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We illustrate several recent results on efficient estimation for semipara-
metric time series models with a simple class of models: first-order non-
linear autoregression with independent innovations. We consider in par-
ticular estimation of the autoregression parameter, the innovation dis-
tribution, conditional expectations, the stationary distribution, the sta-
tionary density, and higher-order transition densities.

1. Introduction

Inference for semiparametric time series is well-studied. Two recent mono-
graphs are Taniguchi and Kakizawa (2000) and Fan and Yao (2003). The
classical nonparametric estimators are however inefficient. In the last twenty
years, efficient estimators for various functionals of such models have been
constructed. The main effort was on estimators for the Euclidean parame-
ters, but recently other functionals of time series have also been treated. We
describe some of these results in a simple situation, observations X0, . . . , Xn

from a stationary nonlinear autoregressive model Xi = rϑ(Xi−1) + εi with
independent innovations εi. For notational simplicity we restrict attention
to the first-order case and assume that ϑ is one-dimensional. The innova-
tions are assumed to have mean zero, finite variance, and a positive density
f . The model is semiparametric, with “parameter of interest” ϑ and “nui-
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sance parameter” f . We will also be interested in f , in which case ϑ would
be the nuisance parameter. In the time series and regression literature, our
model would be called “parametric” because the (auto-)regression function
depends on a finite-dimensional parameter.

In Section 2 we recall a characterization of regular and efficient estima-
tors in the context of our model. Section 3 describes an efficient estimator for
ϑ as a one-step improvement of a n1/2-consistent initial estimator. Section 4
shows that appropriately weighted residual-based empirical estimators are
efficient for linear functionals E[h(ε)] of the innovation distribution. Sec-
tion 5 introduces similarly weighted residual-based kernel estimators f̂w for
the innovation density and shows that plug-in estimators

∫
h(y)f̂w(y) dy

are also efficient for linear functionals E[h(ε)]. Section 6 uses the represen-
tation E(h(Xn+1 | Xn) = E[h(ε + rϑ(x))] for a conditional expectation to
construct n1/2-consistent and efficient estimators for it. The results extend
to higher-order lags. As m tends to infinity, the conditional expectation
E(h(Xn+m | Xn) of lag m converges to the expectation E[h(X)] under
the stationary law. This gives rise to efficient estimators for such expecta-
tions, as shown in Section 7. The stationary density g has the representation
g(y) = E[f(y−rϑ(X))]. In Section 8 we use this representation to construct
n1/2-consistent and efficient estimators for g. The two-step transition den-
sity q2 has the representation q2(x, z) = E[f(z − rϑ(ε + rϑ(x)))]. Section
9 suggests n1/2-consistent and efficient estimators for q2. This extends to
higher-order lags.

Our estimators for the autoregression parameter, the innovation dis-
tribution and the stationary distribution in Sections 3, 4 and 7 have the
same parametric convergence rate as the usual nonparametric estimators,
but smaller asymptotic variances. On the other hand, our estimators for
conditional expectations, the stationary density and higher-order transi-
tion densities in Sections 5, 8 and 9 have better, parametric, convergence
rates than the nonparametric estimators. The parametric rates in Sections
5 and 9 require a parametric form of the autoregression function, because
the representations of the functionals there are functions of the value of the
autoregression function at a point. The parametric rates in Sections 4, 7
and 8 would extend to models with semiparametric or nonparametric au-
toregression functions, because the functionals considered there are smooth
functionals of the autoregression function, and the plug-in principle works.
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2. Characterization of efficient estimators

In this section we recall a characterization of efficient estimators in the
context of our semiparametric time series model. The standard reference
in the case of i.i.d. data is Bickel, Klaassen, Ritov and Wellner (1998).
The theory for time series is similar, especially for processes driven by
independent innovations, as in our model.

Let X0, . . . , Xn be observations from the stationary nonlinear time se-
ries Xi = rϑ(Xi−1)+εi. Assume that the innovations εi are i.i.d. with mean
zero, finite variance σ2, and density f . Conditions for geometric ergodicity
in terms of the growth of rϑ are in Mokkadem (1987), Bhattacharya and Lee
(1995a, b) and An and Huang (1996). The model is described by the transi-
tion density f(y−rϑ(x)) from X0 = x to X1 = y, and parametrized by ϑ and
f . Write F for the distribution function of f . Let g denote the stationary
density. We will write (X, ε) for (X0, ε1) and (X, Y ) for (X0, X1). In order
to characterize efficient estimators of smooth functionals of (ϑ, f), we show
that the model is locally asymptotically normal. For this, fix ϑ and f and in-
troduce perturbations ϑnu = ϑ+n−1/2u and fnv(x) .= f(x)(1+n−1/2v(x))
(in the sense of Hellinger differentiability). Here the local parameter u runs
through R. For fnv to be again a probability density with mean zero, the
local parameter v must lie in the linear space

V = {v ∈ L2(F ) : E[v(ε)] = E[εv(ε)] = 0}.

