tk − a>∗ Tz.

2. The operator ST is a projection onto H. Hence we obtain, using (10),∫
Tw · Tmdb =

∫
w · STmdb =

∫
wmdb for all w,m ∈ H.

In particular, a∗ = c∗.
An efficient estimator for

∫
k db under the constraint

∫
z db = 0 is the improved

empirical estimator

1

n− 1

n−1∑
i=1

(k(Xi, Xi+1)− â>∗ z(Xi, Xi+1)).

It requires a consistent estimator â∗ for a∗. Such an estimator is constructed in Müller,
Schick and Wefelmeyer (2001b). It is based on an explicit representation of a∗. Calcu-
lating a∗ requires calculating the projections of z and k onto H. Example 7 shows how
projections wH of functions w ∈ L2(b) onto H are obtained, via the traditional approach,
as wH = STw. One checks that by (10) this gives again a∗ = c∗.

This example shows that even if the model and functional of interest are in terms
of the joint law b rather than the transition distribution q, the traditional approach is
not necessarily more awkward than the approach via the bivariate model. One reason is
the following. The traditional approach parametrizes by q and uses an unpleasant local
parameter space H0, equipped however with the natural norm

∫
w2 db. If we introduce

equivalence classes as suggested in BK’s first point, then we end up with a simple local
parameter space L2(b), but now equipped with the unpleasant semi-norm

∫
(Tw)2 db.

On the other hand, if we parametrize by b as suggested in BK’s second point, then we
end up with the natural norm but with an unpleasant local parameter space H.

4. From Markov chains to bivariate models. We have seen in Section 3 how
canonical gradients in Markov chain models can be obtained from canonical gradients
in bivariate models. The converse is of course also possible and, more surprisingly,
sometimes useful.

Consider a Markov chain model described by some set of transition distributions. Its
tangent space at q is a subset Hs

0 of H0, taken to be linear. Let ϑ(q) be a real-valued
functional which is differentiable, in the (traditional) sense (2), with canonical gradient
gs ∈ Hs

0. Set h = Tw and use (10) to rewrite differentiability (2) as

n1/2(ϑ(qnh)− ϑ(q)) →
∫
Tw · gs db =

∫
w · Sgs db for all w ∈ Hs.

This is differentiability in the sense (12) of the bivariate model. Hence Sgs is the canon-
ical gradient of ϑ(q), viewed as functional on the bivariate model.
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Example 7. This is already useful in the simplest example, estimating the linear
functional ϑ(q) =

∫
k db, with k ∈ L2(b), in the full nonparametric Markov chain model.

Its (canonical) gradient is g = Tk. The corresponding bivariate model is the model
with equal marginals. It follows that Sg = STk is the canonical gradient in this model.
The explicit form of ST can be obtained from results for Markov chain models, see
Greenwood and Wefelmeyer (1999a). An efficient estimator in the bivariate i.i.d. model
with equal marginals is constructed in Peng and Schick (2001). It does not use the
explicit form of the canonical gradient.

5. Regression and autoregression. An important class of Markov chain models
are autoregressive models Xi+1 = r(Xi) + εi+1, where the innovations εi are i.i.d. with
mean zero and finite variance σ2 and have an absolutely continuous and positive density
f with finite Fisher information J =

∫
`2 dF for location, where ` = −f ′/f and F is the

distribution function of f . For convenience we consider only first-order autoregression.
For the model to be ergodic, the autoregression function r must satisfy some growth
conditions; see e.g. Bhattacharya and Lee (1995). BK consider the nonparametric model,
with r unknown. Submodels are the linear model, with r(x) = ϑx, and nonlinear models
with parametric families rϑ(x) of autoregression functions. Here it suggests itself to
follow the traditional approach and describe the model by its transition distribution
q(x, dy) = f(y − r(x)) dy.

