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Consider an ergodic discrete-time Markov chain on the real line, with transition distri-
bution Q(z,dy) and invariant distribution 7(dz). For the conditional mean, or autore-
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Introduction

gression function, and the conditional variance write

m@) = [yQ(,dy),
v@) = [(y—m)’Q,dy).
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Assume a parametric model for the conditional mean, m(x) = my(x). We want to
construct an efficient estimator for ). The approach described below also works for
more general time series, and also for continuous-time processes. An outline for general
semimartingales is in Wefelmeyer (1993). To keep the model simple and the assumptions
specific, we restrict attention to Markov chains. We will take ¥ to be one-dimensional.
The generalization to finite-dimensional parameters is straightforward.

Suppose, for the moment, that we choose, in addition to the model m(z) = my(x),
a parametric model for the conditional variance, v(z) = vy(x), involving the same pa-
rameter 9. Then the model is a quasi-likelihood model. The name was introduced by
Wedderburn (1974) for models with a relation between mean and variance. A general-
ization to discrete-time stochastic processes is due to Godambe (1985). A version for
continuous time is considered in Thavaneswaran and Thompson (1986) and Hutton and
Nelson (1986). Several surveys are collected in Godambe (1991). The following simple
results are essentially known. Suppose we observe Xj, ..., X,,. The customary estimator
for the parameter is the mazimum quasi-likelihood estimator. 1t is defined as a solution
of the estimating equation

évﬂ(Xm)lmia(Xm) (Xi —my(Xi 1)) =0, (1.1)

with prime denoting differentiation with respect to 9. If vy(x) does not depend on z, one
can omit vy from the estimating function, and the maximum quasi-likelihood estimator
is a conditional least squares estimator in the sense of Klimko and Nelson (1978). The
estimating function is a martingale. It remains a martingale if v(z) = vy(x) does not
hold. Hence the maximum quasi-likelihood estimator is robust against misspecification of
the conditional variance: Even if v(z) = vy(x) does not hold, the estimator is consistent
and asymptotically normal, with variance

w(mo/v3)/ (x(m /v9) " (12)
Here 7(f) is short for [ f(z)m(dz). If v(x) = vy(z), then (1.2) equals
1 fvo). (13)

The denominator is the quasi-Fisher information.

The model for the conditional variance is often less reliable than the model for the
conditional mean. In fact, in many cases it is fairly arbitrarily chosen for the pur-
pose of defining a maximum quasi-likelihood estimator. This point is emphasized, e.g.,
by Zeger and Liang (1986). If the conditional variance is misspecified, the maximum
quasi-likelihood estimator is inefficient. This is obvious because its asymptotic variance
(1.2) involves the misspecified function vy. Crowder (1987) gives an example in which
the maximum quasi-likelihood estimator is very inefficient under misspecification. T'wo
questions arise: Can one quantify the efficiency loss? Can one determine an efficient
estimator?



To answer these questions, we return to the situation in which we have specified
a parametric model m(z) = my(x) for the autoregression function, but consider the
conditional variance v(x) as unknown. We show in Section 2 that then an asymptotic
variance bound for regular estimators of ¥ is given by

1/m(my /v). (1.4)

By the Schwarz inequality, this is strictly smaller than the asymptotic variance (1.2)
of the maximum quasi-likelihood estimator unless v(z) = wg(z) holds. We show in
Theorem 2 that an efficient estimator, with asymptotic variance (1.4), is obtained if we
replace vy(X;_1) in the estimating equation (1.1) by a predictor v;_; for the conditional
variance v(X;_1). In particular, whatever the model for the conditional variance, the
estimator is asymptotically as good as the maximum quasi-likelihood estimator when
the conditional variance is correctly specified, and strictly better when it is not.

If my(z) = Yz, the efficient estimator can be written in closed form. The model
contains the first-order autoregressive model. We compare our estimator with the best
estimator in the latter model.

We have restricted attention to models in which the parametric specification of the
conditional variance does not hold. Then the maximum quasi-likelihood estimator is
inefficient. If the conditional variance is correctly specified, is the maximum quasi-
likelihood estimator then efficient? In other words, is the asymptotic variance bound
then equal to (1.3), the inverse of the quasi-Fisher information? The answer is, again,
negative. This is shown in Wefelmeyer (1992).