In other words: v(ε) must be orthogonal to 1 and ε. If rϑ is appropriately
differentiable in ϑ with derivative ṙϑ, then the transition density is per-
turbed as

fnv(y−rϑnu(x)) .= f(y−rϑ(x))
(
1+n−1/2

(
v(y−rϑ(x))+uṙϑ(x)`(y−rϑ(x))

))
,

with ` = −f ′/f the score function for location of the innovation distribu-
tion. The perturbation of the transition density is the tangent ; it is conve-
nient to write it as a random variable

tuv(X, Y ) = v(ε) + uṙϑ(X)`(ε).

The tangent space of the model is

T = {tuv(X, Y ) : u ∈ R, v ∈ V }.

Let Pn+1 denote the joint law of (X0, . . . , Xn), with density

g(X0)
n∏

i=1

f(Xi − rϑ(Xi−1)),
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and write Pn+1,uv for the joint law under ϑnu and fnv. Koul and Schick
(1997) prove local asymptotic normality, i.e. a quadratic approximation of
the local log-likelihood of the form

log
dPn+1,uv

dPn+1
(X0, . . . , Xn) = n−1/2

n∑
i=1

tuv(Xi−1, Xi)−
1
2
E[t2uv(X, Y )]+op(1),

where the linear term n−1/2
∑n

i=1 tuv(Xi−1, Xi) is asymptotically normal
with variance E[t2uv(X, Y )] by a martingale central limit theorem.

The tangent space T is a subspace of

S = {s(X, Y ) ∈ L2(P2) : E(s(X, Y ) | X) = 0}.

Consider a real-valued functional κ of (ϑ, f). Call κ differentiable at (ϑ, f)
with gradient s ∈ S if

n1/2(κ(ϑnu, fnv)− κ(ϑ, f)) → E[s(X, Y )tuv(X, Y )], (u, v) ∈ R× V.

The gradient is not uniquely determined, but its projection t∗ onto T , the
canonical gradient, is. Let κ̂ be an estimator of κ. Call κ̂ regular at (ϑ, f)
with limit L if

n1/2(κ̂− κ(ϑnu, fnv)) ⇒ L under Pn+1,uv, (u, v) ∈ R× V.

Call κ̂ asymptotically linear at (ϑ, f) with influence function s ∈ S if

n1/2(κ̂− κ(ϑ, f)) = n−1/2
n∑

i=1

s(Xi−1, Xi) + op(1).

By a martingale central limit theorem, such an estimator is asymptotically
normal with variance E[s2(X, Y )]. The convolution theorem of Hájek (1970)
and Le Cam (1971) in the version of Bickel et al. (1998, Section 2.3) implies
the following three results:

(1) The distribution of L is a convolution, L = N + M in distribution,
where N is normal with variance E[t2∗(X, Y )] and M is independent of
N .

(2) A regular estimator has limit L = N if and only if it is asymptotically
linear with influence function t∗.

(3) An asymptotically linear estimator is regular if and only if its influence
function is a gradient.

A regular estimator with limit L = N is least dispersed among all
regular estimators. Such an estimator is called efficient. It follows from
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(1)–(3) that κ̂ is regular and efficient if and only if it is asymptotically
linear with influence function equal to the canonical gradient,

n1/2(κ̂− κ(ϑ, f)) = n−1/2
n∑

i=1

t∗(Xi−1, Xi) + op(1). (1)

Remark 1. Note that S is the tangent space of the nonparametric
model of all first-order Markov chains on the state space R. Such a chain
is described by its transition distribution Q(x, dy), which is perturbed as
Qns(x, dy) .= Q(x, dy)(1 + n−1/2s(x, y)) with s ∈ S. The reason for embed-
ding T into S, i.e. the autoregressive model into a nonparametric Markov
chain model, is the following. Often the functional of interest has a natural
extension to a larger model. In such a larger model it is typically easier to
determine a gradient, for example as the influence function of some non-
parametric estimator. The canonical gradient is then found by projecting
the given gradient onto T . Also, in some cases an efficient estimator is found
by correcting the given nonparametric estimator.

