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Abstract

We consider regression models in which covariates and responses jointly form a
higher order Markov chain. A quasi-likelihood model specifies parametric models
for the conditional means and variances of the responses given the past obser-
vations. A simple estimator for the parameter is the maximum quasi-likelihood
estimator. We show that it does not use the information in the model for the con-
ditional variances, and construct an efficient estimating function which involves
estimators for the third and fourth centered conditional moments of the responses.
In many applications one assumes that the innovations are not arbitrary martin-
gale increments but independently and identically distributed. We determine how
much additional information about the parameter such an assumption contains.
To make the exposition more readable, we first treat the case in which only the
conditional mean is specified.

1 Introduction

Suppose we observe covariates X; and responses Y; which jointly form a homogeneous
p-order Markov chain Z; = (X;,Y:). We write Q(Zi—1, ..., Zi—p,dz) for its transition
distribution, and for the conditional mean and variance of the response we write

m(zp—1,...,20) = //Q(zp_l,... .20, dx, dy)y,
0(zp_1y- .. ,20) = // Q(zpty -+ 20, dz,dy)(y — m(zp_1,... , 20))"

If we have a parametric model m = my for the conditional mean of the response, we
can introduce a large class of martingale estimating functions

Mﬁn = Zwﬁ(zi—h s 7Zi—p)()/i - mﬁ(Zi—la s 7Zi—p))7 (11)
=p
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with wg(zp_1,...,20) an arbitrary weight function. The corresponding estimators for o
are defined as solutions of My, = 0. We indicate in Section 3 that an efficient estimator
is obtained with the choice

w79(ZZ'_1, e ,Zi_p) = TA)Z'_l(ZZ'_l, e 7Zi_p>_1m19(ZZ'_1, e ,Zz'_p), (12)

with ©;,_; an estimator for v based on the observations up to time 7 —1. By efficiency we
mean asymptotic optimality among all regular estimators in the sense of an appropriate
version of Héjek’s (1970) convolution theorem, not just optimality within some class
of estimating functions. For the case of no covariates, a first-order chain and a one-
dimensional parameter, a rigorous proof is given in Wefelmeyer (1996a). The estimating
function is an adaptive version of the quasi-score function.

The model is described by all transition distributions ) which fulfill m = my for
some 9. It could be interpreted as a semiparametric model by writing

Q(zp-1, .- 20, dz,dy) = M(zp_1,... ,z0,dx,dy — myg(zp_1,...,20))

with [f M(zp—1,...,20,dz,dy)y = 0, and considering M as nuisance parameler.
In many applications one uses more specific models,

Yi=mo(Zicr,..., Zip) + &,

where the ¢; are i.i.d. with mean zero and known or unknown distribution, rather
than arbitrary martingale increments. We call such models regression-autoregression
models.  Again, m = my. We show that the specific structure contains additional
information about 1, except when the ¢; are normal. The efficient estimators that
have been constructed for specific such models are, however, not based on estimating
functions.

If we have, in addition to m = myg, a parametric model v = vy for the conditional
variance of the response, with the same parameter ¢, then the model is called a quasi-
likelihood model. The best weight in (1.1) is then wy = vy rig, giving the mazimum
quasi-likelthood estimator. Tt is as good as the estimator corresponding to the estimated
weights (1.2). This implies that the maximum quasi-likelihood estimator does not use
any of the information in the model assumption v = vy. We also note that if the model
v = vy is misspecified, then the weights (1.2) lead to a strictly better estimator.

In a quasi-likelihood model one can introduce further martingale estimating functions

n

Z 'LUﬁ(ZZ'_l, e ,Zz'_p) ((Yz - 7'7'L79(Zz'_1, e ,Zz'_p))Z - 'Uﬁ(ZZ'_l, e ,Zz'_p)) .

t=p

We show in Section 4 that an appropriate combination with (1.1), with weights involving
estimators for the conditional centered third and fourth moments of the response, gives
an efficient estimator. For the case of no covariates, a first-order chain and a one-
dimensional parameter, a rigorous proof is given in Wefelmeyer (1996b). The estimating



function is an adaptive version of the extended quasi-score function. Recent reviews of
quasi-likelihood methods are McCullagh (1991) and Firth (1993).

Again, in many applications one uses more specific models
1/2
Yz' = WLQ?(Zi—la s aZi—p) + 'Uﬁ<Zz'—la s aZz'—p) / Eiy

where the ¢; are 1.i.d. with mean zero and variance one. We call such models het-
eroscedastic regression-autoregression models and show again that the specific structure
contains additional information about 4.

We do not give precise regularity conditions for our results. They can be obtained

by fairly straightforward, if tedious, modifications of Wefelmeyer (1996a, 1996b).

2 Notation

We observe k-dimensional covariates X; and real-valued responses Y;. We suppose that
Z; = (X, ;) form a homogeneous and ergodic p-order Markov chain. For the p values of
the chain preceding Z; we write Z;_y = (Zi-1,..., Zi—,)'. The chain starts with an initial
value Z,_y = (Zp-1,...,Zo)". For the transition distribution of Z; given Z;_; = t we
write Q(t, dz). Here and in the following, we will always write z = (x, y) for the variables
corresponding to the random variables Z; = (X;,Y;), and ¢t = (r,s) corresponding to
Zi—1 = (Xiz1,Y;—1). Boldface letters denote corresponding p-dimensional vectors, with
components numbered backwards.