The information calculus of Section 3 would suggest looking at the bivariate i.i.d.
model described by the joint law b(dx, dy) = π(dx)q(x, dy) of (X1, X2). Perturbation of q
would, however, result in a complicated perturbation of π, see (11), and in a complicated
tangent space of the bivariate model.

Nevertheless, it pays to look at an i.i.d. model analogous to the Markov chain model,
namely regression Yi = r(Xi)+εi, with εi as before, and i.i.d. covariates Xi, independent
of the εi, with known law c(dx), say. The joint law of (X1, Y1) is c(dx)f(y − r(x)) dy.
Tangent spaces and gradients for autoregression are therefore the same as for regression.
Schick (1993) considers functionals of (c, r); for extensions to heteroscedastic regression
see Schick (1994).

Following the traditional approach to autoregression, see Koul and Schick (1997),
consider (Hellinger differentiable) perturbations fnv

.
= f(1 + n−1/2v). Since the innova-

tions are assumed to have mean zero, the local parameters v must be in the orthogonal
complement V in L2(F ) of the polynomials of degree at most one,

V = {v ∈ L2(F ) :

∫
v(ε) dF (ε) =

∫
εv(ε) dF (ε) = 0}.

The model also specifies a family of autoregression functions. Consider (π-square-
differentiable) perturbations rnu

.
= r + n−1/2u. The model restricts u to some subset

of L2(π), say U , which we take to be (closed and) linear. The transition density deter-
mined by fnv and rnu is fnv(y − rnu(x))

.
= f(ε)

(
1 + n−1/2(u(x)`(ε) + v(ε))

)
. Hence the

tangent space of the autoregressive model is H0(U) = {u(x)`(ε) + v(ε) : u ∈ U, v ∈ V }.
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The tangent space is the sum of the tangent spaces {u(x)`(ε) : u ∈ U} for known f ,
and {v(ε) : v ∈ V } for known r. It is well known that one can estimate (all smooth
functionals of) f and r adaptively with respect to each other if and only if these two
spaces are orthogonal.

Example 8. Schick and Wefelmeyer (2001b) obtain efficient estimators for
∫
a dF

when the autoregression functions are restricted to a parametric family rϑ. For simplicity,
we take ϑ one-dimensional here. Then U is the linear span [ṙϑ] of the derivative of
rϑ with respect to ϑ, and the tangent space is H0([ṙϑ]) = {tṙϑ(x)`(ε) + v(ε) : t ∈
R, v ∈ V }. Unless

∫
ṙϑ dπ = 0, the tangent space is not an orthogonal sum, and f

and r cannot be estimated adaptively with respect to each other. A natural estimator
of

∫
a dF is the empirical estimator 1

n−1

∑n−1
i=1 a(ε̂i+1) based on estimated innovations

ε̂i+1 = Xi+1 − rϑ̂(Xi). It can be improved using that the innovations have mean zero,

Â =
1

n− 1

n−1∑
i=1

(a(ε̂i+1)− ĉε̂i+1), (13)

with ĉ a consistent estimator for the optimal constant

c = σ−2

∫
εa(ε) dF (ε). (14)

An obvious choice is ĉ =
∑n−1

i=1 ε̂i+1a(ε̂i+1)
/∑n−1

i=1 ε̂
2
i+1. The influence function of Â

requires some notation, and we do not give it here. In the non-adaptive situation, with∫
ṙϑ dπ not zero, for Â to be efficient we must estimate εi+1 = Xi+1 − rϑ(Xi) using an

efficient estimator for ϑ.
Plug-in of finite-dimensional estimators in not necessarily adaptive situations is stud-

ied in Klaassen and Putter (1997, 2000) for i.i.d. models, and more generally in Müller,
Schick and Wefelmeyer (2001a).