2 Results

Let Xj,...,X, be observations from an ergodic Markov chain on the real line, with
transition distribution Q(x,dy) and invariant distribution 7(dz). To fix things, set
Xy = 0. The results remain true for other initial distributions. Suppose a parametric
model for the autoregression function,

[ 9Q(, dy) = mo(2). (2.1)

Let 9 vary in an open subset of the real line. Write Qy for the set of transition distri-
butions @ for which (2.1) holds. In the following we fix ¥ and @ € Qy.

Assumptions. Let m.(z) be twice differentiable near 7 = 1J. Assume that the second
derivative m/(z) is continuous at 7 = ¥ uniformly in x, and that m} and m}j are m-square
integrable. Let y be Q(x, dy)-square integrable uniformly in z,

sup / Iyl > )Q(z,dy) =0, ¢ — oo.

Assume that v is bounded away from zero.



First we prove that the model is locally asymptotically normal. Let H denote the
set of all bounded functions h(z,y) such that

/h(x,y)Q(x,dy) =0 for all x, (2.2)
/yh(w,y)@(z,dy) = my(z) for all z. (2.3)

We construct a local model in which these functions appear as score functions. Let
Ly(m ® @) denote the space of functions f(z,y) with finite second moment, written as

r@Q(f?) = [ [ fz,yPm(d)Q(s, dy).
Write P, for the joint distribution of X, ..., X, if Q) is true.

Theorem 1 For each h € H and v € R there ezists a transition distribution Q™" €
Qyin-1/2, Such that

" 1
log dP;*" [dPy = un™* 3 h(Xi_1, Xi) = 5u'm @ Q(h) + or, (1),
=1

n~1/? Z h(Xi-1,X;) = Ny under P,,

i=1
where Ny, is normal with mean zero and variance m ® Q(h?).

Conditions for local asymptotic normality for Markov chains are well known, starting
with Roussas (1965). For a nonparametric model see Penev (1991). We will use a version
of the conditions given by Hopfner (1993) for Markov step processes. The main point of
Theorem 1 is that we can find Q™" which belong to Qg ,-1/2,,-

The model P™" h € H, u € R, is the local model at Q. We comment briefly
on the choice of local model. The smaller the local model, the smaller the asymptotic
variance bound for estimators, and the larger the class of competing estimators. Our
aim here is a local model which is not too large and hence does not exclude reasonable
estimators from competing, but still large enough for the corresponding variance bound
to be attained globally, i.e. for all @), by some estimator. The last requirement holds by
Theorem 2 below. It describes an estimator which attains the variance bound. The first
requirement is fulfilled because of Theorem 1. It says that the local model lies within
the given model. We need (2.2) for Q™" (x,-) to be a probability measure, and (2.3) for
Qnuh to be in Q19+n—1/2u’ ie.

/anUh(l" dy) = mﬁ—}-n—l/?u(x)'

Theﬁoundedness of h simplifies the construction of Q™**. The price: H is not closed.
Let H denote the closure of H in Lo(7 ® Q).
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We recall some well-known consequences of local asymptotic normality. A convenient
reference is Greenwood and Wefelmeyer (1990).

First we describe an asymptotic variance bound for estimators of /. Call an estimator
On reqular at @@ with limit L if, for all h € H and u € IR,

n'?(0, —9—n"?u) = L  under P
By the convolution theorem,
L=M+N in distribution,

where M is independent of N, the random variable N is normal with mean zero and
variance /~!, and

I=7®Q(s?).

Here s is the efficient score function in H. It minimizes m ® Q(h?) over h € H. Hence
it is characterized by

T®Q(s*) =7 ®Q(sh)  for he€ H. (2.4)
We prove that the efficient score function is given by
s(2,y) = vl(e) ' mi(e) (y = mo(x)) (2.5)
and that
I =7(mf/v). (2.6)
First we show that the function s defined in (2.5) fulfills (2.4). Use (2.1) to write
T@Q() = [v(@)tmye)? [ (v - mo(@)) Qla, dy)m(da)
— 7(m?/v).
This is (2.6). Use (2.1) to (2.3) to write
T@Q(sh) = [v(@) ' mi@) [ (y—mo(e)) bz, v)Qs, dy)r(da)
— r(m?/v).

Comparing the two equations, we obtain (2.4). To prove s € H, it remains to check that
(2.2) and (2.3) hold for h = s. This follows with relation (2.1), and we are done.

If the true transition distribution fulfills the condition v = vy on the conditional
variance, then the efficient score function equals the quasi-score function

vg ()~ miy(x) (y — ma(2))



on which the estimating equation (1.1) of the maximum quasi-likelihood estimator is
based.