The conditional distribution of the response Y; given the past depends only on the
value Z;_y = t and is given by the marginal of the transition distribution of Z;,

Q:(t,dy) = Q(t,R* x dy).

For the conditional mean and variance of the response given the past observations we
write

m(t) = /Qr(t,dy)y,
ot) = [ Qultdy)y —m(t)*.

Let m(dz) denote the stationary law of Z;. For the expectation of a function f(Z;) under

T we write
af = /w(dz)f(z).

Similarly, for the expectation of a function f(Z;_1,Y;) under the stationary law 7 ® @Q,
we write

70 Q.S = [[ T(d)Q:(t.dy)f(t.v).



3 Modeling the conditional mean of the response

3.1. Estimating functions. Suppose we have a parametric model m = my for the
conditional mean of the response, where 9 is a g-dimensional parameter. Recall that
a large class of martingale estimating functions can be constructed as follows. Note
that ¥; — mg(Z,_;) are martingale increments with respect to the filtration generated
by the Z;. Choose a g-dimensional vector wy(t) of weight functions. Then wg(Z;_1)
is predictable, and the components of the vector wg(Z;—1)(Y; — my(Z;_1)) are again
martingale increments, so that the estimating functions

Mo = 3 ws(Zi—1) (Y = my(Zi-y)) (3.1)
i=p
form a martingale. An estimator is obtained as solution ¥ = J, of the estimating

equation Mg, = 0. We do not give conditions for existence and uniqueness here.
Call an estimator T,, for 9 asymptotically linear with influence function f(t,y) if

n (T, —9) = 023" f(Zi,Y:) + op(1)
1=p

and [Q,(t,dy)f(t,y) = 0 for all t. Then the components of the vector f(Z;_;,Y;)
are martingale increments. If the components of f are # ® (),-square integrable, a
martingale central limit theorem holds, and 7}, 1s asymptotically normal with covariance
matrix 7 ®@ @, f f'. See, e.g., Billingsley (1968, p. 206).

Let us recall how one shows that the solution ¥ = 4, of the estimating equation
My, = 0 is asymptotically linear. We use a dot on top of a vector of functions to denote
the matrix of partial derivatives with respect to 9. A Taylor expansion gives

0= M, =M+ My (0 —0) + -

with matrix of partial derivatives
Mgy = tbg(Zima )(Vi — mg(Zimy)) — Y wy(Zimt )ring(Zizy).
=p =p

Note that rmy is a row vector. Since the entries of the matrix Sy wy(Zi—1) (Y —
myg(Z;_1)) are mean zero martingales, %Z?zp wy(Zi—1 )(Y; — my(Z;_y)) is negligible if
the entries of the matrix wy(t)(y — my(t)) are 7 @ Q,-square integrable. Furthermore,

1 & . .
— Z wﬁ(Zi_l)mﬁ(Zi_l) — TWYMy.

n
i=p
The above arguments show that #,, has influence function
(6, y) = (mwaring) ™ wy(6)(y — ma(t)) (3:2)
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and asymptotic covariance matrix
(7’[’10797’;179)_1 TUWgwW (Trm;w;)_l. (3.3)

For dependent observations, weak conditions for asymptotic linearity of estimators may

be found in Hosoya (1989), Andrews and Pollard (1994) and Andrews (1994).

Remark 1. We have restricted attention to weights wy(Z;_1) which depend only on
the p previous observations Z;_y,...,Z;_, of the p-order Markov chain. Let us show
that there is no point in using weights wy which depend on observations preceding Z;_,.
Note first that with such weights we would also get a covariance matrix of the form (3.3),
with 7 now denoting the stationary law of more than p successive observations. Let @y
denote the weight function in which the additional arguments appearing in wy have been
integrated out. Then mwymy equals Twgrmyg. By Jensen’s ineqality, mowyw!y — mowywl
is positive semi-definite. Hence

(mwgring) ™" mowgwly (milywly) ™ — (7Wgrng) T muWWy (mmwly) T
is positive semi-definite. |
3.2. Known conditional variance. Suppose, for the moment, that the conditional

variance v of the response is known. Then we can determine a weight function which
is optimal in the sense that it minimizes the asymptotic covariance matrix (3.3). Recall

B 1 tT1
S Syminetric
B C y

and positive definite, so is C'— B’A~'B and hence also B'~'C'B~' — A~'. Applying this

result to the covariance matrix of (v‘l/Qm;, U1/2w19)’ under 7, we see that

(e.g., Horn and Johnson, 1985, p. 472) that if a block matrix ( A

(mrwgring) ™! mowgwly (mrlwl) ™t — (mvTlmlmg) Tt is positive semi-definite.
This means that the covariance matrix (3.3) is minimized for
wy = v, (3.4)
and that the minimal covariance matrix is
(mo~ ) Tt (3.5)
This result is well known in the context of quasi-likelihood models; see Subsection 4.1.