The choice of the larger space S determines how many (regular) asymp-
totically linear estimators exist. For the choice S = T , any functional would
have a unique gradient, and all (regular) asymptotically linear estimators
would be asymptotically equivalent. We could also pick a larger S than
above, for example the tangent space of all Markov chains of arbitrary or-
der, which would give more “asymptotically linear” estimators, but for our
purposes the chosen S turns out to be large enough. �

Remark 2. We have introduced gradients and influence functions as
elements of the tangent space S of transition distributions Q(x, dy). Bickel
(1993) and Bickel and Kwon (2001) describe Markov chain models by the
joint law P2(dx, dy) of two successive observations. This is particularly
convenient when the model and the functional of interest are naturally
described in terms of P2. Results for Markov chains can then be obtained
from results for bivariate i.i.d. models, and vice versa. See also the discussion
in Greenwood, Schick and Wefelmeyer (2001). �

To calculate canonical gradients, it is convenient to decompose the tan-
gents tuv into orthogonal components. We have E[ε`(ε)] = 1. Hence the
projection of `(ε) onto V is `V (ε) = `(ε)−σ−2ε. Write µ = E[ṙϑ(X)]. Then

tuv(X, Y ) = v(ε) + uµ`V (ε) + us0(X, Y )
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with s0(X, Y ) = ṙϑ(X)`(ε) − µ`V (ε) orthogonal to V . The variance of
s0(X, Y ) is

Λ = E[s2
0(X, Y )] = RJ − µ2JV

with R = E[ṙ2
ϑ(X)], J = E[`2(ε)] and JV = E[`2V (ε)] = J − σ−2.

In the following we describe the canonical gradients for some of the
functionals considered in Sections 3–9 below.

Autoregression parameter. By Schick and Wefelmeyer (2002a, Section
2), the canonical gradient of κ(ϑ, f) = ϑ is

t∗(X, Y ) = Λ−1s0(X, Y ). (2)

If f happens to be normal, then `(ε) = σ−2ε, so J = σ−2, JV = 0, Λ =
Rσ−2 and hence s0(X, Y ) = ṙϑ(X)σ−2ε and t∗(X, Y ) = R−1ṙϑ(X)ε.

Innovation distribution. By Schick and Wefelmeyer (2002a, Section 2),
the canonical gradient of a linear functional κ(ϑ, f) = E[h(ε)] of the inno-
vation distribution has canonical gradient

t∗(X, Y ) = hV (ε)− µE[hV (ε)`(ε)]Λ−1s0(X, Y ), (3)

where hV (ε) = h(ε)−E[h(ε)]−σ−2E[εh(ε)]ε is the projection of h(ε) onto
V . In the submodel with ϑ known, the canonical gradient of E[h(ε)] is
hV (ε).

Conditional expectation. The conditional expectation with lag one of a
function h can be written

E(h(Y ) | X = x) =
∫

h(y)f(y − rϑ(x)) dy =
∫

h(y + rϑ(x))f(y) dy.

This is the (unconditional) expectation E[h(ε, ϑ)] of a function h(y, ϑ) =
h(y + rϑ(x)) depending on ϑ, and the gradient is similar to (3), with addi-
tional terms from this dependence on ϑ,

t∗(X, Y ) = hV (ε, ϑ) + (ṙϑ(x)− µ)E[hV (ε, ϑ)`(ε)]Λ−1s0(X, Y ). (4)

3. Autoregression parameter

A simple estimator of ϑ is the least squares estimator. It is defined as the
minimizer in ϑ of

∑n
i=1(Xi−rϑ(Xi−1))2 and is the solution of the martingale

estimating equation
n∑

i=1

ṙϑ(Xi−1)(Xi − rϑ(Xi−1)) = 0.



September 2, 2005 14:16 WSPC/Trim Size: 9in x 6in for Review Volume m-bickel07

Efficient estimators for time series 7

By Taylor expansion, its influence function is seen to be s(X, Y ) =
R−1ṙϑ(X)ε. We have seen in Section 2 that this equals the canonical gra-
dient of ϑ only if the innovations happen to be normally distributed.

An efficient estimator of ϑ is obtained in Koul and Schick (1997) as a
one-step improvement of an initial n1/2-consistent estimator ϑ̂, for example
the least squares estimator. Rewrite the canonical gradient of ϑ as

t∗(X, Y ) = Λ−1
(
(ṙϑ(X)− µ)`(ε)− µσ−2ε

)
.

