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Abstract

Suppose we observe a geometrically ergodic Markov chain with a parametric model for
the marginal, but no (further) information about the transition distribution. Then the
empirical estimator for a linear functional of the joint law of two successive observations is
no longer efficient. We construct an improved estimator and show that it is efficient. The
construction is similar to a recent one for bivariate models with parametric marginals. The
result applies to discretely observed parametric continuous-time processes.
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1. Introduction

Let X0, . . . , Xn be observations from a geometrically ergodic Markov chain with arbitrary
state space. We want to estimate a linear functional E[h(X0, X1)] of the joint stationary law
of two successive observations. If nothing is known about the distribution of the chain, then
the empirical estimator Ĥ = 1

n

∑n
k=1 h(Xk−1, Xk) is efficient; see Penev (1990, 1991), Bickel

(1993), and Greenwood and Wefelmeyer (1995). Suppose now that we have a finite-dimensional
parametric model Fϑ, ϑ ∈ Θ, for the marginal stationary law of the chain, but that we cannot or
do not want to specify anything (else) about the transition distribution. Then we can construct
better estimators for E[h(X0, X1)]. This includes the case where the transition distribution
follows a parametric model involving the parameter ϑ and perhaps further parameters, but
∗Supported by a university research support grant, UNSW.
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that we do not know this model or are not sure that it is correct. Our model is nonparametric,
with a constraint that involves the unknown parameter ϑ.

Our results apply in particular to parametric continuous-time Markov processes that are
discretely observed at fixed time intervals. Under such an observation scheme, estimators for
the parameter ϑ were constructed in parametric diffusion processes by Pedersen (1995a,b),
Bibby and Sørensen (1995, 1996, 1997, 2001), Kessler and Sørensen (1999) and Kessler (2000),
and in general parametric continuous-time processes by Kessler and Sørensen (2002). These
estimators could be used to estimate the coefficients of the diffusion and then linear functionals
E[h(X0, X1)] as considered here. If the diffusion model is correctly specified, and if the esti-
mators for ϑ are efficient (or nearly so), this would lead to better estimators for E[h(X0, X1)]
than ours. However, the marginals of a discretely observed process can be modeled much bet-
ter than the dynamics. Estimators of E[h(X0, X1)] based on a misspecified continuous-time
model will usually be inconsistent. In contrast, our estimator uses only the information in
the parametric model for the marginal law and is always n1/2-consistent and asymptotically
normal unless the marginals are misspecified.

Our results are closely related to results for bivariate models, which we recall first. Let
(Y1, Z1), . . . , (Yn, Zn) be i.i.d. bivariate random variables with joint law Q. We want to estimate
a linear functional E[h(Y, Z)] =

∫
h dQ for a fixed function h ∈ L2(Q). A natural estimator is

the empirical estimator Ĥbiv = 1
n

∑n
k=1 h(Yk, Zk). If additional structural assumptions on the

joint law hold, this estimator can be improved.
Assume first that the marginals F and G of Q are known. In this case there is a large class

of unbiased estimators. Indeed,

Ĥbiv(a, b) =
1
n

n∑
k=1

(
h(Yk, Zk)− a(Yk)− b(Zk)

)
is unbiased for each a ∈ L2,0(F ) and b ∈ L2,0(G). Here, for any measure µ,

L2,0(µ) = {h ∈ L2(µ) :
∫
h dµ = 0}.

The smallest variance is achieved by Ĥbiv(aQ, bQ), where aQ and bQ minimize E[(h(Y, Z) −
a(Y )− b(Z))2] over a ∈ L2,0(F ) and b ∈ L2,0(G). Bickel, Ritov and Wellner (1991) have shown
that any estimator equivalent to Ĥbiv(aQ, bQ) is efficient, and have obtained such an estimator
using the modified minimum chi-square estimator of Deming and Stephan (1940). Peng and
Schick (2002) give a more direct construction, estimating aQ and bQ by a series estimator in
terms of orthonormal bases v1, v2, . . . of L2,0(F ) and w1, w2, . . . of L2,0(G). Their estimator is
of the form

1
n

n∑
k=1

(
h(Yk, Zk)−

Mn∑
i=1

α̂nivi(Yk)−
Nn∑
j=1

β̂njwj(Zk)
)
,
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where Mn and Nn are integers that tend slowly to infinity with the sample size n, and
α̂n1, . . . , α̂nMn , β̂n1, . . . , β̂nNn are chosen to minimize

n∑
k=1

(
h(Yk, Zk)−

Mn∑
i=1

αivi(Yk)−
Nn∑
j=1

βjwj(Zk)
)2
.