Example 9. In their Example 3a, BK consider estimating
∫
a dF in the nonparametric

autoregressive model, with r unknown except for mean zero. Then U = L2(π), and the
tangent space is H0(L2(π)) = {u(x)`(ε) + v(ε) : u ∈ L2(π), v ∈ V }. This is not
an orthogonal sum. Hence f and r cannot be estimated adaptively with respect to
each other. (BK state that the tangent space equals that with Gaussian innovation
distribution with known variance, their (3.30), and later that it contains all functions
v(ε) with v ∈ L2(π). These statements are not consistent with each other and with
the tangent space obtained here.) The canonical gradient for

∫
a dF is the same as

in the corresponding regression model, Müller, Schick and Wefelmeyer (2001c), namely
a(ε) −

∫
a` dF · ε. One can show that the empirical estimator 1

n−1

∑n−1
i=1 a(ε̂i+1) based

on estimated innovations ε̂i+1 = Xi+1− r̂(Xi) has this influence function. To check that
this function is indeed in the tangent space H0(L2(π)), rewrite it as

a(ε)−
∫
a` dF · ε = −σ2

∫
a`V dF · `(ε) + aV (ε) + σ2

∫
a`V dF · `V (ε),
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where aV and `V are the projections of a and ` onto V , aV (ε) = a(ε) − cε, `V (ε) =
`(ε)− σ−2ε. We note that in this non-adaptive model, the canonical gradient for known
regression function r is indeed different: It is just the projection aV of a onto V , and an
efficient estimator is the improved empirical estimator 1

n−1

∑n−1
i=1 (a(εi+1)− ĉεi+1) based

on true innovations. Compare also Example 8 on parametric autoregression functions
rϑ.

These results are not consistent with the statements of BK that the empirical es-
timators with true and estimated innovations are asymptotically equivalent, that their
influence function is a(ε), and that this function is in the tangent space, which would
imply that 1

n−1

∑n−1
i=1 a(Xi+1 − r̂(Xi)) is adaptive with respect to r.

Example 10. BK ascribe their statements about 1
n−1

∑n−1
i=1 a(Xi+1 − r̂(Xi)) in non-

parametric autoregression to Wefelmeyer (1994). But the latter treats only linear au-
toregression Xi+1 = ϑXi + εi+1, and proves that the improved empirical estimator Â,
now with innovations estimated by ε̂i+1 = Xi+1− ϑ̂Xi, is efficient. Linear autoregression
is a special case of the nonlinear model above, with rϑ(x) = ϑx and ṙϑ(x) = x. The
tangent space is therefore Hs

0 = {tx`(ε) + v(ε) : t ∈ R, v ∈ V }. Since the innovations
have mean zero, so has the stationary law π. This implies that the tangent space is an
orthogonal sum, and ϑ and f can be estimated adaptively with respect to each other.
In particular, Â is efficient for

∫
a dF even when an inefficient estimator ϑ̂ is used in the

estimated innovations ε̂i+1 = Xi+1 − ϑ̂Xi.

Example 11. Another adaptive example is nonparametric autoregression with inno-
vations that are symmetric about zero. The tangent space is Hs

0 = {u(x)`(ε) + v(ε) :
u ∈ L2(π), v ∈ L2(F ) symmetric about zero}. Here `(ε) = −`(−ε). Hence

∫
v` dF = 0

for all v that are symmetric about zero, and the tangent space is an orthogonal sum.
Koshevnik (1996) shows that the symmetrized empirical distribution function based on
estimated innovations is efficient.

Example 12. Kwon (2000) and BK also consider estimating
∫
r(x)λ(x) dx in the

nonparametric autoregression model with mean zero innovations. Here λ is known and
has compact support. They suggest that an efficient estimator is obtained by plugging in
a suitable (kernel) estimator r̂ for r. Kwon (2000) shows that the estimator

∫
r̂(x)λ(x) dx

has influence function ελ(x)/f(x). From Schick ((1993), (3.5)), the canonical gradient
of

∫
r(x)λ(x) dx is obtained as(

λ(x)

f(x)
−

∫
λ(y) dy

)
`(ε)