Estimate ` = −f ′/f by ˆ̀ = −f̂ ′/f̂ with f̂ an appropriate kernel es-
timator. Then estimate J by Ĵ = (1/n)

∑n
i=1

ˆ̀2(ε̂i), and µ, R and σ2

by empirical estimators µ̂ = (1/n)
∑n

i=1 ṙϑ̂(Xi), R̂ = (1/n)
∑n

i=1 ṙ2
ϑ̂
(Xi)

and σ̂2 = (1/n)
∑n

i=1 ε̂2
i , where ε̂i = Xi − rϑ̂(Xi−1) are the residuals.

For Λ = RJ − µ2JV = (R − µ2)J − µ2σ−2 we obtain the estimator
Λ̂ = (R̂− µ̂2)J − µ̂2σ̂−2, and for t∗(Xi−1, Xi) we obtain the estimator

t̂∗(Xi−1, Xi) = Λ̂−1
(
(ṙϑ̂(Xi)− µ̂)ˆ̀(ε̂i)− µ̂σ̂−2ε̂i

)
.

The efficient one-step improvement of ϑ̂ is then

ϑ̂ +
1
n

n∑
i=1

t̂∗(Xi−1, Xi).

It does not require sample splitting. A related result for parameters of the
moving average coefficients in invertible linear processes is in Schick and
Wefelmeyer (2002b).

Remark 3. The linear autoregressive model Xi = ϑXi−1 + εi is
a degenerate case. Here rϑ(X) = ϑX, ṙϑ(X) = X, and µ = 0. Hence
s0(X, Y ) = X`(ε). Furthermore, R = E[ṙ2

ϑ(X)] = E[X2], which is the
stationary variance,

R = τ2 = σ2
∞∑

j=0

ϑ2j =
σ2

1− ϑ2
.

Hence Λ = τ2J , and the canonical gradient (2) reduces to
t∗(X, Y ) = τ−2J−1X`(ε). The least squares estimator is ϑ̂ =∑n

i=1 Xi−1Xi/
∑n

i=1 X2
i−1. An efficient estimator for ϑ is the one-step im-

provement

ϑ̂ + τ̂−2Ĵ−1 1
n

n∑
i=1

Xi
ˆ̀(ε̂i)

with ε̂i = Xi − ϑ̂Xi−1 and τ̂2 = (1 − ϑ̂2)−1(1/n)
∑n

i=1 ε̂2
i , and with Ĵ and

ˆ̀ as before.
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The canonical gradient equals the one in the submodel with f known.
Hence ϑ can be estimated adaptively with respect to f . To prove efficiency
in this situation, we need local asymptotic normality only for fixed f . Kreiss
(1987a, b) constructs adaptive estimators for parameters in ARMA models
with symmetric innovation density and in AR models with mean zero inno-
vation density. Jeganathan (1995) and Drost, Klaassen and Werker (1997)
generalize Kreiss (1987a) to nonlinear and heteroscedastic autoregression.
See also Koul and Pflug (1990) and Koul and Schick (1996) for adaptive
estimation in explosive linear autoregression and in random coefficient au-
toregression. General results on adaptive estimation in the i.i.d. case are in
Klaassen and Putter (2005). �

4. Innovation distribution

In this section we consider estimation of a linear functional E[h(ε)] of the
innovation distribution. Suppose first that ϑ is known. Then we know the
innovations εi = Xi − rϑ(Xi−1) and can estimate E[h(ε)] by the empirical
estimator (1/n)

∑n
i=1 h(εi). Its influence function is h(ε) − E[h(ε)]. The

canonical gradient for ϑ known is hV (ε) = h(ε) − E[h(ε)] − σ−2E[εh(ε)]ε,
so the empirical estimator is not efficient. The reason is that it does not use
the information that the innovations have mean zero. There are different
ways of using this information.

1. Following Levit (1975) and Haberman (1984), an estimator with in-
fluence function hV (ε) is obtained by estimating σ−2E[εh(ε)] empirically
and using the corrected empirical estimator

1
n

n∑
i=1

h(εi)−
∑n

i=1 εih(εi)∑n
i=1 ε2

i

1
n

n∑
i=1

εi.

2. Following Owen (1988, 2001), choose random weights wi such that
the weighted empirical distribution has mean zero,

∑n
i=1 wiεi = 0, and use

the weighted empirical estimator

1
n

n∑
i=1

wih(εi).