Of course, α̂n1, . . . , α̂nMn , β̂n1, . . . , β̂nNn are simply least squares estimators for the response
vector H =

(
h(Y1, Z1), . . . h(Yn, Zn)

)> and the design matrix with k-th row formed by(
v1(Yk), . . . , vMn(Yk), w1(Zk), . . . , wNn(Zk)

)
.

The assumption of known marginals is not always justifiable. A more realistic assumption
is that the marginals depend on some unknown parameter ϑ, i.e., F = Fϑ and G = Gϑ. This
model is considered by Peng and Schick (2003). They replace, in the above construction, vi by
vi(·, ϑ̂) and wi by wi(·, ϑ̂), where v1(·, ϑ), v2(·, ϑ), . . . is a basis for L2,0(Fϑ); w1(·, ϑ), w2(·, ϑ), . . .
is a basis for L2,0(Gϑ); and ϑ̂ is a n1/2-consistent estimator of ϑ. They show under mild
assumptions on the bases that the resulting estimator Ĥ∗biv has an expansion

(1.1) Ĥ∗biv =
1
n

n∑
k=1

(
h(Yk, Zk)− aQ(Yk)− bQ(Zk)

)
+D>biv(ϑ̂− ϑ) + op(n−1/2)

if the parametric models for the marginals are Hellinger differentiable at ϑ with derivatives φϑ
and γϑ, say. Here

Dbiv = E[aQ(Y )φϑ(Y )] + E[bQ(Z)γϑ(Z)].

Bickel and Kwon (2001) have suggested that results on efficient estimation for bivariate
models carry over to geometrically ergodic Markov chains. They point out that the calculation
of efficient influence functions is identical if one parametrizes the Markov chain by the joint law
of two successive observations, which corresponds to the description of the bivariate model by
the joint law of (Y, Z). See also the discussion of Greenwood, Schick and Wefelmeyer (2001).
Bickel and Kwon also suggest that the construction of efficient estimators for bivariate models
should carry over to corresponding Markov chain models. In this paper we carry out this
program for Markov chains with a parametric model Fϑ, ϑ ∈ Θ, for the marginal stationary
law. For the corresponding bivariate model we have Gϑ = Fϑ. Recall that the observations
for the Markov chain are X0, . . . , Xn. The Markov chain analog Ĥ∗ of Ĥ∗biv is obtained by
replacing the pairs (Yk, Zk) by pairs (Xk−1, Xk) of successive observations. We show in Section
2 that the analog of (1.1) is

(1.2) Ĥ∗ =
1
n

n∑
k=1

(
h(Xk−1, Xk)− aQ(Xk−1)− bQ(Xk)

)
+D>(ϑ̂− ϑ) + op(n−1/2)

under the assumption that the parametric model for the marginal stationary law is Hellinger
differentiable at ϑ with derivative φϑ. Now aQ and bQ are minimizers of E[(h(X0, X1)−a(X0)−
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b(X1))2] over a and b in L2,0(Fϑ), and

D = E[(aQ(X0) + bQ(X0))φϑ(X0)].

Kessler, Schick and Wefelmeyer (2001) have constructed an efficient estimator ϑ̂ of ϑ. If such
an estimator is used, Ĥ∗ is also efficient, as shown in Section 3.

We note that the results of this paper can be adapted to the case of a reversible chain. If
the chain is known to be reversible, then Q is symmetric, Q(dx, dy) = Q(dy, dx), and we can
improve the empirical estimator Ĥ = 1

n

∑n
k=1 h(Xk−1, Xk) by symmetrization,

Ĥsym =
1

2n

n∑
k=1

(
h(Xk−1, Xk) + h(Xk, Xk−1)

)
.