J
+

∫
λ(y) dy · ε,

with J the Fisher information for location of the innovation distribution. This is the
influence function of BK’s estimator only if the innovation distribution is Gaussian,
so their estimator is efficient only if the true innovation distribution happens to be
Gaussian.
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The traditional approach has also been used in more complicated autoregressive
models. For example, Schick (1999a) treats the semiparametric model Xi+1 = ϑXi +
r(Xi−1) + εi+1. Maercker (1997) and Schick (2001) treat the heteroscedastic autoregres-
sive model Xi+1 = ϑXi+s(Xi)εi+1 with symmetric errors, while Schick (1999b) considers
it with arbitrary errors. Efficient estimation in invertible linear processes is treated in
Schick and Wefelmeyer (2001c).

6. Conditional constraints. Another class of submodels described through transi-
tion distributions rather than joint laws are models with constraints E(vϑ(X1, X2)|X1) =
0 for some d-dimensional vector vϑ ∈ L2(b). These comprise quasi-likelihood models,
with parametric models for conditional mean and variance of the Markov chain:

E(X2|X1) = rϑ(X1),

E((X2 − rϑ(X1))
2|X1) = s2

ϑ(X1).

Here vϑ(x, y) has components y − rϑ(x) and (y − rϑ(x))
2 − s2

ϑ(x). The quasi-maximum-
likelihood estimator solves an estimating equation of the form

n−1∑
i=1

wϑ(Xi, Xi+1)
(
Xi+1 − rϑ(Xi)

)
= 0,

with weights wϑ chosen to minimize the asymptotic variance. It does not use the in-
formation in the specification of the conditional variance and is not efficient. Efficient
estimating equations are constructed in Wefelmeyer (1996). For similar regression mod-
els with i.i.d. observations, quite different efficient estimators are introduced in Li (2000)
and (2001). Efficient estimation of invariant laws in such models is discussed in Schick
and Wefelmeyer (1999).

7. MCMC. A third class of submodels described by transition distributions are
Monte Carlo Markov chains. Here one starts with a distribution π(dx) which is in
principle known, and constructs a transition distribution q(x, dy) with π as invariant law.
Then one runs the corresponding Markov chain and approximates, e.g.,

∫
a(x)π(dx) by

the empirical estimator 1
n

∑n
i=1 a(Xi). Greenwood, McKeague and Wefelmeyer (1998)

calculate the information in the knowledge that a Gibbs sampler was used. A review is
Greenwood and Wefelmeyer (2001).

8. Plug-in estimators. As BK point out, n1/2-consistent and even efficient es-
timators can often be obtained by plugging density estimators or regression function
estimators into smooth functionals or into “empirical estimators” involving such func-
tions. BK’s estimators for

∫
r(x)λ(x) dx and

∫
a dF in nonparametric autoregression

are examples of plug-in into a smooth functional and into an empirical estimator.
For i.i.d. observations with density f , smooth functionals of f can be estimated effi-

ciently by plugging in (undersmoothed) kernel estimators; see Abramson and Goldstein
(1991), Goldstein and Messer (1992) and Goldstein and Khas’minskii (1995).

11



For expectations of functions of more than two arguments, e.g. Eψ(X1, X2, X3), the
empirical estimator based on Markov chain observations is not efficient in the nonpara-
metric Markov chain model. Writing Eψ(X1, X2, X3) =

∫
ψ(x, y, z) b(dx, dy)q(y, dz),

one sees that for discrete state space a better estimator is obtained by replacing b and q
by their empirical estimators. For general state space, Schick and Wefelmeyer (2001a)
construct a complicated efficient estimator as one-step improvement of the empirical
estimator. Bickel (1993) has suggested a conceptually simpler estimator, using the em-
pirical estimator for b as before, and plugging in a nonparametric estimator q̂ for the
transition density. Kwon (2000) treats a modification of this idea, writing the density of
the joint law of (X1, X2, X3) as p(x, y)p(y, z)/g(y) with g and p the densities of X1 and
(X1, X2), respectively, and replacing these densities by kernel estimators.