By the method of Lagrange multipliers, the weights are seen to be of the
form wi = 1/(1 + λεi). This implies λ = σ−2(1/n)

∑n
i=1 εi + op(n−1/2) and

therefore

1
n

n∑
i=1

wih(εi) =
1
n

n∑
i=1

h(εi)− σ−2E[εh(ε)]
1
n

n∑
i=1

εi + op(n−1/2).
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Hence this estimator also has influence function hV (ε).
Now return to the autoregressive model of interest, with ϑ unknown. The

parametric plug-in principle says that an efficient estimator for E[h(ε)] is
obtained by replacing ϑ by an efficient estimator ϑ̂. Then the true innova-
tions are replaced by the residuals ε̂i = Xi − rϑ̂(Xi−1). Correspondingly,
choose weights ŵi such that

∑n
i=1 ŵiε̂i = 0. Efficient estimators for E[h(ε)]

are then obtained as the residual-based corrected empirical estimator

1
n

n∑
i=1

h(ε̂i)−
∑n

i=1 ε̂ih(ε̂i)∑n
i=1 ε̂2

i

1
n

n∑
i=1

ε̂i (5)

and the residual-based weighted empirical estimator

1
n

n∑
i=1

ŵih(ε̂i). (6)

Depending on h, these improvements can lead to drastic variance reduc-
tions. As with the true innovations, we have the expansion

1
n

n∑
i=1

ŵih(ε̂i) =
1
n

n∑
i=1

h(ε̂i)− σ−2E[εh(ε)]
1
n

n∑
i=1

ε̂i + op(n−1/2). (7)

The same expansion holds for the estimator (5). For any n1/2-consistent
estimator ϑ̂,

1
n

n∑
i=1

h(ε̂i) =
1
n

n∑
i=1

h(εi)− µE[h′(ε)](ϑ̂− ϑ) + op(n−1/2).

By (2), an efficient estimator ϑ̂ has influence function Λ−1s0(X, Y ). With
E[h′(ε)] = E[h(ε)`(ε)], the estimators (5) and (6) are seen to have influence
functions equal to the canonical gradient (3). Hence they are efficient.

Efficient estimators of the type (5) were obtained by Wefelmeyer (1994)
for linear autoregression, by Schick and Wefelmeyer (2002a) for nonlinear
and heteroscedastic autoregression Xi = rϑ(Xi−1) + sϑ(Xi−1)εi, and by
Schick and Wefelmeyer (2002b) for invertible linear processes with moving
average coefficients depending on a finite-dimensional parameter ϑ.

Related results are possible for autoregression Xi = r(Xi−1)+ εi with a
semiparametric or nonparametric model for the autoregression function r.
Then ε̂i = Xi − r̂(Xi−1) with r̂ a nonparametric estimator of r. Here the
(unweighted) residual-based empirical estimator (1/n)

∑n
i=1 h(ε̂i) is already

efficient. The reason is that r̂ uses the information in E[ε] = 0. For the
corresponding (heteroscesdastic) nonparametric regression model, Akritas
and Van Keilegom (2001) obtain a functional central limit theorem for the
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residual-based empirical distribution function. Different estimators for the
regression function are used in Müller, Schick and Wefelmeyer (2004a, b;
2005c). See also Cheng (2002, 2004, 2005).

Remark 4. The linear autoregressive model Xi = ϑXi−1 + εi is a
degenerate case. Then rϑ(X) = ϑX, ṙϑ(X) = X, and µ = 0. By Section 2,
the canonical gradient of E[h(ε)] is hV (ε) and equals the canonical gradient
in the submodel with ϑ known. Hence E[h(ε)] can be estimated adaptively
with respect to ϑ. It follows in particular that the estimators (5) and (6)
are efficient even if an inefficient estimator for ϑ is used. Also, to prove
efficiency, we need local asymptotic normality only for fixed ϑ. �

5. Innovation density

In this section we describe weighted residual-based kernel estimators f̂w

for the innovation density f . They will be efficient in the (weak) sense that
they lead to efficient plug-in estimators

∫
h(x)f̂w(x) dx for linear functionals

E[h(ε)]. This will be used in Sections 6–9 to construct efficient estimators
for conditional expectations, the stationary distribution and density, and
higher-order transition densities.

As in Section 4, let ϑ̂ be n1/2-consistent, introduce residuals ε̂i = Xi −
rϑ̂(Xi−1) and choose weights ŵi such that

∑n
i=1 ŵiε̂i = 0. The innovation

density f can be estimated by unweighted and weighted residual-based
kernel estimators

f̂(y) =
1
n

n∑
i=1

kb(y − ε̂i) and f̂w(y) =
1
n

n∑
i=1

ŵikb(y − ε̂i),

where kb(x) = k(x/b)/b with k a kernel and b a bandwidth. For an appro-
priate choice of bandwidth, a Taylor expansion gives

f̂w(y) = f̂(y)− σ−2yf(y)
1
n

n∑
i=1

ε̂i + op(n−1/2).