If Q is completely unknown, Ĥsym is efficient; see Greenwood and Wefelmeyer (1999) and, for a
simpler argument, Greenwood, Schick and Wefelmeyer (2001). If we have a parametric model
Fϑ for the marginal, it is natural to consider the symmetric improvement

Ĥ∗sym = Ĥsym −
1

2n

n∑
k=1

Mn∑
i=1

α̂ni
(
vi(Xk−1, ϑ̂) + vi(Xk, ϑ̂)

)
,

where α̂n1, . . . , α̂nMn are chosen to minimize

n∑
k=1

(
h(Xk−1, Xk) + h(Xk, Xk−1)−

Mn∑
i=1

αi
(
vi(Xk−1, ϑ̂) + vi(Xk, ϑ̂)

))2
.

If ϑ̂ is efficient, so is Ĥ∗sym. Efficient estimators for ϑ in reversible Markov chain models with
parametric marginals are constructed in Kessler, Schick and Wefelmeyer (2001). We note that
the diffusion models referred to above are reversible.

2. Stochastic expansion of the estimator

Let X0, . . . , Xn be observations from a stationary Markov chain on an arbitrary state space S
with countably generated σ-field, transition distribution K(x, dy), and marginal law Fϑ(dx),
with ϑ in an open subset of Rr. Let Q(dx, dy) denote the law of two successive observations.
We want to estimate an expectation E[h(X0, X1)] =

∫
h dQ for a fixed Q-square-integrable

function h.
Let v1(·, ϑ), v2(·, ϑ), . . . be an orthonormal basis for L2,0(Fϑ), and let ϑ̂ be a n1/2-consistent

estimator of ϑ. Our estimator for
∫
h dQ is

Ĥ∗ =
1
n

n∑
k=1

(
h(Xk−1, Xk)−

Mn∑
i=1

α̂nivi(Xk−1, ϑ̂)−
Nn∑
j=1

β̂njvj(Xk, ϑ̂)
)
,
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where Mn and Nn are integers, and α̂n1, . . . , α̂nMn , β̂n1, . . . , β̂nNn are chosen to minimize

n∑
k=1

(
h(Xk−1, Xk)−

Mn∑
i=1

αivi(Xk−1, ϑ̂)−
Nn∑
j=1

βjvj(Xk, ϑ̂)
)2
.

We prove a stochastic expansion for Ĥ∗ for a fixed parameter ϑ0 under the following assump-
tions on the Markov chain, the parametric model, and the basis.

Assumption 1. The chain is geometrically ergodic in the L2 sense: There is a λ < 1 such
that for all f ∈ L2,0(Fϑ0),∫ (∫

K(x, dy)f(y)
)2
Fϑ0(dx) ≤ λ

∫
f2 dFϑ0 .

Assumption 2. The chain fulfills the following minorization criterion: There is an η > 0
such that for Fϑ0-a.a. x and all measurable B,

K(x,B) ≥ ηFϑ0(B).

Assumption 3. The parametric model is Hellinger differentiable at ϑ0: There is a function
ϕ ∈ L2,0(Fϑ0)r such that∫ (√

dFϑ0+t −
√
dFϑ0 −

1
2
t>ϕ

√
dFϑ0

)2
= o(‖t‖2).

Moreover, the Fisher information matrix
∫
ϕϕ> dFϑ0 is positive definite.

Assumption 4. The basis elements are bounded: For each i = 1, 2, . . . and each ϑ ∈ Θ,

sup
x∈S
|vi(x, ϑ)| <∞.

Assumption 5. The basis elements are locally Lipschitz: There are a neighborhood of ϑ0

and constants L1, L2, . . . such that, for all s and t in the neighborhood,

sup
x∈S
|vi(x, t)− vi(x, s)| ≤ Li‖t− s‖.