The influence function (3.2) of the estimator corresponding to the optimal weight wy =

vl s

f(t,y) = (mo~ilymg) ™ v(t) Mg () (y — mas(t)). (3.6)

3.3. An adaptive estimating function. If v is not known, we can construct an
estimating function which is adaptive in the sense that for each v it is asymptotically



as good as the best estimating function (3.1) for known v, with weight wy = v='ml.
It suffices to replace the conditional variance v by an estimator; compare Wefelmeyer
(1996a). Specifically, let ©;_;(t) be estimators for v(t) based only on the observations
Zoy -+ Zi—1 up to time ¢ — 1. For the construction of such estimators see, e.g., Collomb
(1984) and Truong and Stone (1992). We obtain the adaptive estimating function

> bima (Bees) a2tV (Vi = 0 (Zim)) (3.7)

This estimating function is an adaptive version of the quasi-score function discussed
in Subsection 4.1. Since the weight is predictable, the estimating function is again a
martingale. If the ©;_; are strongly consistent, a Taylor expansion as in Subsection
3.1 shows that the corresponding estimator is asymptotically normal, its asymptotic
covariance matrix is again (3.5), and its influence function is again (3.6). For the case
of a one-dimensional parameter, and when there are no covariates, a rigorous proof is
given in Wefelmeyer (1996a).

3.4. Efficiency of the adaptive estimating function. Does the adaptive estimating
function (3.7) lead to an efficient estimator? In other words, is this estimator optimal
not only among estimators based on estimating functions of the form (3.1), but also in
the larger class of regular estimators? To answer this question, we must indicate that
the model given by m = my is locally asymptotically normal in an appropriate sense,
and determine a bound for the asymptotic covariance matrices of regular estimators of
¥ in the sense of a convolution theorem. The basic reference for this theory in the i.i.d.
case is Bickel et al. (1993). For the case of a one-dimensional parameter, and when there
are no covariates, a rigorous proof of the efficiency of the adaptive estimating function
is in Wefelmeyer (1996a). To accomodate covariates, we recall that by Cox (1972) the
likelihood factors into two terms. The first is the partial likelihood and depends only
on the conditional law Q,(t,dy) of the responses. The second depends only on the
conditional law of the covariates given the past observations and the present responses.
Our model m = my is a condition on @), only. Hence the second factor of the likelihood
varies independently of ¢#. This means that the bound for the asymptotic covariance
matrices can be determined from the partial likelihood.

Fix Q.(t,dy). The model is described by a parametric family of side conditions m =
my . To introduce a local model, we perturb @, (t, dy) such that the perturbed transition
distribution is still in the model. This means that a perturbed condition m = my, with
¥ replaced by ¥ + n~'/?u, say, holds. Such perturbations are conveniently described as
follows. Consider the affine space of ¢-dimensional vectors h(t, y) of functions with

/Q,(t,dy)h(t,y) — 0, (3.8)
[ Qb dy)yh(t,y) = ring(t)' (3.9)



These vectors will play the role of score functions. Set

QM (t, dy) = Q,(t,dy)(1 +n~'2h(t, y) u). (3.10)
Then

J@r gy = mot)+n77 [ Qult, dy)yh(t,y)u

my(t) + n_l/Zmﬁ(t)u
= m,ﬁ+n—1/2u<t> + o(n_l/z).

This shows that Q™" is indeed (approximately) in the model. The partial likelihood
ratio 1s dQ i )
—nhu " u z 1y°
H (Z7 19 ) ( )
By a Taylor expansion, the partial hkehhood ratio is shown to be locally asymptotically
normal,

7’L u 1
log 7 b _ —1/22h i1, Z "u —§UIW®QT}L}LIU+0P(1),

with n=1/2 Sie, h(Zi_1,Y;) asymptotically normal with mean zero and covariance matrix
T®Q,.hh'. By the convolution theorem, an estimator is regular and efficient if and only if
it is asymptotically linear with influence function ¥='s, where ¥ = 7®Q,ss’ and s is the
efficient score function, minimizing m ® Q,.hh' over the affine space of vectors h fulfilling
(3.8) and (3.9). It is characterized by 7 ® @,sh’ = X for all h. It is straightforward to
check that the solution is

s(t,y) = v(t) s (t)(y — ma(t)). (3.11)

Hence ¥ = o~ "rfyrig, so that the efficient influence function is (3.6). In particular, the
minimal asymptotic covariance matrix for regular estimators of ¢ is (3.5). The estimator
based on the adaptive estimating function (3.7) also has influence function (3.6) and is
therefore efficient.

3.5. Regression-autoregression models. Suppose that the responses have an
autoregressive structure,

Yi = my(Zi—1) + iy

where the ¢; are i.i.d. with known or unknown mean zero density ¢(y). Then the
conditional distribution of the response Y; given Z,_; =t has the form

Qr(t, dy) = gy — ms(t))dy, (3.12)

with conditional mean my(t). We call it a regression-autoregression model. It is a
submodel of the model given by m = my. Conditions for (geometric) ergodicity are



given in Bhattacharya and Lee (1995). The question arises whether in this submodel
there are even better estimators than the one based on the adaptive estimating function
(3.7).