Because of the convolution theorem, we may call /! an asymptotic variance bound
for regular estimators of ¥J. An estimator is efficient at @ if its limit distribution under
B, is N. It is well known that an estimator 1, is regular and efficient at @) if and only
if it is asymptotically linear with influence function equal to I 's,

nt2(D, —9) = I V23" s(X; 1, X;) + op, (1). (2.7)

i=1

Again, a convenient reference is Greenwood and Wefelmeyer (1990). We use this charac-
terization to prove Theorem 2. To describe an efficient estimator, we need an estimator
for the conditional variance v(z) appearing in the efficient score function (2.5). Let v,
be a strongly consistent predictor for v(X,). For example, take v, = 0,(X,) with 9, a
uniformly strongly consistent kernel estimator for the conditional variance function v.
Conditions for uniform strong consistency of @, are given in Collomb (1984) and Truong
and Stone (1992). We do not repeat them here.

Theorem 2 Any n'/2-consistent solution ¥ = 9, of
n2 Y i my(Xis) (X — my(Xio1)) = op, (1)
i=1

1s reqular and efficient at Q).

If P, is true, X; — my(X; ;) is a martingale increment, and v;"ymf(X; ;) is pre-
dictable. Hence the estimating function in Theorem 2 is a martingale. The proof of
Theorem 2 makes use of this property. This is why we estimate v(X; 1) by a predic-
tor v; ; in place of an estimator making full use of the observations Xj,..., X, like
@n(Xifl)-

Corollary. Assume myg(z) = Yz. Then the weighted least squares estimator

Jn = Z Uz'_—llXi—lXi/ Z v X7, (2.8)
i=1 i=1
s reqular and efficient at Q).

The model considered in the Corollary, with my(z) = Yz, contains the autoregressive
model
Xi =0X; 1 +¢,

where ¥; are i.i.d. with unknown mean zero density p. This submodel is described by
transition distributions of the form

Q(z,dy) = p(y — Vz)dy.
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Then v(z) = [y?*p(y)dy does not depend on z, and the estimator (2.8) defined in the
Corollary has asymptotic variance 1—92. On the other hand, as shown by Huang (1986),
the variance bound for regular estimators in the autoregressive model is

(1-19)/0"1, (2.9)

where 0? = [4?p(y)dy and I = [¢'(y)?p(y)dy, with ¢ the logarithmic derivative of p.
An estimator attaining the variance bound (2.9) is constructed in Kreiss (1987). By the
Schwarz inequality, (2.9) is strictly smaller than 1 — 92 unless #'(y) is proportional to ,
which would be the case when p is a normal density. Except in this case, the weighted
least squares estimator (2.8) is not efficient if the autoregressive model is true. On the
other hand, it is robust in that it remains consistent as long as the process is Markov
with conditional mean ¥z, and it is efficient in this larger model.

3 Proofs
Proof of Theorem 1. Fix h € H and u # 0. To construct Q™" consider first
Q¢ (w, dy) = (1+n""uh(z,y)) Q(z, dy).

Since h is bounded and (2.2) holds, this is a transition distribution for n sufficiently
large. By (2.1) and (2.3),

[ yQs (@, dy) = mo(z) + 0~ 2umiy(z).
On the other hand, there exists ¥, (z) between ¥ and 9 + n~'/?u such that

m19+n_1/2u(x) = mﬂ (:I’l) + n71/2um'll9nu($) (m)

Since m,(z) is twice differentiable, relation (2.1) holds up to O(n™!) for @ = Qy*" and
9 = 9+ n~Y2u. We want a transition distribution Q™" such that this holds exactly.
Then Q™" € Qy.,-1/2,. To this end, we add to h in the definition of Q§*" a function
proportional to y, properly truncated so that Q™" is nonnegative for large n,

Q™" (z,dy) = (1+n"u(h(z,y) + ra(2,y))) Q(z, dy),
where
(2, 7y) = vp(x) ™" (m:%w(x)(x) — miy(z) ( /b Q(z,dy )
with

baly) = yI(Iy|<n1/4)
v(x) = /b Q(z, dy) — my(z /b Q(z,dy).
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Since y is Q(z, dy)-square integrable uniformly in z, the function v, is uniformly close
to v, hence also bounded away from zero. Hence r,(z,y) is bounded. By construction,

/Tn(x,y)Q(fv,dy) = 0.

Hence Q™" is a transition distribution. Also,

[ (@ 9)QUe,dy) = m,, ) (@) = mi (@),

so that
/ yQ™ " (z, dy) = My p-12,().