Assumptions 1 and 3 were used in Kessler, Schick and Wefelmeyer (2001). Assumption 2
is equivalent to

Q(A×B) ≥ ηFϑ0(A)Fϑ0(B)

for all measurable A and B. This version was used for corresponding bivariate models in Bickel,
Ritov and Wellner (1991) and Peng and Schick (2002, 2003). Assumption 2 is used by Glynn
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and Ormoneit (2002) to prove a Hoeffding inequality for Markov chains that will be applied
in the proof of our result. Assumptions 4 to 5 are as in Peng and Schick (2003).

To state our result, set mn = Mn ∨Nn, and let

∆n =
mn∑
i=1

sup
x∈S
|vi(x, ϑ0)|2 and Γn =

mn∑
i=1

L2
i .

Theorem 1. Let Assumptions 1 to 5 hold, and let ϑ̂ be a n1/2-consistent estimator for ϑ0.
Assume that Mn and Nn tend to infinity, and

(2.1)
m2
n(∆n + Γn)

n
→ 0 and

Γn log(1 + Γn)
n

→ 0.

Then Ĥ∗ has the stochastic expansion

Ĥ∗ =
1
n

n∑
k=1

(
h(Xk−1, Xk)− aQ(Xk−1)− bQ(Xk)

)
+D>(ϑ̂− ϑ0) + op(n−1/2),

where aQ and bQ minimize ∫
(h(x, y)− a(x)− b(y))2Q(dx, dy)

over a, b ∈ L2(Fϑ0), and

D =
∫

(aQ + bQ)ϕdFϑ0 .

A specific basis with these properties in the case of real state space and continuous dis-
tribution functions Fϑ is given in Peng and Schick (2003). It is of the form vi(x, ϑ) =√

2 cos(iπFϑ(x)). For this basis, Assumption 4 holds, and Assumption 5, with Li = ci, follows
from Assumption 3. In this case the rate conditions (2.1) are equivalent to m5

n/n→ 0.
Suppose now that ϑ̂ is asymptotically linear, i.e.,

n1/2(ϑ̂− ϑ0) = n−1/2
n∑
k=1

J(Xk−1, Xk) + op(1)

for some J ∈ Lr2(Q) with E(J(X0, X1) | X0) = 0. Then Ĥ∗ is asymptotically normal. We
show in Section 3 that Ĥ∗ is also efficient if ϑ̂ is efficient.

Our proof is similar to that for the bivariate model in Peng and Schick (2003). Their
exponential inequality, Lemma 2, must be replaced by an appropriate version for Markov
chains, which we state first.

Lemma 1. Let B = {t ∈ Rq : ‖t‖ ≤ C} be the closed ball of radius C in Rq. Let ut, t ∈ B, be
a family of functions on S such that u0 = 0 and, for some L > 0,

|ut(x)− us(x)| ≤ L‖t− s‖, x ∈ S; s, t ∈ B.

6



Suppose Assumption 2 holds. Then

Un(t) =
1
n

n∑
k=1

(
ut(Xk)−

∫
ut dFϑ0

)
, t ∈ B,

fulfills, for each ε > 0 and nε > 2LC/η,

P (sup
t∈B
|Un(t)| > 3ε) ≤ 2

(
1 +

2q1/2LC

ε

)q
exp

(
− η2(nε− 2LC/η)2

2nL2C2

)
.

The proof of this result is identical to that of Lemma 2 in Peng and Schick (2003) for the
case of independent observations. Instead of the classical Hoeffding inequality we now use the
Markovian extension given by Glynn and Ormoneit (2002).

Proof of Theorem 1. It suffices to show

1
n

n∑
k=1

Mn∑
i=1

(
α̂nivi(Xk−1, ϑ̂)− aQ(Xk−1)

)
+
(∫

aQϕ
> dFϑ0

)
(ϑ̂− ϑ0) = op(n−1/2),(2.2)

1
n

n∑
k=1

Nn∑
j=1

(
β̂njvj(Xk, ϑ̂)− bQ(Xk)

)
+
(∫

bQϕ
> dFϑ0

)
(ϑ̂− ϑ0) = op(n−1/2).(2.3)

We only show (2.2); (2.3) is similar. Let Vm denote the linear span of v1(·, ϑ0), . . . , vm(·, ϑ0).
Let an =