This is analogous to expansion (7) for the weighted residual-based empirical
estimator (1/n)

∑n
i=1 ŵih(ε̂i). We see that f̂w differs from f̂ by a term of

order n−1/2. Since f̂w and f̂ converge to f at a slower rate, weighting has
a negligible effect if we are interested in estimating f itself.

Now we compare the residual-based kernel estimator f̂ with the kernel
estimator f∗ based on the true innovations,

f∗(y) =
1
n

n∑
i=1

kb(y − εi).
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We obtain

f̂(y) = f∗(y) + f ′(y)µ(ϑ̂− ϑ) + op(n−1/2).

For the weighted residual-based kernel estimator we therefore have

f̂w(y) = f∗(y)+σ−2yf(y)
1
n

n∑
i=1

εi−(σ−2yf(y)+f ′(y))µ(ϑ̂−ϑ)+op(n−1/2).

Müller, Schick and Wefelmeyer (2005a) give conditions under which these
stochastic expansions hold for some norms such as the supremum norm and
the V -norm ‖f‖V =

∫
|f(y)|V (y) dy, where typically V (y) = (1 + |y|)m for

some non-negative integer m. For m = 0 this is the L1-norm with respect
to Lebesgue measure.

The stronger norms, with m > 0, are useful when we want to estimate
e.g. a moment E[εm] with a plug-in estimator

∫
ymf̂w(y) dy. This is an

example of the nonparametric plug-in principle: Even though f̂w converges
to f at a rate slower than n−1/2, the smooth functional

∫
ymf̂w(y) dy of f̂w

converges to
∫

ymf(y) dy = E[εm] at the parametric rate n−1/2.
The estimator

∫
ymf̂w(y) dy is even efficient if an efficient estima-

tor ϑ̂ is used. More generally, for all sufficiently regular h bounded by
(a multiple of) V , the plug-in estimators

∫
h(y)f̂w(y) dy are efficient for∫

h(y)f(y) dy = E[h(ε)]. We may therefore call f̂w efficient for plug-in.
This (weak) efficiency concept for function estimators was introduced by
Klaassen, Lee and Ruymgaart (2001).

Weighting can lead to considerable variance reduction. For example, in
the linear autoregression model Xi = ϑXi−1 + εi we have µ = 0 and∫

ymf̂(y) dy =
1
n

n∑
i=1

εm
i + op(n−1/2),

∫
ymf̂w(y) dy =

1
n

n∑
i=1

εm
i − σ−2E[εm+1]

1
n

n∑
i=1

εi + op(n−1/2).

The asymptotic variances are E[ε2m] and E[ε2m]− σ−2(E[εm+1])2, respec-
tively. For m = 3 and f normal these variances are 15σ6 and 6σ6, respec-
tively, a variance reduction of nearly two thirds.

6. Conditional expectation

The conditional expectation E(h(Xn+1) | Xn = x) with lag one of a known
function h can be estimated by a nonparametric estimator∑n

i=1 kb(x−Xi−1)h(Xi)∑n
i=1 kb(x−Xi−1)

,
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where kb(x) = k(x/b)/b with k a kernel and b a bandwidth. If the time series
is known to be first-order Markov with transition density q(x, y) from x to
y, then we have

E(h(Xn+1) | Xn = x) =
∫

h(y)q(x, y) dy,

and an estimator is obtained by plugging in a (kernel) estimator for q. In the
nonlinear autoregressive model Xi = rϑ(Xi−1) + εi, the transition density
is q(x, y) = f(y − rϑ(x)), and we can write

E(h(Xn+1) | Xn = x) =
∫

h(y + rϑ(x))f(y) dy = E[h(ε + rϑ(x))].