In other words, Q™" € Qg ,-1/2,,.

It remains to prove local asymptotic normality. This is basically due to Roussas
(1965). Hopfner (1993) proves local asymptotic normality for Markov step processes un-
der weaker assumptions. His argument is easily modified to cover discrete-time Markov
processes. To apply it, we need only check an appropriate version of Hellinger differen-
tiability for Q™*", condition H1” in Hopfner et al. (1990). Hellinger differentiability is
implied by a corresponding differentiability in quadratic mean,

/ ro(,9)2Q(x, dy) < Ry () (3.1)

with R, | 0 pointwise and R, m-integrable for large n. To prove (3.1), recall that

"

ml(x) is continuous at 7 = ¢ uniformly in . Hence there exists ¢ > 0 such that for n

sufficiently large,
[ a9 Q(a, dy) < 0=, (@) 72 (miy(2) + 2.

As seen above, v, is bounded away from zero. The function mj is m-square integrable,
and (3.1) follows.

Proof of Theorem 2. Let e > 0 and ¢> 0. Choose ¢ > 0 and N such that

P {n'?0, —9|>c} <e  forn> N,
P{sup,,>ysup, |v,(v) —v(z)| > e} <e.

Restrict attention to Xy, X1, ... such that for n > N and z € R,

n'/29, — 9 < ¢,
lun(z) —v(x)| < e.



Rewrite the estimating equation as

op, (1) =n~'/? > vl 1m i-1) (Xi -y, (Xi—l))
=n UZZUZ. \my (X~ )(Xi — my(X;-1))
n 2Nyt 1y (Xio1) (m@n (Xi1) — mﬂ(Xi—l))

=n"'/? ZU i-1) ﬂ(Xi—l) (Xi = my(Xi—1))
' (9, — 9)m (i fv)
+n 2 (ml (Ximy) — miy(Xin)) (X — my (X))
Py ( vz = o(Xi) ™) m(Xia) (6= mo(Xicr)
n*?(d ’12( 1) tml (X 1)? — m(mf Jv )
—n Z (Uz-__lm,gn Xio1) = v(Xim) " my(Xina)) (my, (Xict) = ma(Xio1)
n=2 S 0(Xisn) Ttmly(Xis) (my, (Xioa) = ma(Ximy) = (9 — 9)m (X)) -
We have to show that the third to seventh right hand terms are of order op,(1). Then
Theorem 2 follows by solving the estimating equation for 1J,, — ¥ and applying a mar-

tingale central limit theorem. Split the sums into sums from 1 to N and from N + 1 to

n. The terms involving sums from 1 to N go to zero pointwise because of the factors

n Y2 or n~'. Hence we may assume w.l.g. that N = 0. The assumptions imply that

v is bounded and bounded away from zero. We assume w.l.g. that 1 < v < ¢. In the
following we show that the third to seventh terms are small in probability if £ is small.
They are negligible if we take £ to zero. The third term is the crucial one.

Third term. Choose 19,; between 1 and 1§n such that

Write the third term as R X
(0, —9) A, + 0?0 —9)B

with
A, = 1/22% 1 (Xi1) (Xi — ma(Xi 1)),
B, = n 'Y v} (mﬁm H> — my(X; 1)) (Xi — mg(X; 1)) .

Note that A, has predictable quadratic variation

n Y oAm(Xis) o(Xis) < (L—e)%en™ Y my(X

Since m}j is m-square integrable, it follows that A, = Op,(1). It is only here that we
need a predictor v;_; based on Xy, ..., X; ; rather than an estimator 9, (X;_;) based on
Xo, ..., Xp. The average B, is small in probability since m! — m/j is small for 7 near v
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and y — my(z) has variance 7(v) < ¢. Hence the third term is small by n'/?-consistency
of J,,.

Fourth term. We have |v; '} — v(X; ;)| < e. The function m}(z) (y — my(z)) has
variance
m(miv) < er(ml).

Hence the fourth term is small by Chebyshev’s inequality.
Fifth term. The average is of order op, (1) by the law of large numbers.

Last two terms. Choose 9,,; between 9 and van such that
my (Xi 1) = mo(Xi 1) + (9 — O)mjy (X 1),

Then the sixth term can be written as

1/2 -1 Z( v;_ 1m Xi1) — (X5 1) tml (X, 1)) m;svm(Xi—1)-
Similarly, the seventh term can be written as
1/2 - Z (Xi—l) (m%m, (Xiz1) — m%(Xi—ﬂ) .

As before one checks that the averages are small in probability.
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