We show that the minimal asymptotic covariance matrix of regular estimators of ¢
is, in general, strictly smaller than (3.5). The regression-autoregression model (3.12) is
a semiparametric model, with nuisance parameter g. The local model can be obtained
by perturbing ¢ and g. Consider the linear space of functions k(y) with

Fk(e) = 0, (3.13)
Eck(e) = 0. (3.14)

Then ¢™*(y) = g(y)(1 + n_1/2k(y)) is again a mean zero probability density. Set

QrF(t, dy) = g™ (y — myyn-172,(t))(dy).

Write ¢ for the logarithmic derivative ¢'/g of g. By a Taylor expansion,
Qr* (¢, dy)
= Qr(ty dy) (1 + n—1/2 (k’(y - mﬁ(t)) — mﬁ(t)u E/(y _ mﬁ(t)))) + O(n_l/z)_

The perturbation is seen to be (approximately) of the form (3.10), with A(t, y)"u replaced
by k(y — mg(t)) —mmg(t)u f'(y —mys(t)). Hence the corresponding partial likelihood ratio
is locally asymptotically normal with variance

//W(dt)g(y — my(t))dy (k(y — mg(t)) — rg(t)ul'(y — 'I'I'Lﬁ(t)))2 (3.15)
= [[ 7(dt)gy)dy (k(y) — mat)ul ()"

For the parametric case, g known and hence k = 0, see Hwang and Basawa (1993,
1994). For the semiparametric case considered here, see Koul and Schick (1996). These
references do not consider covariates.

To simplify the calculations, we will now assume that 4 and g are locally orthogonal
in the sense that the mixed term in the variance (3.15) vanishes, or equivalently,

Ek(e)l'(e) =0 forall k, or mrmg=0. (3.16)

The first condition is fulfilled if the density of ¢ is assumed symmetric. Then ¢ is odd,
and since both ¢ and ¢"* are symmetric, & must be even. The second holds in many
applications; see also Examples 1 and 2 below. If (3.16) holds, then we can estimate o
asymptotically as well not knowing ¢ as knowing g. We say that the model is adaptive
with respect to g. We refer to Drost et al. (1994) and Drost and Klaassen (1995) for a
discussion of adaptivity for general semiparametric GARCH models. Under (3.16), the
variance (3.15) reduces to

E k(€)2 + Eﬁ'(&:)2 u'mmlymgu,
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and the efficient score function, as defined at the end of Subsection 3.4, is
s(t,y) = —ra()"0'(y — ma(t)).
Hence ¥ = E'(¢)? mimlyng, the efficient influence function is
f(t,y) = —(EL(e)") ™" (mrinyring) ™" v (8)'C (y — ma(t)),
and the minimal asymptotic covariance matrix of regular estimators of ¥ 1s
(B0 () (rridying) ™

Of course, this covariance matrix cannot be larger than the minimal asymptotic
covariance matrix (3.5) for the larger model m = my. To check this, note first that in
the regression-autoregression model we have

o(t) = [ gly = mo(t))dy (y — mo(t)) = B2

Hence (3.5) is E&? (mrlmg)~". To prove the desired inequality, it suffices to recall that
E ('(¢)? is the Fisher information for location, and that its inverse is not larger than E &
Hence

E&? (Trm;n'w)_l — (Ef’(a)Z)_l (Trm;mﬁ)_l is positive semi-definite.

We note that the difference between the two matrices is proportional to the difference
between the asymptotic variance E&? of the empirical estimator for the mean of ¢ and
the asymptotic variance (E£'(¢)*)7! of the maximum likelihood estimator for the mean
in the location model generated by ¢g . The inequality is strict unless #'(y) is proportional
to y. In particular, for normal ¢;, the adaptive estimating function (3.7) gives an efficient
estimator in the regression-autoregression model.

To summarize: The regression-autoregression model is a quasi-likelihood model with
the additional restriction that the conditional law of the response does not depend on the
past except through the mean. The additional restriction can be exploited to construct
an estimator with asymptotic covariance matrix reduced by the factor (E/'(g)*Ee?)™!
as compared to the adaptive estimating function. The reduction can be considerable
if the density ¢ is far from normal. On the negative side, the construction requires
estimating the logarithmic derivative ¢’ of g, see Koul and Schick (1996) when there are
no covariates, and the estimator is inconsistent if in reality the additional restriction
does not hold.

Example 1. Set my(Z;—1) = ¥"Yi—1. Then the conditional mean of the response does
not depend on the covariates, but the conditional variance may still depend on them.
An efficient estimating function is (3.7); here it has the form

Z ﬁi—l(zi—l)_lYi—l(Y;' —9'Yi).



It gives the weighted least squares estimator

-1
1§n = (Z 137;_] (Zi—l >_1Y¢_1Y;_]) Z ﬁz’—] (Zi—l >_1YiY7f—1 .
1=p i=p

The corresponding regression-autoregression model is the p-order autoregression
model

Y, =9'Yio1 +e,

where the ¢; are i.i.d. with mean zero density g. Here v(Z;_;) = Ee* does not depend
on the observations, and the weighted least squares estimator reduces to the ordinary
least squares estimator

-1
n = (Z YZ-_IY;_I) dYiYi.
1=p

t=p

It is not efficient in the autoregression model unless the ¢; are normal.