This is an (unconditional) expectation under the innovation distribution as
in Section 4, but now of a function h(y, ϑ) = h(y + rϑ(x)) depending on ϑ.
This suggests estimating the conditional expectation by

1
n

n∑
i=1

h(ε̂i + rϑ̂(x)) =
∫

h(·, ϑ̂) dF̂

with F̂(y) = (1/n)
∑n

i=1 1(ε̂i ≤ y) the empirical distribution function of
the residuals ε̂i = Xi − rϑ̂(Xi−1). If ϑ̂ is n1/2-consistent, then

∫
h(·, ϑ̂) dF̂

will be n1/2-consistent. For efficiency we need to use an efficient estimator
ϑ̂ and to replace F̂ by a version that uses the information E[ε] = 0. As
seen in Section 4, one way of doing this is by taking a weighted version
F̂w(y) = (1/n)

∑n
i=1 wi1(ε̂i ≤ y). The resulting estimator for the condi-

tional expectation is
∫

h(·, ϑ̂) dF̂w. Similar as in Section 5, a Taylor expan-
sion gives∫

h(·, ϑ̂) dF̂w =
1
n

n∑
i=1

hV (εi, ϑ)+(ṙϑ(x)−µ)E[h′V (ε, ϑ)](ϑ̂−ϑ)+op(n−1/2).

We have E[h′V (ε, ϑ)] = E[hV (ε, ϑ)`(ε)]. By (2), an efficient estimator has in-
fluence function Λ−1s0(X, Y ); so

∫
h(·, ϑ̂) dF̂w has influence function equal

to the canonical gradient (4) and is therefore efficient.
These results extend to higher lags. For example, for lag two the condi-

tional expecation E(h(Xn+2) | Xn = x) becomes E[h(ε2 + rϑ(ε1 + rϑ(x)))]
and is estimated n1/2-consistently by the residual-based von Mises statistic

1
n2

n∑
i=1

n∑
j=1

h(ε̂j + rϑ̂(ε̂i + rϑ̂(x))) =
∫∫

h(z + rϑ̂(y + rϑ̂(x))) dF̂(y)dF̂(z).

An efficient estimator is obtained if we replace F̂ by the weighted version
F̂w and use an efficient estimator for ϑ.
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To treat lags higher than two, set %1ϑ(x, y) = y + rϑ(x) and define
recursively %mϑ(x, y1, . . . , ym) = ym + rϑ(%m−1,ϑ(x, y1, . . . , ym−1)). Then
an m-step conditional expectation can be written

ν(h) = E(h(Xn+m) | Xn = x) = E[h(%mϑ(x, ε1, . . . , εm))].

With ϑ̂ efficient, an efficient estimator for E(h(Xn+m) | Xn = x) is the
weighted residual-based von Mises statistic∫

· · ·
∫

h(%mϑ̂(x, y1, . . . , ym)) dF̂w(y1) . . . dF̂w(ym).

To prove n1/2-consistency of such von Mises statistics, we need an appropri-
ate balance of smoothness assumptions on h and on f . For discontinuous
h we must assume that f is smooth. Then we can replace F̂ or F̂w by
smoothed versions dF̂(y) = f̂(y) dy and dF̂w(y) = f̂w(y) dy with residual-
based unweighted or weighted kernel estimators f̂ and f̂w as in Section 5.
Write

ν̂(h) =
∫
· · ·

∫
h(%mϑ̂(x, y1, . . . , ym))f̂w(y1) . . . f̂w(ym) dy1 · · · dym.

Müller, Schick and Wefelmeyer (2005b) prove functional central limit the-
orems for processes {n1/2(ν(h) − ν̂(h)) : h ∈ H} and appropriate function
classes H.

Simulations show that smoothing also improves the small-sample be-
havior of the von Mises statistics, especially for discontinuous h.

Remark 5. The parametric rates for estimators of conditional expecta-
tions do not extend to autoregression Xi = r(Xi−1)+εi with semiparamet-
ric or nonparametric autoregression function r. A conditional expectation
of lag one has representation E(h(Xn+1) | Xn = x) = E[h(ε + r(x))].
This is a (smooth) function of r(x), and the convergence rate of an esti-
mator for the conditional expectation is in general determined by the rate
at which we can estimate r(x). Nevertheless, estimators based on this rep-
resentation may still be better than nonparametric estimators. For results
in nonparametric (censored) regression we refer to Van Keilegom, Akritas
and Veraverbeke (2001) and Van Keilegom and Veraverbeke (2001, 2002).
�

7. Stationary distribution

A simple estimator for the expectation E[h(X)] of a known function h un-
der the stationary distribution is the empirical estimator (1/n)

∑n
i=1 h(Xi).
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The estimator does not make use of the autoregressive structure of our
model. A better estimator can be obtained as follows. As m tends to in-
finity, the m-step conditional expectation E(h(Xm) | X0 = x) converges
to E[h(X)] at an exponential rate. By Section 6, for fixed m, an efficient
estimator of E(h(Xm) | X0 = x) is the weighted residual-based von Mises
statistic

κ̂m(x) =
∫
· · ·

∫
h(%mϑ̂(x, y1, . . . , ym)) dF̂w(y1) . . . dF̂w(ym)

or its smoothed version. We expect that κ̂m(n)(x) is efficient for E[h(X)] if
m(n) increases with n at an appropriate (logarithmic) rate.