∑Mn
i=1 αnivi(·, ϑ0) and bn =

∑Nn
j=1 βnjvj(·, ϑ0) be chosen to minimize

∫
(h(x, y) −

a(x) − b(x))2Q(dx, dy) over a ∈ VMn and b ∈ VNn . As shown in Peng and Schick (2002), an
and bn are uniquely determined, and an → aQ and bn → bQ in L2(Fϑ0). Assumption 1 and the
Cauchy-Schwarz inequality imply that for k = 1, 2, . . . and f ∈ L2(Q),

|E[f(X0, X1)f(Xk−1, Xk)]| ≤ λ(k−1)/2E[f2(X0, X1)].

Thus we obtain for C = 2/(1− λ1/2) that

(2.4) E
[( 1
n

n∑
k=1

f(Xk−1, Xk)
)2]
≤ C

n
E[f2(X0, X1)] for f ∈ L2,0(Q).

This immediately gives

1
n

n∑
k=1

an(Xk−1) =
1
n

n∑
k=1

aQ(Xk−1) + op(1).

As in Peng and Schick (2003) we have

Mn∑
i=1

αni

∫
vi(x, ϑ̂)Fϑ0(dx) +

(∫
aQϕ

> dFϑ0

)
(ϑ̂− ϑ0) = op(1).
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Thus it suffices to show

1
n

n∑
k=1

Mn∑
i=1

(α̂ni − αni)vi(Xk−1, ϑ̂) = op(n−1/2),(2.5)

1
n

n∑
k=1

Mn∑
i=1

αni

(
vi(Xk−1, ϑ̂)− vi(Xk−1, ϑ0)−

∫
vi(x, ϑ̂)Fϑ0(dx)

)
= op(n−1/2).(2.6)

As in Peng and Schick (2003) one can show

(2.7)
Mn∑
i=1

(α̂ni − αni)2 = Op

(Mn(Γn + ∆n)
n

)
.

The proof is essentially the same, but now using (2.4) to deal with the appropriate averages.
It is shown in Peng and Schick (2003) that

(2.8) n

Mn∑
i=1

(∫
vi(x, ϑ̂)Fϑ0(dx)

)2
= Op(Mn).

It follows from (2.4) that

(2.9) n

Mn∑
i=1

( 1
n

n∑
k=1

vi(Xk−1, ϑ0)
)2

= Op(Mn).

In view of (2.7), (2.8) and (2.9), statement (2.5) is equivalent to

(2.10)
1
n

n∑
k=1

Mn∑
i=1

(α̂ni − αni)
(
vi(Xk−1, ϑ̂)− vi(Xk−1, ϑ0)−

∫
vi(x, ϑ0)Fϑ0(dx)

)
= op(n−1/2).

Relations (2.5) and (2.6) are verified as in Peng and Schick (2003), but now using the above
Lemma 1 instead of their Lemma 2.

3. Efficiency of the estimator

Let us now prove that Ĥ∗ is efficient if an efficient estimator ϑ̂ for ϑ0 is used. We need
the following notation. Let K̄(y, dx) denote the transition distribution of the reversed chain,
defined by Fϑ0(dx)K(x, dy) = K̄(y, dx)Fϑ0(dy). For a function g ∈ L2,0(Q) write Kg(x) =∫
K(x, dy)g(x, y) and K̄g(y) =

∫
K̄(y, dx)g(x, y). Let Kj and K̄j be the operators on L2,0(Fϑ0)

defined by Kjf(X0) = E(f(Xj) | X0) and K̄jf(Xj) = E(f(X0) | Xj), j = 1, 2, . . . . Let
U =

∑∞
j=0K

j and Ū =
∑∞

j=0 K̄
j be the corresponding potentials. Let now

T = {t ∈ L2(Q) : Kt = 0},

and let A be the operator from L2,0(Fϑ0) into T defined by Af(x, y) = Uf(y)−KUf(x).
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We can now recall the characterization of efficient estimators in Kessler, Schick and We-
felmeyer (2001). Consider (Hellinger differentiable) perturbations Knt(x, dy) .= K(x, dy)(1 +
n−1/2t(x, y)) consistent with the parametric model for the stationary law. The space T∗ of all
such functions t is called the tangent space for our model. It is a subset of T . An r-dimensional
functional χ of K is called differentiable with gradient g if g ∈ T r and

n1/2(χ(Knt)− χ(K))→
∫
gt dQ for all t ∈ T∗.