Huang (1986) proves local asymptotic normality of the autoregression model. An
efficient estimator is constructed by Kreiss (1987a) for symmetric g, and by Kreiss
(1987h) for arbitrary mean zero g. |

Example 2. Set my(Z,—1) = o'X;_1 + 'Y;_1. Then ¥ = (e,3)" is of dimension
qg=k+p. Write S;_; = (X,_1,Y,;_1). An efficient estimating function is (3.7); here it
has the form

Z i1 (Zio1) 7S (Vi = 9'Siy).
1=p

It gives the weighted least squares estimator

-1
D, = (Z Dic1(Zieq)™! Sz’—ls;_l) Z bi—1(Z;21)7"YS,20.
i=p 1=p

The corresponding regression-autoregression model is the p-order autoregression
model with k-dimensional linear regression trend

Yi=d' X0 +38Yo1+e,=0'Si2 + e

where the ¢; are i.i.d. with mean zero density g. As in Example 1, v(Z;_1) = E&?* does
not depend on the observations, and the weighted least squares estimator reduces to the
ordinary least squares estimator

-1
J, = (Z sz-_ls;_l) > ViSi-i.
1=p 1=p

Swensen (1985) proves local asymptotic normality for the case of nonrandom X;. See
Garel and Hallin (1995) for a recent more general version and references. O
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4 Quasi-likelihood models

4.1. The quasi-score function. A quasi-likelihood model is given by parametric
models m = my and v = vy for the conditional mean and variance of the response, with
¥ a common g-dimensional parameter. Consider again the estimating functions (3.1),

Maw = 30 ws(Zaa) (Y = ma(Zicr)),

Exactly as in the case of a known conditional variance v, Subsection 3.2, the best weight
is determined as wy = vy 'm/y. Tt gives the quasi-score function

n

Zvﬁ(Zi_l)‘lmﬁ(Zi_l)'(Yi — mﬁ(Zz_l)) (41)

i=p
A version of this result for general discrete-time processes is in Godambe (1985). For
continuous time see Thavaneswaran and Thompson (1986), Hutton and Nelson (1986)
and Godambe and Heyde (1987). The corresponding estimator is the mazimum quasi-
likelihood estimator. Its asymptotic covariance matrix is (3.5) with v = vy,

(T{'U;IT;’L%T}Lﬁ)_l,

the inverse of the quasi-Fisher information matriz. Its influence function is (3.6) with
v = vy,

F(t.y) = (w07 riring) ™" v (6 rng () (y — mo(8)).

The quasi-score function is asymptotically as good as the adaptive estimating function
(3.7). This implies that it does not use any of the information in the model assumption
vV = Vy.

By the arguments of Subsection 3.1, the quasi-score function can be used even if the
model is not true. In this sense it is robust against misspecification of the conditional
variance of the response. If the true conditional variance is v, then by (3.3) for wy =
vy 'm/y the maximum quasi-likelihood estimator has asymptotic covariance matrix

120 N1 -2 1 —1s 0 N1
(7TU79 m79m79) MUV, Mgy (Tf'Uﬁ m79m79> :

However, unless v = vy, this covariance matrix is strictly larger than the covariance ma-
trix (mv~'mlmg) ™" which is attained by the estimator based on the adaptive estimating

equation.

4.2. Further estimating functions. Note that (Y; — my(Z;_1))* — vg(Z;—1) are
martingale increments with respect to the filtration generated by the Z;. We obtain
martingale estimating functions

Mo = 3 w0a(Zia) (V= ma(Zies)? = vo(Zic) (4.2)

11



which we can combine with estimating functions (3.1) to get estimating functions of the
form

i wig(Zia)(Yi = my(Zizy)) (4.3)
+ iww(zi—l) ((Y; —my(Zi—1))? — w(Zi_l)) .

It will be convenient to introduce the ¢ x 2 matrix of weights wy = (w4, wz9) and the
two-dimensional vector of martingale increments

i5(t,y) = (5 — ma(t), (v — ma(t)” — va(t)) .

and to rewrite the estimating function (4.3) as
Z Wo(Zio1)i9(Zi=1, YD),
1=p

We also introduce the 2 x ¢ matrix of derivatives dy = (1g,0g)’. For the conditional
centered third and fourth moments of the response we write

pi(t) = [ Qult,dy)(y = mo(t))', j = 3.4,

The conditional covariance matrix of the martingale increments iy is

C = ( v s ) . (4.4)

M3 fta — v§

As in Subsection 3.1, the estimator corresponding to the estimating equation (4.2) is
shown to be asymptotically linear, with influence function

f(t7 y) - (TI'Wﬁdg)_l W79<t>179(t7 y)
and asymptotic covariance matrix

(rwady) ™! mwyCwl (mdwh) ™t (4.5)
4.3. Known conditional centered third and fourth moments. Suppose, for the
moment, that we know the conditional centered third and fourth moments ps and pg

of the response. The weights wyy and wys which minimize the asymptotic covariance
matrix (4.5) are

wy =dyC7 (4.6)