Example 13. Here is another application of plug-in. For moving average processes
Xi+1 = εi+1 − ϑεi, the density g(x) of Xi+1 can be written as convolution of the density
f of εi+1 and the density of ϑεi, i.e., g(x) =

∫
f(x+ϑy)f(y)dy. Saavedra and Cao (1999)

and (2000) propose plugging in (undersmoothed) kernel estimators f̂(z) = 1
n

∑n
i=1Kc(z−

ε̂i), where Kc(u) = K(u/c)/c and ε̂i are estimated innovations. They obtain n1/2-
consistency of their estimator

∫
f̂(x+ϑ̂y)f̂(y)dy. Schick and Wefelmeyer (2001e) propose

the asymptotically equivalent, but simpler, U-statistic

ĝ(x) =
1

n(n− 1)

n∑
i,j=1
i6=j

Kc(x− ε̂i + ϑ̂ε̂j)

and prove that it is efficient. The estimator can be written (approximately) as the
plug-in estimator 1

n

∑n
i=1 f̂(x+ ϑ̂ε̂i).

We note that estimators based on U-statistics have many applications in semipara-
metric inference. For example, U-statistics with fixed kernel are used in Schick and
Wefelmeyer (2001d) to estimate expectations under the stationary law of invertible lin-
ear processes.

9. Continuous-time processes. The traditional approach generalizes immediately
to continuous-time processes Xt, t ≥ 0, observed on an increasing time interval [0, n],
say. For counting processes, the intensity plays the role of the transition distribution
as natural parameter; diffusion processes Xt = r(Xt)dt+ s(Xt)dBt are parametrized by
drift r and diffusion coefficient s. More generally, semimartingales are parametrized by
their predictable characteristics; Jacod and Shiryaev (1987) is the standard reference for
structure theory and limit theorems. Other types of asymptotics are also possible. For
counting processes we may let the intensity increase. For diffusion processes, we may let
the diffusion coefficient decrease, see Kutoyants (1994). In survival analysis one usually
considers an increasing number of paths; a comprehensive reference including non- and
semiparametric efficiency results is Andersen, Borgan, Gill and Keiding (1993).

Efficient plug-in estimators for the stationary density of diffusion processes are ob-
tained in Kutoyants (1997), (1998) and (1999). Empirical estimators are shown to
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be efficient in nonparametric Markov step process and semi-Markov process models by
Greenwood and Wefelmeyer (1994a) and (1996), and in nonparametric multivariate point
process models by Greenwood and Wefelmeyer (1994b). It seems possible to use versions
of BK’s approach in such models.

10. Random fields. The traditional approach also generalizes to homogeneous
random fields on lattices, where the transition distribution is replaced by the local char-
acteristic, the conditional distribution at a site given the rest of the configuration. For
random fields with local interactions, Greenwood and Wefelmeyer (1999b) determine
which empirical estimators are efficient.

References

Abramson, I. and Goldstein, L. (1991). Efficient nonparametric testing by functional
estimation. J. Theoret. Probab. 4, 137–159.

Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models
Based on Counting Processes. Springer Series in Statistics, Springer, New York.

Bhattacharya, R. and Lee, C. (1996). On geometric ergodicity of nonlinear autoregres-
sive models. Statist. Probab. Lett. 22, 311–315.

Bickel, P. J. (1993). Estimation in semiparametric models. In Multivariate Analysis:
Future Directions (C. R. Rao, ed.), 55–73. North-Holland, Amsterdam.

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and
Adaptive Estimation for Semiparametric Models. Springer, New York.

Bradley, R. C. (1988a). On a theorem of Gordin. Stochastics 24, 357–392.

Bradley, R. C. (1988b). On some results of M. I. Gordin: A clarification of a misunder-
standing. J. Theoret. Probab. 1, 115–119.
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