The canonical gradient is the (componentwise) projection g∗ of g onto T r∗ . An estimator χ̂ for
χ is called regular if there is a random vector L such that

n1/2(χ̂− χ(Knt))⇒ L under Knt for all t ∈ T∗.

An estimator χ̂ for χ is called asymptotically linear with influence function h if h ∈ T r and

n1/2(χ̂− χ(K)) = n−1/2
n∑
k=1

h(Xk−1, Xk) + op(1).

An estimator is regular and efficient if and only if it is asymptotically linear with influence
function equal to the canonical gradient. Moreover, an asymptotically linear estimator is
regular if and only if its influence function is a gradient. In particular, the canonical gradient
can be obtained as the projection onto T r∗ of the influence function of an arbitrary regular and
asymptotically linear estimator.

As shown in Kessler, Schick and Wefelmeyer (2001), the tangent space for our model is

T∗ = {t ∈ T : ŪK̄t ∈ [ϕ]},

where [ϕ] is the linear span of the Hellinger derivative ϕ. Moreover, the influence function of
an efficient estimator ϑ̂ of ϑ0 is

g∗(x, y) =
(∫

e∗ϕ
> dFϑ0

)−1
Ae∗ with e∗ = (ŪK̄A)−1ϕ.

Note that ŪK̄ corresponds to V̄ in Kessler, Schick and Wefelmeyer (2001). If an efficient
estimator ϑ̂ is used, then by Theorem 1 the influence function of our estimator Ĥ∗ is

h∗(x, y) = h0(x, y)− aQ(x)− bQ(y) +D>g∗(x, y),

where h0 = h −
∫
h dQ. Efficiency of Ĥ∗ follows if we show that h∗ is in T∗ and equals the

projection of the influence function of the empirical estimator Ĥ, which is

h̃(x, y) = h0(x, y)−Kh0(x) +AKh0(x, y)

by Greenwood and Wefelmeyer (1995). Showing these two properties amounts to showing that
Kh∗ = 0 and

∫
h̃t dQ =

∫
h∗t dQ for all t ∈ T∗.
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By definition of aQ and bQ we have that hQ(X0, X1) = h0(X0, X1) − aQ(X0) − bQ(X1)
is orthogonal to a(X0) + b(X1) for all a, b ∈ L2,0(Fϑ0). Thus E(hQ(X0, X1) | X0) = 0 and
E(hQ(X0, X1) | X1) = 0. The former shows that Kh∗ = KhQ + D>Kg∗ = 0. It also gives
Kh0 − aQ −KbQ = 0, which implies

(3.1) aQ + bQ = (I −K)bQ +Kh0.

Now fix t ∈ T∗. Then ŪK̄t = ϕ>u for some u ∈ R. We have∫
h̃t dQ =

∫
h0t dQ+

∫
AKh0 · t dQ =

∫
hQt dQ+

∫ (
A(I −K)bQ +AKh0

)
t dQ.

Here we have used that b = U(I −K)b and that Kt = 0. It was shown in Kessler, Schick and
Wefelmeyer (2001) that

∫
g∗t dQ = u and∫
tAf dQ =

∫
ŪK̄t · f dFϑ0 =

∫
fϕ>u dFϑ0 .

In particular, if f = aQ + bQ, we get from (3.1) that∫ (
A(I −K)bQ +AKh0

)
t dQ = D>u = D>

∫
g∗t dQ.

Hence we get
∫
h̃t dQ =

∫
h∗t dQ.

For the case r = 1, Kessler, Schick and Wefelmeyer (2001) construct an efficient estimator
ϑ̂ of ϑ0 under the additional assumption of continuous Hellinger differentiability of Fϑ. The
construction carries over to r-dimensional ϑ.
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