12



and the minimal asymptotic covariance matrix is
(rd},C1 ). (@7

The optimal weights are determined by Crowder (1986, 1987) for independent observa-
tions, and by Godambe (1987) and Godambe and Thompson (1989) for discrete-time
stochastic processes. These authors restrict attention to the special case of conditionally
orthogonal martingale increments, i.e. p3 = 0. The general case, also for continuous
time, is treated in Heyde (1987). A different derivation may be found in Kessler (1995).
The influence function of the estimator corresponding to the optimal weight is

J(t.y) = (xd}C1d,)™ dy(£)C(6) (. y). (4.8)

4.4. An extended adaptive estimating function. If the conditional centered third
and fourth moments p3 and p4 of the response are not known, we can construct an
estimating function which is adaptive in the sense that for each pz and py it is asymp-
totically as good as the best estimating function (4.3) for known ps and py, with weight
(4.6). Similarly as in Subsection 3.3, replace, in (4.6), the matrix C'(t) by an estimator
éi_l(t), using estimators fi;,-1(t) for p;(t) based on the observations Zy, ..., Z;,_;. This
gives the extended adaptlive estimating function

idﬁ(Zi_1)/CAY(Zi—1)_1i79(Z¢-_1). (4.9)

The estimating function is an adaptive version of the extended quasi-score function
discussed in Remark 4 below. It gives an estimator whose influence function is (4.8).

The extended adaptive estimating function can be written more explicitly. Estimate
the determinant of C'(Z;-;) by

A

Di—l(zi—l) = Uﬁ(zi—l) <ﬂ4,i—1(zi—1) - 'Uﬁ(zi—l)2) - ,&3,2'—1(22'—1)2,

and write the estimating function as
> Di_1(Zi_y)™! ((,&4,2'-1(22'-1) - Uﬁ(zi—l)Z) mg(Zi—y) — /ls,i-1(zi—1)1>q9(zi-1)')
1=p
X (Yi = my(Zi-r))

+ Z D¢—1(Z¢—1)_1 (05(Ziz1)09(Zizr) — fizim1 (Zizy )rng(Zi—y))
L =p
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In the important special case of orthogonal martingale increments, us3 = 0, the extended
adaptive estimating function can be replaced by the simpler version

n

Z: va(Zioa) g (Zisa ) (Yi — mg(Ziy)

+ Z (,&4,2'—1(Z¢'-1) — Uﬁ(zi—l)Z)_l 09(Zi—r)' ((Yz —my(Zi—1))? — Uﬁ(zi—l)) .

1=p

4.5. Efficiency of the extended adaptive estimating function. To show that
the extended adaptive estimating function (4.9) leads to an efficient estimator, we must
determine the lower bound for the asymptotic covariance matrices of regular estimators
of ¥. We follow the arguments in Subsection 3.4, adding the model assumption v = vy.
For the case of a one-dimensional parameter, and when there are no covariates, a rigorous

proof is in Wefelmeyer (1996b). We perturb Q™" as in (3.10), with A fulfilling (3.8) and
(3.9) and also

[ Qultdy)(y = ma(£))*h(t,y) = bo(t)" (4.10)
Then Q7™ fulfills (3.11) and also

/Qf}h“(t, dy)(y — m79+n—1/2u(t))2 = Vypn-1/24(t) + o(n_l/Q).

The efficient score function s again minimizes 7@Q,.hh', now over the smaller affine space

of functions A fulfilling (3.8), (3.9) and (4.10). The solution is
s(t,y) = dg(t)C™ (1)is(t, y). (4.11)
To see this, note that s fulfills (3.8), (3.9) and (4.10) since

[ @t dy)s(t plialt.y) = doft)'

and that s fulfills 7Q,sh’ = 7Q,ss" since h fulfills (3.8), (3.9) and (4.10). Hence the
efficient influence function is (4.8), and the minimal asymptotic covariance matrix for
regular estimators of ¢ is (4.7). The estimator based on the extended adaptive estimating
function (4.9) also has influence function (4.8) and is therefore efficient.

Remark 2. We have shown that our adaptive estimating function (3.7) is as good as
the best estimating function (3.1) for known v, with weight (3.4). This does not mean
that the estimator based on (3.7) remains efficient in the class of all regular estimators
if v is assumed known. This is only true if the vectors h(t,y) fulfill, besides (3.8) and
(39)

[ Qutdy)(y = ma(£))*h(t. ) = 0.

14



This condition is not fulfilled by the score function (3.11) unless pz = 0, i.e., unless the
two estimating functions (3.1) and (4.2) are orthogonal in the sense that pz = 0. O

Remark 3. In some applications the conditional mean myg of the response does not
depend on . Then my = 0, and 7wydy is not invertible, so that the calculations in
Subsection 4.2 are not valid. In this case, the estimating functions (3.1) are useless in the
sense that they do not lead to estimators with finite asymptotic variance. In particular,
the quasi-score function (4.1) is useless.

One possible alternative is to restrict attention to estimating functions (4.2) and
proceed as in Subsections 3.1 to 3.3, with the model m = my replaced by the model
v = vg. As in Subsection 3.1, the estimator corresponding to the estimating function
(4.2) is shown to be asymptotically linear with influence function

F(6y) = (mwgig) ™ wa(t) ((y — ma(t))* — va(t))
and asymptotic covariance matrix

(mwgivg) ™ (i — 3ol (wiuy) !