The bias induced by the choice of starting point x can be removed by
averaging, i.e. by using instead of κ̂m(n)(x) the estimator

1
n

n∑
i=1

κ̂m(n)(Xi).

For invertible linear processes with moving average coefficients depending
on a finite-dimensional parameter, a corresponding result is proved in Schick
and Wefelmeyer (2004b).

8. Stationary density

The usual estimator for the stationary density g of a time series is the kernel
estimator (1/n)

∑n
i=1 kb(x−Xi), where kb(x) = k(x/b)/b with kernel k and

bandwidth b. For our nonlinear autoregressive model, the stationary density
can be written

g(y) =
∫

f(y − rϑ(x))g(x) dx = E[f(y − rϑ(X))].

This is an expectation under the stationary distribution as in Section 7,
but now for a function h(x, ϑ, f) = f(y− rϑ(x)) depending on ϑ and f . By
the plug-in principle mentioned in Section 5, we expect to obtain a n1/2-
consistent estimator if we plug appropriate kernel estimators f̂ for f and ĝ

for g and a n1/2-consistent estimator ϑ̂ for ϑ into this representation,

g∗(y) =
∫

f̂(y − rϑ̂(x))ĝ(x) dx.

Note however that g is the density of the convolution of ε and rϑ(X). Even
if the density g of X is nice, the distribution of rϑ(X) may be unpleasant.
A degenerate case would be a constant autoregression function, say rϑ =
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0. Then we observe independent Xi = εi with density g = f , and n1/2-
consistent estimation of g is not possible. There may be a problem even if
rϑ is smooth and strictly increasing but with derivative vanishing at some
point. However, if rϑ has a derivative that is bounded away from zero,
g∗(y) will be n1/2-consistent. For efficiency we need an efficient estimator
ϑ̂ as in Section 3 and a weighted residual-based kernel estimator f̂w for
the innovation density as in Section 5, and we must replace the estimator
ĝ(x) dx by an efficient estimator as in Section 7.

In the i.i.d. case, n1/2-consistent estimators for convolution densities
are studied by Frees (1994), Saavedra and Cao (2000) and Schick and We-
felmeyer (2004c). A n1/2-consistent estimator for the stationary density
of a first-order moving average process is obtained in Saavedra and Cao
(1999). Schick and Wefelmeyer (2004a) introduce an efficient version, and
Schick and Wefelmeyer (2004d) prove functional central limit theorems for
higher-order moving average processes and density estimators viewed as
elements of function spaces. For general invertible linear processes, n1/2-
consistent estimators of the stationary density are constructed in Schick
and Wefelmeyer (2005).

9. Transition density

The one-step transition density q(x, y) from X0 = x to X1 = y of a first-
order Markov chain can be estimated by the Nadaraya–Watson estimator

q̂(x, y) =
∑n

i=1 kb(x−Xi−1)kb(y −Xi)∑n
i=1 kb(x−Xi−1)

,

where kb(x) = k(x/b)/b with kernel k and bandwidth b. The two-step tran-
sition density q2(x, z) from X0 = x to X2 = z has the representation
q2(x, z) =

∫
q(x, y)q(y, z) dy and can be estimated by

∫
q̂(x, y)q̂(y, z) dy.

For our nonlinear autoregressive model, the two-step transition density can
be written

q2(x, z) =
∫

f(z − rϑ(y))f(y − rϑ(x)) dy = E[f(z − rϑ(ε + rϑ(x)))].

This is an expectation under the innovation distribution as in Section 4,
but now for a function h(y, ϑ, f) = f(z − rϑ(y + rϑ(x))) depending on
ϑ and f . There is some formal similarity with the representation of the
stationary density in Section 8, but also an essential difference: There we
had an expectation under the stationary distribution; here the expectation
is taken with respect to the innovation distribution. This makes efficient
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estimation of the transition density easier, because it is easier to estimate
the innovation distribution efficiently. As efficient estimator of q2(x, z) we
suggest

q̂2(x, z) =
∫

f̂w(z − rϑ̂(y))f̂w(y − rϑ̂(x)) dy

with ϑ̂ efficient. The result extends to higher-order lags.
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