If 14 is known, this covariance matrix is minimized for

wy = (pa — v3) 710y,

and the minimal asymptotic covariance matrix is
(m(pa — v5) ™ 0500) 7
A good estimating function is
S 2\ 7. ! 2
> (Ao (Zict) = 09(Ziea)?) " bo(Zica) (Vi = mo(Zica)) = 09(Zic)) . (4.12)
1=p

It would be efficient if we had not specified m at all. In general, however, the assumption
that my does not depend on ¥ contains information about 9. Condition (3.9) on A now
reads

/Qr(tydy)yh(t,y) = 0. (4.13)
The score function of the above estimator is
s(6y) = (ua(t) = va(t)") 705 (8) ((y = ma(£))* = va(t))

For this score function to be efficient, condition (4.13) must hold for ~ = s. This is not
true unless gz = 0. An analogous result with interchanged roles of m and v was noted
in Remark 2.
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We note that although the estimating functions (3.1) are useless on their own, they
can be used in combination with estimating functions (4.2): For gy = 0 the efficient
score function (4.11) reduces to

D)™ 0p(t) (—pra(t), va(t)ia(t, y)
= D(t) ™ d(t) (—ps(t)(y — ma(t)) + va(t) ((y = ma(t)* = va(t)))

where D = vg(ps — v}) — p3 is the determinant of C'. The corresponding extended
adaptive estimating function is

3 Dica (i) o(Zis) (= fsioa (B )V = ol Zica)) (4.14)
+0a(Zi) (Y = ma(Zia))* = va(Zia) ).

For p3 = 0 this gives again (4.12). O

Remark 4. An extended quasi-likelihood modelis given by parametric models m = my,
v = vy, 3 = fzg and pg = pgg. Similarly as in Subsection 4.1, the best estimating
function (4.3) is seen to have weights (4.6), now with s = pss and pg = pag. This gives
the extended quasi-score function

Zn: dg(Zi—1)' Co(Ziy)""ig(Zin)

i=p

079:( Uy 139 2>.
H39 M4y — Vg

It is asymptotically as good as the estimator given by the extended adaptive estimat-
ing function (4.9). Hence it does not use the information in the specifications pz = sy
and py4 = pgg. It is robust against misspecification of us and p4, but then the extended
adaptive estimating function is strictly better. |

with

4.6. Heteroscedastic regression-autoregression models. Suppose that the re-
sponses have a heteroscedastic autoregressive structure,

Y, =my(Zi—1) + Uﬁ(zi—1)1/25i7

where the ¢; are i.i.d. with known or unknown mean zero density g, We may and will
also assume that the ¢; have variance one. The conditional distribution of the responses
given Z;_y =t has the form

Qr(t, dy) = vy(t)™/* g (va(t) ™ (y — ma(t))) dy,
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with conditional mean my and conditional variance vg. We call it a heteroscedastic
regression-auloregression model. Tt is a submodel of the quasi-likelihood model given by
m = myg and v = vy.

We show that the lower bound for the asymptotic covariance matrices of regular
estimators of ¥ is, in general, strictly smaller than the lower bound (4.7) in the quasi-
likelihood model. We follow the arguments of Subsection 3.5, now with heteroscedastic-
ity. Since E¢? = 1, the functions & fulfill not only (3.13) and (3.14) but also

Ec’k(e) = 0.
With ¢"*(y) = g(y)(1 4+ n~'2k(y)) as before we set

Q?ku“:’a dg) - Uﬁ+n—1/2u<t>_1/2 gnk (Uﬁ+n—1/2u(t>_1/2(y - mﬁ+n—1/2u(t>>> dy

By a Taylor expansion,
Q?ku(t’ dy)
=Q4u@»Q+n*ﬂ@4Wur”%y—meD

— vg()7 g (B € (9(8) (g — ma(8)))
B %Uﬁ(t)—lﬁﬁ(t)u(Uﬁ(t)—l/Q(y — my(t))

y(wxm—vay_qnﬂt»)+1)>)
+ o(n_l/Z).

Hence the corresponding partial likelihood ratio is locally asymptotically normal with
variance

| 7(@t)gy)dy (k(y) = va(t) ™ Hria(6)u l (y) (4.15)
1 . 2
—gw@rwﬂwmwmg+m).

The model is adaptive with respect to g if ¥ and ¢ are locally orthogonal in the
sense that k(y) is orthogonal to vﬁ(t)_l/QMg(t)K'(y) + Fus(t) " 0s(t)(yl'(y) + 1). This
condition is rarely fulfilled. For a discussion see Drost et al. (1994) and Drost and
Klaassen (1995). To simplify the calculations, we will assume that ¢ is known, and
calculate the minimal asymptotic covariance matrix for regular estimators in that case.
It equals the minimal asymptotic covariance matrix for an adaptive model and is a lower
bound for the non-adaptive situation. If ¢ is known, the variance (4.15) reduces to

TV Vi
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where

and Vj is the matrix

with v = vy. Hence the efficient score function is
S(t7 y) = dﬁ(t),%_leﬁ(tv y)
with

_ (,U19<t>—1/2(y — 'I'I’L79<t>)) )
1 (002 — o) (w0 — male) +1) )

and the minimal asymptotic covariance matrix of regular estimators of 4 in the het-

eﬁ(tv y) = (

eroscedastic regression-autoregression model is
(rd, Vi IV dy) ™" (4.16)

This matrix cannot be larger than the minimal asymptotic covariance matrix (4.7)
in the larger model m = my and v = vy, the quasi-likelihood model. To check this, note
first that in the heteroscedastic regression-autoregression model the y; are of the form

pilt) = 05" [ (072 = mae))) dy (y = ma(t))
= v*Ee, j=34.
Hence the matrix (4.4) can be written

C(t) = Valt) FVi(t)

1 E&?
F:<E€3 Es“—l)’

and the minimal asymptotic covariance matrix (4.7) is

with

(rd5C7 dy) ™ = (wdy Vi PV )T

To prove that this matrix is larger than the minimal asymptotic covariance matrix (4.16)
in the heteroscedastic regression-autoregression model, it suffices to show that F — J=!
is positive semi-definite. This is a well-known result. We recall it briefly. Consider the
location-scale model generated by the density g with mean zero and variance one, and
the problem of estimating mean and variance based on i.1.d. observations ey, ... ,¢&,.
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If the true distribution has mean zero and variance one, the Fisher information matrix
is J, and an efficient estimator, say the maximum likelihood estimator, has asymptotic
covariance matrix J~'. If we do not know the density g, then the model is completely
nonparametric, and an efficient estimator is the empirical estimator for the mean and
the variance. If the true distribution has mean zero and variance one, its asymptotic
covariance matrix is F'. It must be larger than J~'. The inequality is strict unless '(y)
is proportional to y. In particular, if the ¢; are normal, then the extended adaptive
estimating function (4.9) gives an efficient estimator in the heteroscedastic regression-
autoregression model.

Example 3. Set m = 0 and Uﬁ(zz'_1> = 02(1 + /31}/;-2_1 + -+ /G’Z,Y;-Z_p). Then ¥ =
(6%, B1,...,3) is of dimension ¢ = 1 + p. As noted in Remark 3, a good estimator is
obtained from the estimating function (4.12). With Y7_, = (Y;2,,... Y2 )’ it reads

3 (paim @) =t ve) " (YR )

1=p

(V2 —o*(1+8YL))).

An efficient estimating function is the extended adaptive estimating function (4.14). It
is obtained from (4.17) by adding to the martingale increment ;> — o*(1 4+ 8'Y?_,) the
increment
—fiz,i1(Zis)o (1 4+ BY) TV
The corresponding heteroscedastic autoregression model is the p-order ARCH model

introduced in Engle (1982),
Yi=o(l+8YL,) %,

where the ¢; are 1.1.d. with a density g which has mean and variance one. In this model
we have

pa(t) = (1 + p's*)’Ee?,

and the estimating function (4.17) is, up to an irrelevant factor c=*(Ee* — 1)7!,

1=p

Y1+ 8YL) ( i ) (V2 = o* (14 BYL)). (4.18)

For normal ¢; this gives the maximum likelihood estimator.

A review of ARCH models is Bollerslev et al. (1992). Efficient estimators in this
model are constructed in Engle and Gonzalez-Rivera (1991), Linton (1993) and Drost
et al. (1994) under increasingly weaker assumptions.

Example 4. Set m =0 and
vg(Zi—q) = 02(1 + 51 (}/;'—1 - OélXi—l)Q + 4 Bp(Yi, — O/X’i—p)2) .
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Then 4 = (0 ar, ... a5, B1,...,0,) is of dimension ¢ = 1 + k + p. As in Example
3, the quasi-score function (4.1) is useless, and a good estimator is obtained from the
estimating function (4.12). We write vg(t) = o*(1+5'(s—a'r)?) with s* = (s ; Lreee s S8)
and g'r = (#'rp-1,...,0'r), and obtain

14 8'(s — a'r)?
vs(t) = | —20%F'(s —a'r)r

o?(s — o'r)?
Hence the estimating function (4.12) is

Zn:(/m 1 o' (148" (Yia —o/Xz-_l)Q)Q)_1 (4.19)

i=p
1+ 3 (Yo — a'Xiy)?
=20%3'(Y,o1 — /X, 1) X4 (Y;'Q —o’(1+ (Yo — O/Xi—1>2)) :
o (Y1 —a'Xi2q)?

The corresponding heteroscedastic regression-autoregression model is the p-order

ARCH model with k-dimensional linear regression trend introduced in Engle (1982),
Yi=o(l+B(Yior — o'Xisy)?) e,

where the ¢; are 1.i.d. with a density g which has mean and variance one. In this model
we have

pa(t) = o*(1+ B'(s — o'r)*)*E e’

and the estimating function (4.19) is, up to the irrelevant factor c=*(Ee* — 1)~!

Z(l + ﬂ/(Yz‘_l — CYIXZ'_I)2>_2
i=p
1 ‘I‘ /BI(YZ'_l — O!,XZ'_I)Z
_QUQﬁI(Yi—l - a,Xi—l)Xi—l <Yz2 - 02(1 + ﬂ,<Yi—1 - a'X¢_1)2>) .
o} (Yion —o'X;y)?
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